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Accuracy criterion for the mean-field approximation in susceptible-infected-susceptible
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Mean-field approximations (MFAs) are frequently used in physics. When a process (such as an epidemic or a
synchronization) on a network is approximated by MFA, a major hurdle is the determination of those graphs for
which MFA is reasonably accurate. Here, we present an accuracy criterion for Markovian susceptible-infected-
susceptible (SIS) epidemics on any network, based on the spectrum of the adjacency and SIS covariance matrix.
We evaluate the MFA criterion for the complete and star graphs analytically, and numerically for connected
Erdős-Rényi random graphs for small size N � 14. The accuracy of MFA increases with average degree and
with N . Precise simulations (up to network sizes N = 100) of the MFA accuracy criterion versus N for the
complete graph, star, square lattice, and path graphs lead us to conjecture that the worst MFA accuracy decreases,
for large N , proportionally to the inverse of the spectral radius of the adjacency matrix of the graph.
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I. INTRODUCTION

A particularly popular class of dynamic processes on net-
works can be called the local rule–global emergent properties
(LrGep) class, where the collective action of the local rules
executed at each node gives rise to a complex, emergent
global behavior. “Local” refers to the subgraph around a node
that incorporates all of the direct neighbors of that node in
a graph G with N nodes and L links, and sometimes also
all links between those direct neighbors. Some examples of
the LrGep class are epidemic models [such as susceptible-
infected-susceptible (SIS) and susceptible-infected-recovered
(SIR)] and more general reaction-diffusion processes [1], the
Ising spin model [2], the Kuramoto coupled-oscillator model
[3], sand piles as models for self-organized criticality [4–6],
and opinion models [7,8]. Many LrGep models feature, in
general, a phase transition [9]; they all depend heavily on the
underlying network topology and many processes in nature
seem well described by LrGep models.

The simplicity of the local rules disguises the overwhelm-
ing, fascinating complexity of the global emergent behavior
in the network that these local rules create. The complexity
generated by the simple local rules is readily understood by
concentrating on the SIS epidemic model [10–13], where each
node j at time t can either be in an infected state [Xj (t) = 1]
or in a healthy state [Xj (t) = 0]. The SIS local rule consists of
two possible actions: (a) an infected node can infect its healthy
neighbors and (b) an infected node can cure and thereafter
become again susceptible to the infection through its infected
neighbors. When assuming a Poisson infection process with
rate β and a Poisson curing process with rate δ, the local
nodal dynamics is described by a two-state Markov process
in continuous time, which is analytically solvable in explicit
form [14]. In a connected network, node j has dj neighbors,
and each of its neighbors can also be either infected or healthy.
Moreover, the network connectivity enables infection spread
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over links, thereby coupling the local state of node i and node j .
In particular, the local infection rate β of node i is now replaced
by the network infection rate β

∑
j∈neighbor(i) Xj (t) because

node i can be infected along its links by all of its infected
neighbors. After coupling all local two-state Markovian
processes, a global SIS Markovian process on the network with
N nodes originates, which now consists of 2N states, covering
all possible combinations in which N nodes can be infected
[15,16]. Suddenly, the simple two-state process explodes to
a complex 2N -state Markovian process. A general theorem
(arising from linear system theory) states that any dynamic
process can be approximated arbitrarily close by a Markovian
process with sufficiently large state space. Hence, Markovian
processes with a large state space can mimic general dynamic
processes, which may explain the potential of rich and complex
behavior (such as phase transitions) in LrGep models.

Even for the simple SIS model, where the network coupling
β
∑

j∈neighbor(i) Xj (t) is linear in the state variables {Xj }1�j�N

in contrast to most other LrGep models, very few exact so-
lutions exist [17–19]. The difficulty in finding exact solutions
[20] has spurred the search for approximations. One of the most
successful approximations is the so-called mean-field approxi-
mation (MFA). The MFA originates from many-body interact-
ing particle systems [21], in which each (charged) particle—
most often an electron—generates an electric Coulomb field,
but experiences the resultant field from all other particles.
By replacing the actual resultant field by the mean electric
field, the many-body governing equations greatly simplify,
basically to the one-electron Schrödinger equation [22,23],
whose solution was shown to describe reality surprisingly well.

II. MEAN-FIELD APPROXIMATION FOR MARKOVIAN
SIS EPIDEMICS ON NETWORKS

The MFA, applied to SIS epidemics on networks, replaces
the actual infection rate β

∑N
k=1 akiXk = β

∑
j∈neighbor(i) Xj (t)

towards node i by its average rate β
∑N

k=1 akiE[Xk(t)], where
Xk refers to the MFA state of node k and aki is an element
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of the adjacency matrix A of the graph G. If the neighboring
states are sufficiently weakly dependent and the number of
neighbors di (degree of node i) is huge so that the Central
Limit Theorem [14] is applicable, then the replacement of
a random variable by its mean is increasingly accurate for
growing di . The mathematical conditions for the validity of
the Central Limit Theorem, stated and proved by Lindeberg
[24], translate, more or less, to the physical interpretation
that “fluctuations” (i.e., the variance of all Xi) are small and
none of them is dominant in the “thermodynamic limit” (i.e.,
N → ∞). Thus, MFA implicitly assumes “large degrees” in
graphs when the graph size N grows. The latter hints that
MFA is likely not accurate (i) in lattices or regular graphs
with fixed degree r , not depending on N , as confirmed
by simulations in, e.g., [25], and (ii) in small graphs, say
N < 10.

Another consequence of replacing the random variable
by its mean in MFAs results in the neglect of correlations
in the dynamic process: MFA treats the joint probability
Pr[Xi = 1,Xj = 1] as if Xi and Xj were independent,
Pr[Xi = 1] Pr[Xj = 1]. We elaborate on the dependence by
considering the exact Markovian SIS governing equation
[14,26] for the infection probability of node i,

dE[Xi]

dt
=E

[
−δXi + β(1 − Xi)

N∑
k=1

akiXk

]

= − δE[Xi] + β

N∑
k=1

akiE[Xk]

− β

N∑
k=1

akiE[XiXk]. (1)

The time derivative of the infection probability E[Xi] =
Pr[Xi = 1] of a node i consists of the expectation of two
competing processes in (1), expressed in the Bernoulli random
variable Xi ∈ {0,1}: (i) while node i is healthy, i.e., not infected
(1 − Xi), all infected neighbors

∑N
k=1 akiXk of node i try

to infect the node i with rate β, and (ii) while node i is
infected Xi , the node i is cured at rate δ. Introducing the co-
variance [14, p. 25], cov[Xi,Xk] = E[XiXk] − E[Xi]E[Xk],
leads to

dE[Xi]

dt
= − δE[Xi] + β(1 − E[Xi])

N∑
k=1

akiE[Xk]

− β

N∑
k=1

akicov[XiXk].

Finally, in terms of the infection probability of node i, wi(t) =
Pr[Xi(t) = 1] = E[Xi(t)], we have

dwi(t)

dt
= −δwi(t) + β[1 − wi(t)]

N∑
k=1

akiwk(t)

−β

N∑
k=1

akicov[Xi(t),Xk(t)], (2)

from which we recognize the first part as the N -intertwined
mean-field approximation (NIMFA) equation [16] in the mean-

field infection probability vi(t) = Pr[Xi(t) = 1] of node i,

dvi(t)

dt
= −δvi(t) + β[1 − vi(t)]

N∑
k=1

akivk(t). (3)

For each node i, we may consider βRi in (2), where

Ri =
N∑

k=1

akicov[Xi(t),Xk(t)] (4)

as the MFA correction term, whose omission in (2) specifies
the impact or accuracy (per node) of MFA. Clearly, if
cov[Xi(t),Xk(t)] = 0 for each nodal pair (i,k), then the
NIMFA equations (3) are equal to the exact SIS equations
(2). Moreover, as shown in [27], cov[Xi(t),Xk(t)] � 0 for
a Markovian SIS and SIR process on any graph, so that
βRi � 0 and NIMFA always upper bounds the viral infection
probability (vi � wi) and, thus, lower bounds the epidemic
threshold τc � τ (1)

c = 1
λ1

, where λ1 is the spectral radius of

the adjacency matrix A of the graph [28] and τ = β

δ
is the

effective infection rate.
The effect of MFA [15,16] is that the 2N linear Markovian

equations in the joint probabilities of the set {Xj (t)}1�j�N

are replaced by N nonlinear equations (3) in the nodal
infection probabilities Pr[Xj (t) = 1]. In addition, although
nonlinear, these N MFA equations, which characterize the
N -intertwined mean-field approximation [16], allow us to
deduce more insight and often lead to sufficiently accurate
results, in particular, in regimes far enough away from the
phase transition and for large graphs. As a result, many papers
even start a discussion on SIS epidemics from their MFA
equations, completely ignoring the approximate character.
However, for some large graphs1 and certain parameter sets
close to the phase transition (specified by the epidemic
threshold τc), MFA can be unacceptably inaccurate [1]. A
fundamental open problem is the determination of a criterion
for graphs, akin to a Ginzburg-like criterion,2 which specifies
the accuracy of MFA as a function of the graph. In particular,
for SIS epidemics described by (2), this question translates to
“which graph (or set of graphs) minimizes Ri in (4) for any
node i ?” So far (e.g., [25]), the accuracy of MFA has been
evaluated by comparing the MFA epidemic threshold τ (1)

c (or
metastable state fraction of infected nodes) with the exact SIS
epidemic threshold τc. Unfortunately, the epidemic threshold
as an accuracy metric is difficult to compute precisely and does
not provide much insight to determine for which graph MFA
is accurate. In the remainder, we propose another accuracy
criterion based on Ri in (4).

1For small graphs with N < 10 nodes, the MFA in SIS epidemics
is, in most cases, inadequate. However, in those cases, the 2N linear
Markov equations can be solved numerically [17].

2The Ginzburg criterion, discussed in [29], assesses the validity of
mean-field theory in physical systems. However, that criterion does
not straightforwardly translate to conditions on the underlying graphs
over which the dynamic process runs.

032812-2



ACCURACY CRITERION FOR THE MEAN-FIELD . . . PHYSICAL REVIEW E 91, 032812 (2015)

III. ACCURACY CRITERION

Let C denote the symmetric covariance matrix, with cij =
cov[Xi,Xj ] = cji , so that (4) equals Ri = ∑N

k=1 aikcki . As
demonstrated in [27], cij � 0, and, since aij � 0, we have
Ri � 0 for each node i. Let R,V,W be the vector with ith
component Ri,vi(t), and wi(t), respectively. The SIS vector
differential equation follows from (2) and (4) as

dW (t)

dt
= −δW (t) + βdiag[1 − wi(t)]AW (t) − βR. (5)

The MFA minimization condition, i.e., Ri for each i, translates
to the minimization of a vector norm for R such as the Hölder
q norm [14], ‖R‖q = (

∑N
i=1 R

q

i )1/q for real q > 0. Since
‖R‖1 (q = 1) has a simple analytic expression, we propose
to determine the accuracy of MFA for a graph G by

‖R‖1 =
N∑

i=1

( N∑
k=1

aikcki

) = tr(AC) = tr(CA) =
N∑

k=1

λk(AC),

(6)

where λ1(M) � λ2(M) � · · · � λN (M) are the ordered real
eigenvalues of an N × N symmetric matrix M . We remark
that criterion (6) does not hold for non-Markovian SIS
epidemics on networks [30], since then, as shown in [27], cij =
cov[Xi,Xj ] can be negative. A consequence of the Wielandt-
Hoffman theorem [28, p. 252] for symmetric matrices A and
C is that

‖R‖1 =
N∑

k=1

λk(AC) �
N∑

k=1

λk(A)λk(C). (7)

Hence, (7) demonstrates that the minimum of ‖R‖1 is achieved
when the eigenvalue vectors of A and C are as orthogonal
as possible to each other. The upper bound, derived in
Appendix A,

N∑
k=1

λk(A)λk(C) � EG

2
[λ1(C) − λN (C)], (8)

where the graph energy [28, p. 201] is defined as EG =∑N
k=1 |λk(A)|, is attainable for some graphs (such as the

complete graph and star graph, as shown below).
The analysis of the spectrum of C in Appendix B indicates

that λ1(C) is dominant, while all other λk(C) � 0 are relatively
small, which suggests that we write (7) as

N∑
k=1

λk(A)λk(C) = λ1(A)λ1(C) +
l∑

k=2

λk(A)λk(C)

+
N∑

k=l+1

λk(A)λk(C), (9)

where the index l is such that λl(A) > 0 and λl+1(A) � 0. The
first term λ1(A)λ1(C) is large and dominant, while the last
sum is negative. The minimization of the left-hand side in (9)
requires that l is as small as possible and the last sum is, in
absolute value, as large as possible.

Suppose that λk(C) = λC for all k; then it follows from (7)
that ‖R‖1 = 0 because [28], for any graph,

∑N
k=1 λk(A) = 0.

However, when λk(C) = λC for all k, then C = λCI because

any real symmetric matrix M has the eigenvalue decomposi-
tion M = Udiag[λk(M)]UT , where U is an orthogonal matrix
satisfying UT U = UUT = I . Hence, when C = λCI , it holds
that cik = cov[Xi(t),Xk(t)] = 0 for any k �= i, which, indeed,
would imply that MFA is exact. However, such a covariance
matrix does not exist because cij > 0 for an arbitrary effective
infection rate τ , even for the complete graph KN . Thus, MFA
cannot be exact so that ‖R‖1 > 0.

IV. NORMALIZED CRITERION

So far, ‖R‖1 has been discussed as an absolute measure.
We present two normalization criteria r , i.e., one that is
purely topological and one related to the SIS process, with
the property 0 � r � 1. If r = 0 for a graph with a given
effective infection rate τ , then MFA is exact, whereas for
r = 1, MFA provides the worst possible accuracy among all
graphs.

From definition (6) and 0 � cij � 1
4 (see Appendix B), it

follows directly that

‖R‖1 =
N∑

i=1

N∑
k=1

aikcki � 1

4

N∑
i=1

N∑
k=1

aik = L

2
,

where L is the number of links in graph G. The normalized
“graph topology” criterion is

rT = 2‖R‖1

L
. (10)

The SIS vector differential equation (5) indicates that the
norm ‖R‖1 could be compared with

‖diag[1 − wi(t)]AW (t)‖1 =
N∑

i=1

N∑
k=1

(1 − wi)aikwk

= (u − W )T AW,

where u = (1,1, . . . ,1) is the N × 1 all-one vector.
Since

E[XiXk] = Pr[Xi = 1,Xk = 1] = Pr[Xi = 1|Xk = 1]

× Pr[Xk = 1] � Pr[Xk = 1] = E[Xk],

we observe that, in (1),

N∑
k=1

akiE[XiXk] �
N∑

k=1

akiE[Xk],

from which, for each node i,

Ri � (1 − E[Xi])
N∑

k=1

akiE[Xk],

so that, after summing over all nodes,

0 � ‖R‖1 � ‖diag[1 − wi(t)]AW (t)‖1.
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The steady-state NIMFA3 average fraction of infected nodes
[14, p. 467] obeys for τ > τ (1)

c , as a consequence of cij � 0,

y(1)
∞ (τ ) = τ

N
[(u − V∞)T AV∞] � τ

N
[(u − W∞)T AW∞],

leading to

‖R‖1 � ‖diag[1 − wi(t)]AW (t)‖1 � Ny
(1)
∞ (τ )

τ
,

which leads us to propose, for τ � τc > τ (1)
c = 1

λ1(A) , the
normalized “process” criterion

rP = τ‖R‖1

Ny
(1)
∞ (τ )

, (11)

where ‖R‖1 must be evaluated in the metastable state (which
corresponds to the NIMFA steady state). Since r � 1, it
follows that, when τ ↓ τ (1)

c , then ‖R‖1 = O[(τ − τ (1)
c )1+ε]

with ε > 0 (see [31]), while4 ‖R‖1 = o(τ−1) when τ → ∞.

V. EXAMPLES

We apply the above theory to two graphs, i.e., the complete
graph KN and the star graph K1,N−1, for which both the exact
SIS [18] and NIMFA [15,16] are analytically soluble, as well
as the spectrum of the adjacency matrix A and the covariance
matrix C (in the metastable state). Moreover, a study [33] on
the average extinction (or virus survival) time seems to hint
that for Markovian SIS epidemics, KN and K1,N−1 are two
extremes among all graphs.

A. Compete graph KN

Only in the complete graph is l = 1 in (9) and the second
largest eigenvalue λ2(AKN

) = −1, while in all other graphs,
l � 2, i.e., λ2(A) > 0. For KN , we find from (9) that

N∑
k=1

λk(AKN
)λk(CKN

) = (N − 1)λ1(CKN
) −

N∑
k=2

λk(CKN
)

= Nλ1(CKN
) −

N∑
k=1

var[Xk]

> N

[
λ1(CKN

) − 1

4

]
.

In the metastable state in KN , we have, due to symmetry, C∞ =
γ J + (σ 2

X − γ )I , where γ = cov[Xi,Xj ] = c12 for i �= j is a
function of the effective infection rate τ , as shown in Fig. 1,

3Since NIMFA is a first order mean-field approximation [26], we
write the relevant NIMFA quantities with a superscript (1), such as
the NIMFA epidemic threshold τ (1)

c and NIMFA average fraction of
infected nodes y(1). Evaluation in the steady state (where the time
t → ∞) is marked by the subscript ∞, such as y∞ = limt→∞ y(t).

4This follows from the Laurent series [32] [14, p. 466] for the
metastable infection probability vi∞(τ ) of node i.

FIG. 1. (Color online) The variance cii = var[Xi] = c11 and co-
variance cij = cov[Xi,Xj ] = c12 of Markovian SIS epidemics on the
complete graph KN vs the normalized infection rate x = τ

τ
(1)
c

for

sizes N = 8,10,12, and 14. Both the variance and covariance in
the metastable state are computed from the exact Markov chain as
explained in [17] for ε = 10−3. Also, the NIMFA variance (1 − 1

x
) 1

x

is shown (thick blue line).

and J is the all-one matrix. Using J 2 = NJ ,

‖R‖1 = tr
(
AKN

C∞
) = tr{(J − I )[cJ + (σX − c)I ]}

= 2

(
N

2

)
γ.

The eigenvalues of C∞ = γ J + (σ 2
X − c)I are λ1(CKN

) =
σ 2

X + γ (N − 1) and λk(CKN
) = σ 2

X − γ for k > 1, so that

N∑
k=1

λk

(
AKN

)
λk(C∞) = tr

(
AKN

C∞
)
,

illustrating that equality holds in the Wielandt-Hoffman bound
(7). The graph energy of KN is EG = 2(N − 1) and (8) equals

EG

2
[λ1(C∞) − λN (C∞)] = γN (N − 1) = tr

(
AKN

C∞
)
,

which indicates that the upper bound (8) is attained in the
metastable state. The normalized “graph topology” criterion
(10) is rT (KN ) = 4γ . Finally, the normalized “process”
criterion (11) equals, for τ > 1

N−1 ,

rP (KN ) = γ
[(N − 1)τ ]2

[(N − 1)τ − 1]
.

Using the normalization xKN
= (N − 1)τ = τ

τ
(1)
c;KN

and

rT (KN ) = 4γ (which is a function of xKN
), we finally arrive at

rP (KN ) = rT (KN )
x2

KN

4
(
xKN

− 1
) ,

which is valid for xKN
> 1. The largest inaccuracy in rP (KN )

seems to occur around the NIMFA epidemic threshold (due to
the pole at xKN

= 1), but limxKN
→1

rT (KN )
xKN

−1 = 0 (as explained
above) and rT (KN ) decays for increasing xKN

[because γ =
o(x) when x → ∞].

Both rT (KN ) and rP (KN ) underline the importance of
the covariance γ = cov[Xi,Xj ], whose decreasing magnitude
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with N is shown in Fig. 1. Figure 1 also exhibits that the
maximum variance of 1

4 is reached for any graph, around that

value of τ for which y
(1)
∞ (τ ) = 1

2 .

B. Star graph K1,N−1

The adjacency eigenvalues of the star with N nodes are
λ1(Astar) = −λN (Astar) = √

N − 1, while all others are zero.
The structure of the covariance matrix Cstar in the metastable
state is given in Appendix C, from which

‖R‖1 = tr(AstarCstar) = 2(N − 1)c,

where c is the SIS covariance of the center and a leaf node.
All covariances are bell-shaped functions of τ , as illustrated in
Fig. 2. The normalized graph topology criterion (10) becomes

rT (K1,N−1) = 4c.

The Wielandt-Hoffman bound (9),

N∑
k=1

λk(Astar)λk(Cstar) = √
N − 1 [λ1(Cstar) − λN (Cstar)]

(12)
shows, for any effective infection rate τ , that the upper bound
(8) is also attained for the star graph. The normalized graph
topology criterion (10) is upper bounded by

rT (K1,N−1) � 2
[λ1(Cstar) − λN (Cstar)]√

N − 1
,

and, explicitly, using the spectrum computed in Appendix C,

rT (K1,N−1) � 2

√(
b − a√
N − 1

+ √
N − 1d

)2

+ 4c2.

For large N ,

rT (K1,N−1) ∼ 2
√

Nd,

FIG. 2. (Color online) The variance of the center node c11 = a

and of the leaf node c22 = b and the covariance of the center leaf
c12 = c and of the leaf leaf c23 = d (see Appendix C) of Markovian
SIS epidemics on the star graph K1,N vs the normalized infection rate
x = τ

τ
(1)
c

for sizes N = 8,10,12,14 and ε = 10−3. The computation

is based on the solution of the 2N × 2N exact Markov infinitesimal
generator.

where d is the covariance between leaf nodes, which is
bounded from below by (C3). In contrast to the com-
plete graph, (9) upper bounds tr(AstarCstar). Simulations (see
Fig. 3 below) suggest that c = O( 1√

N
) for large N and that the

Wielandt-Hoffman bound (9) for tr(AstarCstar) is accurate for
large N , so that 2

√
Nd ∼ 4c. In that case, the inequality (C3)

indeed indicates that c = O( 1√
N

) and d = O( 1
N

). Hence, we

expect that rT (K1,N−1) ∼ O( 1√
N

) for large N .

Using y
(1)
∞,star(τ ) = (N−1− 1

τ2 )

N
( 1

1
τ
+1

+ 1
1
τ
+N−1

) (see, e.g.,

[15]), the normalized process criterion (11) equals, for τ >
1√

N−1
,

rP (K1,N−1) = τ
√

N − 1 [λ1(Cstar) − λN (Cstar)](
N − 1 − 1

τ 2

)(
1

1
τ
+1

+ 1
1
τ
+N−1

) = xstar(
x2

star − 1
) xstar√

N−1

(
1 + xstar√

N−1

)
(1 + xstar

√
N − 1) [λ1(Cstar) − λN (Cstar)]

2 + N√
N−1

xstar
,

where xstar = τ
√

N − 1 = τ

τ
(1)
c;star

> 1. If N is large, xstar does not dependent on N and xstar > 1, then

rP (K1,N−1) ∼ [λ1(Cstar) − λN (Cstar)]√
N − 1

x2
star

(xstar − 1)(xstar + 1)
= rT (K1,N−1)

x2
star

2(xstar − 1)(xstar + 1)
,

illustrating that around the NIMFA epidemic threshold (xstar = 1), the normalized criterion rP behaves for the star graph similarly
as for the complete graph. The prefactor rT , namely, γ versus c, makes the difference.

Both examples indicate that we can further confine our-
selves to the simpler normalized graph topology criterion rT

in (10) and that the correlation matrix C, which depends on τ ,
is key. The bell-shaped nature of the covariances cov[Xi,Xj ]
as a function of τ shows that for any graph, there is an effective
infection rate τ for which the normalized criterion rT is largest,
corresponding to the worst MFA accuracy for that graph. We
propose to use maxτ rT for the comparison. Other choices, such
as
∫∞

0 rT (s)ds, where s = 1
τ

, inspired by the viral conductance

[32,34,35], are possible, though more complicated to evaluate.
The examples above suggest that the maximum value maxτ rT

is reached at an effective infection rate τ < τ ∗ slightly smaller
than the solution of 1

2 = y
(1)
∞ (τ ∗) (which maximizes the average

of the variances over all nodes) and τ ∗ < 5τ (1)
c for N > 14.

C. Scaling of maxτ rT with the network size N

Figure 3 shows the scaling of maxτ rT versus the network
size N for the complete graph KN , the path graph PN (a tree
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FIG. 3. (Color online) The scaling of maxτ rT vs the network size
N for the complete graph KN , the path graph, and the star graph
K1,N−1, for N ranging from N = 10 up to N = 100.

with maximum hop count N − 1), the star graph K1,N−1, and
the square lattice, for N ranging from N = 10 up to N = 100.
The data were obtained by long simulations, described in
detail in [25] . The simulations for N = 10 were compared
to the 2N -state Markov chain solution and were more accurate
than two significant digits, so that the simulations were
indistinguishable from the Markov chain solution in a plot.

On the interval [10,100], fitting the data revealed that

max
τ

rT (KN ) � 5.55

N
, (13)

while

max
τ

rT (K1,N−1) � 2.57

N0.6
. (14)

For large N , we expected in the star graph, as explained in
Sec. V B, a scaling as O( 1√

N
). Exact computations of the

star graph in [18] indicate a rather slow tendency of the star
graph towards its asymptotic SIS regime, so that much larger
network sizes than N = 100 need to be considered to enter
the asymptotic regime. Figure 3 also shows that the path graph
has the worst MFA accuracy: maxτ rT (PN ) remains constant
from N > 60 on, which hints that maxτ rT (PN ) tends to a
constant for large N . The MFA accuracy of the square lattice,
maxτ rT (La), does not decrease as O(N−a) for some positive
real number a, but tends to flatten for high N . We speculate that
maxτ rT (La), similar as for the path graph, also tends towards
a constant for N > 100.

D. Influence of the average degree on rT

The normalized topological MFA criterion rT is computed,
after solving the steady-state of the exact ε-SIS Markov
chain for a self-infection rate ε = 10−3, which we define as
the metastable state in Markovian SIS epidemics on finite
networks [14,17,18]. Since these computations are limited to
small graphs N � 14 (due to the 2N -state space of the SIS
Markov chain), we concentrated on connected Erdős-Rényi
random graphs Gr (N,L) with precisely N nodes and precisely
L links [14, Sec. 15.7]. For these small sizes, the class Gr (N,L)
samples sufficiently over all possible graphs. Characteristic

FIG. 4. (Color online) The normalized topological MFA crite-
rion rT vs the normalized effective infection rate x = τλ1(A) for
Erdős-Rényi random graphs Gr (N,L) with N = 14 (Inset: N = 8)
and average degrees dav varying from 2 to 6; rT for the complete
graph KN is also shown (in thick black line).

graph properties, such as scale freeness [36], are only clearly
observed from N = 500 on.

Our computations in these small graphs illustrate that
maxτ rT decreases with N and with the average degree (or
the total number of links L). Figure 4 shows the typical bell
shape of rT versus τ in connected Erdős-Rényi random graphs
Gr (N,L) for different number L of links (or average degree
dav = 2L

N
). Similar bell shapes were found up to N = 14. The

maximum maxτ rT versus N is plotted in Fig. 5 and indicates
that maxτ rT decreases with N . The increase in accuracy
(decrease of maxτ rT ) with both increasing average degree
dav and network size N agrees with the quality conditions for
the Central Limit Theorem, as explained in Sec. II.

FIG. 5. (Color online) The maximum normalized topological
MFA criterion maxτ rT vs the network size N for connected Erdős-
Rényi (ER) random graphs Gr (N,L) with different average degree
dav = 2L

N
. Inset: Solutions of the Markov chain (for small N ). The

main plot was obtained after long simulations. For each N , a single
realization of an ER graph was constructed on which the SIS process
was simulated, which explains the lack of smoothness in max rT .
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Figures 3 and 5 lead us to hypothesize that for large N , in
any graph, the worst MFA accuracy scales as

max
τ

rT = O

[
1

λ1(A)

]
. (15)

We support the conjecture by an approximate argument.
Combining (7) and (8) and the definition (10) of rT shows
that

rT � EG

L
[λ1(C) − λN (C)] .

Using [28], the graph energy EG = ∑N
j=1 |λj (A)| and 2L =∑N

j=1 λ2
j (A) yields, for large N ,

EG

L
= 2

∑N
j=1 |λj (A)|∑N
j=1 λ2

j (A)
= 2

λ1(A)

1 +∑N
j=2

|λj (A)|
λ1

1 +∑N
j=2

λ2
j (A)

λ2
1(A)

,

and thus

max
τ

rT � ξ (N )

λ1(A)
,

where

ξ (N ) = 2λ1(C)
1 +∑N

j=2
|λj (A)|

λ1

1 +∑N
j=2

λ2
j (A)

λ2
1(A)

.

Figure 3 seems to suggest that ξ (N ) = O(1) for N → ∞,
which leads to the conjecture (15). Extensive simulations or
an analytic proof are needed to verify this claim. Moreover,
it is worthwhile to explore for which other members of the
LrGep class (in particular, the Kuramoto model as analyzed in
[31]) such a type of scaling would apply.

VI. CONCLUSION

The analysis of a MFA accuracy criterion for Markovian
SIS epidemics on networks leads us to propose the normalized
graph topology criterion rT in (10), which basically requires
an evaluation of the spectral width λ1(C) − λN (C) of the
covariance matrix C of the SIS Markovian process and the
graph energy EG. The normalized graph topology criterion
rT exhibits a bell-shaped curve as a function of the effective
infection rate τ , with a maximum at a slightly smaller τ value
than τ ∗ for which the metastable state fraction of infected
nodes equals one-half (i.e., y∞(τ ∗) = 1

2 ). Computations on
small graphs (N � 14) reveal that the worst accuracy of MFA,
measured by maxτ rT , decreases with average degree dav as
well as with increasing size N of the network, and these
observations are in line with the applicability of the Central
Limit Theorem.

Unfortunately, the numerical computation of the covariance
matrix C is difficult: the complete 2N × 2N SIS Markov
infinitesimal generator needs to be constructed and solved
for the (2N × 1)-state vector (in the metastable state), which
can only be executed for small N . Initial simulations (up
to N = 100) reveal the behavior of maxτ rT versus network
size N for the complete graph, star graph, square lattice, and
path graph, and agree with MFA accuracy conditions derived
from the Central Limit Theorem. Moreover, the calculations

and simulations led us to conjecture the worst MFA accuracy
scaling law in (15).

The extension of the analysis to larger and more real-
istic sizes of networks will require very long simulations.
Approximate, higher-order mean-field computations, such as
[26], are believed, in general, to be insufficiently accurate
to determine rT . At last, the analysis is specifically geared
towards Markovian SIS epidemics and does not seem to be
straightforwardly generalized to other LrGep models.
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APPENDIX A: UPPER BOUNDS FOR (7)

Applying Abel’s partial summation

n∑
k=1

ak bk =
n−1∑
k=1

(
k∑

l=1

al

)
(bk − bk+1) + bn

(
n∑

l=1

al

)
(A1)

to (7) yields, with
∑N

k=1 λk(A) = 0,

N∑
k=1

λk(A)λk(C) =
N−1∑
k=1

⎡⎣ k∑
j=1

λj (A)

⎤⎦ [λk(C) − λk+1(C)].

(A2)

Since eigenvalues are implicitly assumed to be ordered, λ1 �
λ2 � · · · � λN , the spacings λk − λk+1 � 0, which illustrates
that all terms in the above sums are non-negative because∑k

j=1 λj (A) > 0, for 1 � k < N , and
∑k

j=1 λj (A) = 0, only
if k = N . If l is the index for which λl(A) � 0 and λl+1(A) <

0, then
∑k

j=1 λl(A) is increasing for 1 � k � l and decreasing
for l + 1 � k � N . The graph energy [28, p. 201], defined as
EG = ∑N

j=1 |λj (A)|, can be written as

EG =
l∑

j=1

λj (A) −
N∑

j=l+1

|λj (A)| = 2
l∑

j=1

λj (A)

because tr(A) = 0 leads to
∑l

j=1 λj (A) = −∑N
j=l+1 λj (A).

Hence, an upper bound for (A2) is

N∑
k=1

λk(A)λk(C) � EG

2

N−1∑
k=1

[λk(C) − λk+1(C)]

= EG

2
[λ1(C) − λN (C)],

while a lower bound of the same form (EG

2 × a spacing between
eigenvalues) is

N∑
k=1

λk(A)λk(C) >

⎡⎣ l∑
j=1

λj (A)

⎤⎦ [λl(C) − λl+1(C)]

= EG

2
[λl(C) − λl+1(C)].
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The minimization of tr(AC) requires a low graph energy EG �√
2L, apart from a small eigenvalue spacing λ1(C) − λN (C).

APPENDIX B: SPECTRUM OF C

We analyze the spectrum of the Markovian SIS covariance
matrix C in a graph G, at any time t and for any effective
infection rate τ . Any covariance matrix is positive semidefinite
[14, p. 71]. Here, in addition, C is a non-negative matrix
with ith diagonal element cii = var[Xi] = σ 2

Xi
= E[Xi](1 −

E[Xi]) = wi(1 − wi) � 1
4 , because X2

i = Xi for Bernoulli
random variables, from which

N∑
k=1

λk(C) = tr(C) =
N∑

k=1

var[Xk] � N

4
.

By the Cauchy-Schwarz inequality [14]

cij = cov[Xi,Xj ] = E{(Xi − E[Xi])(Xj − E[Xj ])}

�
√

E{(Xi − E[Xi])2}
√

E{(Xj − E[Xj ])2} = σXi
σXj

,

we obtain that cij � σXi
σXj

, with equality on the diagonal,
cii = σ 2

Xi
. The symmetric matrix C̃, with element c̃ij =

σXi
σXj

, has the same diagonal elements as C, but larger
off-diagonal elements than C. For Markovian SIS and large
N , the variance var[Xk] is shown in [37] to be largest for
effective infection rates τ around, but above, the epidemic
threshold τc (see also Figs. 1 and 2 for the complete graph
and star graph). Furthermore, C̃ = zzT , where the vector z =
(σX1 ,σX2 , . . . ,σXN

) and xT C̃x = (xT z)2 � 0 shows that just
like C, C̃ is also positive semidefinite. Since C̃ is a rank-one
matrix, the eigenvalues are λk(C̃) = 0 (for 1 < k � N ) and
λ1(C̃) = zT z = ∑N

k=1 var[Xk]. Hence, the spectrum of C̃ has a
large gap with a clearly dominant largest eigenvalue. Since the
matrix C̃ “dominates” the matrix C elementwise and tr(AC) �
tr(AC̃), ‖R‖1 → 0 for τ < τc and τ → ∞ because, in that
region and limit, any variance σ 2

Xj
= wi(1 − wi) vanishes. We

will now show that the C matrix inherits the spectral properties
of C̃, though in a less sharp way.

Let us consider the symmetric matrix � = C̃ − C, which
is a non-negative matrix. By the Perron-Frobenius theorem
of non-negative matrices, the largest eigenvalue λ1(�) is
positive and Gerschgorin’s theorem shows that λ1(�) � maxi∑N

j=1(σXi
σXj

− cij ). The Perron-Frobenius theorem also tells
us that −λN (�) � λ1(�). Since tr(�) = 0, at least one eigen-
value is negative and, thus, � is not positive semidefinite.
Now, the eigenvalues of C are the zeros of the characteristic
polynomial

det(C − ξI ) = det(C̃ − � − ξI ) = det[zzT − (� + ξI )]

= (−1)N det[(� + ξI ) − zzT ]

= (−1)N det(� + ξI )[1 − zT (� + ξI )−1z],

where, in the last line, the general rank-one update formula
[28],

det
(
An×n + Cn×kD

T
k×n

) = det A det(Ik + DT A−1C),

has been used for k = 1. Invoking the resolvent of a symmetric
matrix

(� + ξI )−1 =
N∑

j=1

1

λj (�) + ξ
xj (�)xT

j (�),

where xj (�) is the eigenvector of �, normalized as
xT

j (�)xj (�) = 1 and belonging to the eigenvalue λj (�), leads
to

det(C − ξI ) = (−1)N det(� + ξI )

⎧⎨⎩1 −
N∑

j=1

[zT xj (�)]2

λj (�) + ξ

⎫⎬⎭ ,

which illustrates, with (−1)N det(� + ξI ) = ∏N
j=1[ξ +

λj (�)] (see [28, p. 248]), that the eigenvalues of C (except
those with multiplicity larger than 1) are all different from
those of � and obey

N∑
j=1

[zT xj (�)]2

λj (�) + ξ
= 1. (B1)

This partial fraction expansion (B1) is decreasing in ξ and has
poles at ξ = −λj (�) so that all λj (C) interlace with and are
close to those of λj (�),

−λ1(�) < λN (C) � −λ2(�)

� λN−1(C) � · · · � −λN (�) � λ1(C).

Since C is positive semidefinite, all eigenvalues of λj (�), ex-
cept for λ1(�), must be negative. Thus, λ1(�) = −∑N

k=2 λk(�)
because tr(�) = 0.

For large negative (positive) ξ , all terms of the sum in
(B1) are negative (positive). Just above the pole at −λ1(�),
i.e., ξ > −λ1(�), the term (zT x1(�))2

λ1(�)+ξ
> 0 dominates the sum in

(B1), so that the sign reverses from negative to positive. Since
there cannot be a negative eigenvalue of C, there must hold at
ξ = 0 that

N∑
j=1

[zT xj (�)]2

λj (�)
� 1,

from which

λ1(�) � [zT x1(�)]2

1 −∑N
j=2

[zT xj (�)]2

λj (�)

< [zT x1(�)]2

=
{

N∑
m=1

σXm
[x1(�)]m

}2

,

where [x1(�)]m > 0 (by the Perron-Frobenius theorem). The
Cauchy-Schwarz inequality shows that{

N∑
m=1

σXm
[x1(�)]m

}2

�
N∑

m=1

σ 2
Xm

N∑
m=1

[x1(�)]2
m

=
N∑

m=1

σ 2
Xm

= λ1(C̃),

and thus λ1(C̃) > λ1(�). The largest eigenvalue of C is larger
than −λN (�). Indeed, consider ξ = λ1(C) � −λN (�); then
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the partial fraction expansion (B1) shows that

−λN (�) + [zT xN (�)]2

1 −∑N−1
j=1

[zT xj (�)]2

λj (�)+λ1(C)

= λ1(C),

which allows us to compute λ1(C) (recursively as in [28,
p. 138]) in terms of the eigenvalues of �. Also, the spectral
gap λ1(C) − λ2(C) > λ1(C) + λN (�).

Since

λ1(C) =
N∑

k=1

var[Xk] −
N∑

k=2

λk(C)

and the interlacing of the “band eigenvalues” causes∑N
k=2 λk(C) ≈ −∑N

k=2 λk(�) = λ1(�), we see that, approx-
imately,

λ1(C) ≈
N∑

k=1

σ 2
Xk

− λ1(�) = λ1(C̃) − λ1(�),

which points to the fact that both � and C have a large spectral
gap.5

Thus, the sharp spectrum of C̃ is smoothed: the spectral
gap of C is smaller and the other eigenvalues of C lie in a tiny
“band,” slightly above zero rather than collapsed at zero for C̃.

APPENDIX C: EIGENVALUES OF Cstar FOR THE STAR GRAPH

Let the center of the star graph be labeled by 1, while the leaf nodes range from 2 up to N . Due to symmetry, the metastable
state covariance matrix Cstar for the star graph has only four different values: c11 = a,cjj = b and c1j = c for j > 1,cij = d for
i > 1 and j > 1. Hence, the structure is

Cstar =

⎡⎢⎢⎢⎢⎣
a c c · · · c

c b d · · · d

c d b · · · d
...

...
. . .

...
c d d · · · b

⎤⎥⎥⎥⎥⎦ .

The determinant det(Cstar − λI ) is evaluated using Schur’s complement formula [28],

det

[
A B

C D

]
= det A det(D − CA−1B), (C1)

where

A =
[
a − λ c

c b − λ

]
and A−1 = 1

(a − λ)(b − λ) − c2

[
b − λ −c

−c a − λ

]
,

B2×(N−2) =
[
c · · · c

d · · · d

]
= CT ,

and D = dJ(N−2)×(N−2) + (b − d − λ)IN−2. Hence,

CA−1B = 1

(a − λ)(b − λ) − c2

⎡⎢⎣c d
...

...
c d

⎤⎥⎦[b − λ −c

−c a − λ

] [
c · · · c

d · · · d

]
= c2(b − λ) + d2(a − λ) − 2c2d

(a − λ)(b − λ) − c2
J(N−2)×(N−2)

and

D − CA−1B =
[
d − c2(b − λ) + d2(a − λ) − 2c2d

(a − λ)(b − λ) − c2

]
J(N−2)×(N−2) + (b − d − λ)IN−2

= d(a − λ)(b − λ) − c2(b − λ) − d2(a − λ) + c2d

(a − λ)(b − λ) − c2
uuT + (b − d − λ)I.

Next,

d(a − λ)(b − λ) − c2(b − λ) − d2(a − λ) + c2d = [d(a − λ) − c2](b − λ − d).

Further,

det(D − CA−1B)= det

{
[d(a−λ)−c2](b − d − λ)

(a−λ)(b−λ) − c2
uuT +(b − d − λ)I

}
=(b − d − λ)N−2 det

{
[d(a − λ) − c2]

(a − λ)(b − λ) − c2
uuT + I

}
.

5For large N , we may apply the Marcenko-Pastur law [28] for the spectrum of C.
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Using the rank-one update formula [28],

det(I + cdT ) = 1 + dT c,

yields

det(D − CA−1B) = (b − d − λ)N−2

{
1 + [d(a − λ) − c2]

(a − λ)(b − λ) − c2
(N − 2)

}
= (b − d − λ)N−2{ (a − λ)(b − λ) − c2 + (N − 2)[d(a − λ) − c2]

(a − λ)(b − λ) − c2
}

and

det(Cstar − λI ) = (b − d − λ)N−2[(a − λ)(b − λ) + (N − 2)d(a − λ) − (N − 1)c2].

The quadratic polynomial6 is

p2(λ) = (a − λ)(b − λ) + (N − 2)d(a − λ) − (N − 1)c2 = λ2 − {(a + b) + (N − 2)d}λ + ab + (N − 2)da − (N − 1)c2,

with roots

2λ1 = (a + b) + (N − 2)d ±
√

[(a + b) + (N − 2)d]2 − 4[ab + (N − 2)da − (N − 1)c2].

The discriminant is

D = [(a + b) + (N − 2)d]2 − 4[ab + (N − 2)da − (N − 1)c2] = [b − a + (N − 2)d]2 + 4(N − 1)c2.

Finally, the eigenvalues of Cstar are b − d with multiplicity
N − 2 and

2λ1(Cstar) = (a + b) + (N − 2)d

+
√

{[b − a + (N − 2)d]2 + 4(N − 1)c2}
(C2)

and

2λN (Cstar) = (a + b) + (N − 2)d

−
√

{[b − a + (N − 2)d]2 + 4(N − 1)c2}.

6We may verify that the sum of the eigenvalues equals

tr(Cstar) = a + (N − 1)b = (N − 2)(b − d) + (a + b) + (N − 2)d.

Since all eigenvalues must be non-negative, we find from
λN (Cstar) � 0 that

(a + b) + (N − 2)d

�
√

{[b − a + (N − 2)d]2 + 4(N − 1)c2},

which leads to a bound for

c2 � a

(
b + d

N − 1
+ d

)
. (C3)

Thus, for large N , we find that c2 � ad.
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