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Abstract

A new approach is proposed to quantitatively evaluate the binary detection performance of the biometric personal

recognition systems. The importance of correlation between the overall detection performance and the area under

the genuine acceptance rate (GAR) versus false acceptance rate (FAR) graph, commonly known as receiver

operating characteristics (ROC) is recognized. Using the ROC curve, relation between GARmin and minimum

recognition accuracy is derived, particularly for high security applications (HSA). Finally, effectiveness of any binary

recognition system is predicted using three important parameters, namely GARmin, the time required for

recognition and computational complexity of the computer processing system. The palm print (PP) modality is

used to validate the theoretical basis. It is observed that by combining different useful feature-extraction

techniques, it is possible to improve the system accuracy. An optimum algorithm to appropriately choose weights

has been suggested, which iteratively enhances the system accuracy. This also improves the effectiveness of the

system.

Keywords: False acceptance rate (FAR), Genuine acceptance rate (GAR), Receiver operating characteristics (ROC),

Area under the curve (AUC), Score level summing, Optimal weights algorithm (OWA)

1 Introduction
Extensive work has been done in the area of biometric

recognition using different traits such as face, finger

print, iris, voice, different hand-based modalities, gait,

etc. [1–4]. However, unimodal systems have their own

advantages and limitations. They require only one sensor

to acquire data. Therefore, the data acquisition becomes

less expensive and more user-friendly. They also require

limited signal processing time and less computational ef-

forts. However, the performance of any unimodal system

gets degraded due to several reasons like erroneous

database, spoofing attacks, etc. [5–7]. The unimodal sys-

tems provide lower values of genuine acceptance rate

(GAR) and low to middle range of accuracies [8–10].

The proposed work in this paper focuses on increasing

this low value of minimum value of genuine acceptance

rate (GARmin) for unimodal systems, with a view to

boost their accuracies. This is done using mathematical

modeling of signal detection performance and derivation

of accuracy in terms of GARmin for high security applica-

tions (HSA). In this paper, efforts are made for enhancing

the accuracy of palm print (PP)-based recognition using

different feature extraction techniques, such as use of dif-

ferent discrete wavelet transform (DWT) coefficients and

combinations of different DWT coefficients. Compared to

other traits, PP features have certain distinct advantages.

PP modality provides reasonably good recognition accur-

acy. PP authentication ensures advantages such as very

stable line features, low intrusiveness, and requires low

resolution imaging. As the palm area is much larger, more

distinctive features can be captured. [11–13].

The GARmin decides the detection performance of the

system. The paper clearly brings out the correlation be-

tween the system accuracy with area under the curve

(AUC) of its “GAR versus FAR characteristics,” commonly

known as receiver operating characteristics (ROC) of the

system. In order to validate theoretical concepts proposed,

PP modality is used. For PP modality, various feature
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extraction techniques are used to increase AUC of its

ROC characteristics. Further, an appropriate iterative

optimal weights algorithm (OWA) is suggested to fur-

ther enhance the accuracy of the system. Finally, ef-

fectiveness of any binary recognition system is

computed in terms of GARmin, recognition time, and

computational complexity.

The paper is organized as follows: after brief intro-

duction, Section 2 outlines the work done by other

researchers in this field. Section 3 is devoted for math-

ematical background for binary signal detection and

definition of effectiveness of the system. Section 4 elabo-

rates the proposed methodology for the biometric image

data acquisition, feature extraction, and feature mapping.

Section 5 includes the system effectiveness calculations,

analysis of the recognition performance, and the dis-

cussions on results, followed by conclusions.

2 Related work
Researchers have used different biometric traits for per-

sonal recognition purposes. As our focus is mainly on

enhancing accuracy of unimodal hand-based systems, we

have briefly reviewed research efforts, which reflect

accuracies obtained for specific hand-based modalities.

E. Wong et al. (2008) [14] and M. Dale et al. (2009)

[15] have worked on PP-based biometric recognition.

They have reported accuracy levels of 94.84% and 97%

respectively. Zhenhua Guo et al. (2011) [16] have used

(2D) PCA for PP feature extraction. They have obtained

an accuracy of 97.43%. Goh Kahong Michael et al.

(2012) [17] have described a contactless hand-based bio-

metric system. They have extracted features using direc-

tional coding techniques, and normalized hamming

distance has been used to find similarity between two

feature sets. For individual modality, they have obtained

GAR of 0.89 for hand geometry, 0.95 for PP, 0.75 for

knuckle finger print, and 0.96 for finger vein modality.

Kuang-Shyr Klu et al. (2013) [18] have used directional

filter bank for palm vein modality in their work. They

have quoted an accuracy of 99%. Sibi Sasidharan et al.

(2015) [19] have presented a paper in which they have

given analysis of various methods and algorithms that

identify the vein patterns for authentication purpose.

They have concluded that palm vein recognition using

neural network to be quite efficient and accurate. Ragha-

vendra et al. (2015) [20] have explored the idea of PP

recognition using a sparse representation of features ob-

tained from Bank of Binarized Statistical Image Features

(BSIF). Bank of BSIF that comprises of 56 different Bank

of BSIF filters whose responses on the given PP modality

image is processed independently and classified using

sparse representation classifier (SRC). In the given PP

sample, they obtained response on each of the Bank of

BSIF filter and then they obtained the corresponding

comparison score using SRC. Finally, they have selected

the best comparison score that corresponds to the mini-

mum value of the residual error. S. Khellat-Kihel et al.

(2016) [21] have mentioned GAR values of 0.927, 0.846,

0.547 for finger knuckle print, finger vein, and finger-

print modalities respectively. Kunal Kumar et al. (2016)

[5] have presented the strengths and weakness of

selected biometric mechanisms and recommend novel

solutions to include in multimodal biometric systems to

improve on the current biometric drawbacks. Gopala et

al. (2016) [6] have proposed fusion of PP, palm-phalan-

ges print (PPP), and dorsal hand vein (DHV) in their

paper. They have obtained GAR of 94% for PP, 98.2% for

PPP, 92% for DHV, and GAR of 99.6% for score level fu-

sion of PP-PPP-DHV. They have implemented score

level fusion with conventional operators like Yager’s or-

dered weighted averaging (OWA) operator and t norm

fusion operator. Shital Baghel et al. (2017) [7] have men-

tioned the drawbacks of unimodal systems compared to

multimodal systems. Gopal Chaudhary et al. (2017) [8]

have developed system using biometric trait, PPP. They

have used different feature extraction techniques such as

histograms of oriented gradients, Gaussian membership

function (GMF) feature, mean value, and average abso-

lute deviation method. Anchal Bansal et al. (2018) [9]

have presented a review of different features of finger-

print recognition systems. The invariant and discrimin-

atory information present in the fingerprint images are

captured using fingerprint ridges known as minutiae.

They have compared pattern recognition-based ap-

proach with wavelet-based approaches. Rupali L. et al.

(2014) [22] have proposed the score level fusion of face

and fingerprint modalities. Minutiae matching and Ga-

bor filter techniques have been used for fingerprint rec-

ognition and principal component analysis for face

recognition. After performing score normalization, score

level fusion was done using simple sum rule. They have

quoted an overall accuracy of 97.5% with FAR and FRR

of 1.3% and 4 .0 1% respectively. Assuming occurrence

of equiprobable hypotheses, this represents a percentage

accuracy of approx. 97.235%. Furthermore, FAR level

mentioned makes this approach not at all suitable for

HSA, which is the prime focus of the present paper.

Kamer Vishi et al. (2017) [23] have combined the nor-

malized scores obtained from finger-veins and finger-

prints modalities using different score level fusion

techniques. They have implemented four score fusion

approaches namely minimum score, maximum score,

simple sum, and user specific weighting. They have con-

sidered using user specific weighting because they found

that some biometric traits cannot be reliably obtained

from some people. Hence, they have given a lower

weight to a fingerprint score and a higher weight to a

finger-vein score to reduce the probability of a false
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rejection. However, it appears that the weight assign-

ment is rather on intuitive basis and not on any math-

ematical logic. As mentioned earlier, focus of the

proposed work in this paper is mainly on enhancing ac-

curacy of unimodal system so that it should be useful

for HSA or very, very low FAR applications. Further, it

may be observed that among various hand-based modal-

ities, PP modality gives reasonably good accuracy.

Therefore, focus of the proposed work is to explore the

techniques, which may be useful for further improving

the recognition accuracy of the PP modality based on lo-

gical, sound mathematical approach. The proposed uni-

modal system gives enhanced accuracy of 99.25% with

very low FAR level of 0.0001 which is substantially

greater than present day multimodal systems quoted

above. Before explaining image capture, processing, and

feature extraction, we introduce the mathematical basis

for binary signal detection, with a view to understand

the relationship between important parameters like

GARmin, ROC, accuracy, etc. in the following section.

3 Mathematical preliminaries
3.1 Mathematical background for binary signal detection

The problem of binary detection is formulated and ana-

lyzed in various signal detection and estimation books

[24, 25]. The simplest binary communication system is

shown in Fig. 1. A typical simple case consists of a single

observation of the received signal corrupted by additive

noise. The input signal is assumed to be in the binary

form with two distinct values “mo” and “m1,” corre-

sponding to two binary hypotheses, “H0” and “H1” re-

spectively. The received signal “r” can be expressed as,

r=H i ¼ m=H i þ noise i ¼ 0 or 1ð Þ ð1Þ

In the above Eq. (1), symbol “r/Hi” represents received

signal “r” assuming hypothesis “Hi” is true and symbol

“m/Hi” represents mean value of the received signal as-

suming hypothesis “Hi” is true. The last term “noise”

represents undesirable degradations due to fine dust, il-

lumination effects, blurring effects, etc. In this paper, it

is further assumed that overall effect of all degradations

due to central limit theorem of statistics leads to zero

mean Gaussian distribution with variance “σ2.” Further,

the probability density function (PDF) for the observed

signal can be expressed as,

P r=Hið Þ ≝ G mi; σ
2

� �

ð2Þ

In Eq. (2), symbol “ ” means equality in PDF and “G”

represents standard Gaussian distribution. For the sim-

plest example of binary hypothesis testing considered,

the generalized likelihood ratio test (GLRT) has been de-

rived as [24, 25],

GLRT ¼
P rjH1ð Þ

P rjH0ð Þ

H1

>
<
H0

γ ð3Þ

In Eq. (3), “γ” represents decision threshold. For the

simple case of single observation, the above equation

leads to,

r

H1

>
<
H0

γ ð4Þ

In Eq. (4), the term “γ” is given by Eq. (5).

γ ¼
σ
2

m1
ln ηð Þ þm1

�

2 ð5Þ

In Eq. (3), signal value for the hypothesis “H0” has

been assumed to be zero (i.e., m0 = 0) for simplicity and

in Eq. (5), “η” represents ratio of occurrence of a priori

probabilities of two hypotheses H0 and H1. For equi-

probable hypotheses, “η = 1” and decision threshold be-

comes “γ =m1/2” which is expected.

The GAR can now be expressed as,

Fig. 1 The simplest binary communication system
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GAR ¼

Z

∞

γ

P rjH1ð Þdr ð6Þ

Similarly, FAR can be expressed as,

FAR ¼

Z

∞

γ

P rjH0ð Þdr ð7Þ

In biometric terms GAR and FAR are known as “True

Positive” and “False Positive” respectively. The ROC

curve represents plot of “GAR versus FAR” as value of

decision threshold “γ” is varied from very low value to

very large value. As “γ” threshold increases, both GAR

and FAR get reduced. In this case, we follow the test

suggested by Neyman-Pearson (NP) [24], in which deci-

sion threshold is pre decided by level of maximum FAR

permissible in the application. In this method, GAR is

maximized for the stipulated value of FAR. In high se-

curity applications, value of FAR ≤ 0.0001 (maximum of

one among 10,000 samples may be falsely acceptable).

Hence, we set our threshold based on equation no. (7),

with FAR = 0.0001.

Typical ROC characteristics for the simplest case are

shown in the Fig. 2, where typical signal values, m5 >

m4 >m3 >m2 >m1 are used and “m0” is assumed to be

zero. The ideal characteristics would be GAR = 1 and

Fig. 2 ROC curves for different signal values

Fig. 3 Data acquisition system
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FAR = 0 and the worst scenario, GAR = FAR which is di-

agonal solid line marked as “Worst Performance” in

Fig. 2. It is observed that as the signal value increases,

the ROC curve shifts toward the ideal curve and the de-

tection performance improves [24].

The error in the binary system can be defined as,

Er ¼ P0 � false acceptance rateð Þ þ P1 � genuine rejection rateð Þ½ �

ð8Þ

In Eq. (8), genuine rejection rate (GRR) represents

false negative for biometric system. Further, P0 and P1
represent a priori probabilities of hypotheses H0 and H1

respectively. Assuming two hypotheses to be equally

likely, i.e., P0 = P1 = ½, the error situation can be

expressed as,

Er ¼ FARþ GRRð Þ=2 ð9Þ

The detection accuracy can be expressed as,

Accuracy ¼ 1−Erð Þ ð10Þ

For the simple equiprobable binary hypothesis, Eq.

(10) leads to,

Accuracy ¼ 1−
FARþ 1−GARð Þð Þ

2

� �

ð11Þ

Further, for high security applications, where FAR is

very small compared to GAR, above Eq. (11) approxi-

mates to,

Percentage accuracy min: ¼
1

2
1 þ GAR min:ð Þ

� �

� 100%

ð12Þ

It is readily seen from the ROC that GARmin is the

value of GAR, at which the ROC curves depart from

FAR = 0 (i.e., Y-axis) tangentially. Further, as a value of

AUC (0.5 < AUC < 1.0) increases, the value of GARmin

also increases, which leads to accuracy enhancement.

For the worst scenario, GARmin = 0. For ideal scenario,

GARmin approaches to 1. Thus the accuracy level in-

creases from 50 to 100%. One more commonly used

method in binary recognition is equal error rate (EER)

method, i.e., FAR =GRR. In this case, for equiprobable

hypotheses, the accuracy in % units can be expressed as,

Percentage accuracy ¼ 1−GRRð Þ � 100 ð13Þ

Percentage accuracy ¼ GARð Þ � 100 ð14Þ

However, in this case, GAR has to be determined at

the EER point. In this paper, as our main focus is on

high security applications, we use only NP test ex-

plained above and evaluate the percentage accuracy

using Eq. (12).

3.2 System effectiveness

The term “system effectiveness є” represents the quanti-

tative measure of effectiveness of biometric recognition

system, which can be defined as follows,

System effectiveness εð Þ ¼
GAR min: � t max:

t

� �

� Cc

ð15Þ

In Eq. (15), “tmax” represents maximum permissible

time as per system requirements stipulated and “t”

Fig. 4 Enhanced palm prints ROI images

Deshpande et al. EURASIP Journal on Information Security          (2019) 2019:6 Page 5 of 16



represents actual time required for recognition process.

Further, “CC” represents the hardware complexity of the

computer configuration used. Effectiveness of the system

increases with increase in “GARmin” which enhances the

recognition accuracy and with reduction in the actual

recognition time t. The system effectiveness also in-

creases with increase in complexity of the computer

configuration used. The higher the value of system ef-

fectiveness, the better will be the biometric system.

With above analytical background and definitions, we

now consider the image acquisition, feature extraction

techniques, and features mapping techniques used for

the biometric recognition system.

4 Image data acquisition, feature extractions, and

feature mapping techniques
4.1 Image capture process

The data acquisition system (DAS) has been designed,

developed, and fabricated. Regarding this DAS and the

required image pre-processing, we have explained in de-

tail in our paper published during the Conference on

Advances in Signal Processing (CASP), 2016 [11]. DAS

to extract PP modality is shown in Fig. 3. Webcam with

medium resolution 640 × 480 has been used to acquire

images and database of 150 users has been created. In

this case, all 150 users were asked to wash/clean their

hands before image capture process. This ensures that

the database was reasonably error free data and only

noise during capture can lead to the degradation of im-

ages. For every user, ten images of PP modality have

been captured. Extraction of PP ROI has been discussed

in detail in the paper published during International

Conference on Electronics and Communication Systems

(ICECS), 2014 [12]. The enhanced ROIs for palm print

images are shown in Fig. 4. The biometric feature ex-

traction is discussed in the following subsection.

4.2 Techniques for palm print feature extraction

Two techniques namely Harris Corner Detector (HCD)

and DWT are used for feature extraction. These tech-

niques are briefly discussed below:

4.2.1 Feature extraction using HCD

HCD algorithm was used to extract palm print fea-

ture vector [26]. Algorithm is stepwise explained in

the following.

Step 1: Compute X and Y derivatives of image by

convolving image “I” with Prewitt operator.

Ix ¼ Gx
σ
� I; Iy ¼ Gy

σ
� I ð16Þ

In Eq. 16, Gx
σ
¼ Prewitt vertical edge operator and Gy

σ

¼ Prewitt horizontal edge operator

Step 2: Compute products of derivatives at every pixel.

I2x ¼ Ix:Ix; I2y ¼ Iy:Iy; IxIy ¼ Ix:Iy ð17Þ

Step 3: Compute the sums of the products of

derivatives at each pixel.

Ix2 ¼ Gσ0 � I2x; Iy2 ¼ Gσ0 � I
2
y; Ixy

¼ Gσ0 � IxIy ð18Þ

In Eq. (18), Gσ’ = Gaussian filter

Fig. 5 Palm print with corners and its binary matrix
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Step 4: Define at each pixel (x, y) the matrix.

M ¼
Ix2 x; yð Þ Ixy x; yð Þ
Ixy x; yð Þ Iy2 x; yð Þ

� �

ð19Þ

Step 5: Compute the “response” of the detector at each

pixel.

R ¼ Det Mð Þ−K Trace Mð Þð Þ2 ð20Þ

In Eq. (20), “K” is a constant, which lies in between

the range 0.04 to 0.07 [12, 26]. All pixels that have

scores greater than a certain threshold value “R” have

been marked as the “Corner points or Tracking points”

on the ROI of palm print image. We have taken the size

of this ROI 256 by 256 pixels. Number of corner points

lies in between 12 and 16 depending upon the value of

“K” [12, 26]. These corner points have been mapped

from ROI of 256 by 256 pixels into a binary matrix of

size 8 × 8, as shown in Fig. 5. Thus, PP feature vector

has been created. HCD has few limitations. HCD con-

sumes substantial time to detect the corners. Further, as

HCD uses spatial domain processing, the accuracies may

be adversely affected due to intensity artifacts, rotation

effects, degradation effects, etc.

4.2.2 Palm print feature extraction using DWT

The methodology for extraction of DWT features has

been explained in detail in Pallavi Deshpande et al. [11].

As indicated therein, two vectors of size 25 × 54, one for

the approximate coefficients and the other for horizontal

coefficients for each of the image, are stored in the data-

base. In this paper, a novel algorithm for optimally choos-

ing the weights of the approximate and horizontal

coefficients to create a final feature vector of the PP image

is proposed to enhance the accuracy of the system. Fur-

ther, empirical-based technique and optimal-based

“optimum weights algorithm” are used to decide the

weights of approximate and horizontal coefficients in the

combined feature vectors to boost the accuracy.

4.3 Feature matching

4.3.1 Methodology for mapping HCD features

Feature vector, i.e., binary matrix of new user (size 8 by

8), is compared with every stored feature matrix (each of

size 8 by 8) in the training database. Logical “AND” op-

eration between this new user’s matrix is done with each

and every feature vector/matrix present in the database.

For genuine user, maximum number of 1’s will be ob-

tained through this logical ANDING operation in the

output matrix. Finally, summation of all 1’s in the output

matrix will give the overall score. The maximum score

gives best match as shown in Fig. 6 [12].

Fig. 6 Logical AND operation performed on two binary matrices
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a

b

Fig. 7 a ROC curves plotted using approximate and horizontal wavelet coefficients for PP modality. b ROC curves plotted using vertical and

diagonal wavelet coefficients for PP modality

Fig. 8 ROC of palm print modality for both the databases using approximate coefficients only
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4.3.2 Methodology for mapping DWT features

In this case, the Euclidean distance (E.D.) is computed

between the new user’s DWT feature vector of size 25 ×

54 and every stored DWT feature vector (of size 25 × 54)

in the database using Eq. (21),

E:D: ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

L

i ¼ 1

xi‐yið Þ2

v

u

u

t ð21Þ

In this case, “x1, x2 …. xn” represent coefficients from

feature vector of new user and “y1, y2 … yn” represent

coefficients from feature vector of stored palm print and

“L” represents size of feature vector which is of size 25 ×

54. The minimum Euclidean distance gives the best

match.

4.4 Methodology for accuracy prediction

Different techniques are used to create feature vectors

for the proposed PP based biometric system. Their ac-

curacy estimation methods are given below.

4.4.1 HCD technique-based biometric recognition system

For the HCD features, considering the correct assess-

ment of GAR using the acquired database, GARmin has

been estimated as 0.9536. This is based on the entire

mapping process carried out within the database, where

out of 220 images, the exact match was found for 210

images. For rest of the ten images, there was mismatch,

thus giving GARmin. 0.9536. Based on this, accuracy for

high security applications works out to 97.68% using Eq.

(12). Even though the above accuracy appears to be

good, due to need for pixel by pixel mapping and totally

spatial domain signal processing, as mentioned earlier,

the HCD would be more likely to degrade the accuracy

performance further. The DWT, on the other hand, has

some distinct advantages.

DWT technique uses joint time–frequency domain ap-

proach, hence pixel by pixel comparison is not required.

Further, the degradations due to rotation, size, and

brightness effects are much less severe for DWT [13,

27]. Typical ROC curves for PP modality using DWT

technique are plotted for acquired error free database of

150 users and are shown in Fig. 7a, b. All four types of

DWT coefficients (i.e., approximate, horizontal, vertical,

and diagonal) are extracted and ROCs are plotted for all

four types of DWT coefficients. After comparing ROC

characteristics of all four types of DWT coefficients, it

can be readily seen that a ROC for approximate coeffi-

cients is very close to the ideal ROC curve (AUC lies in

between 0.95 and 1.0). ROCs for vertical and diagonal

coefficients are far away from the ideal curve (in fact

they are nearer to the worst scenario, i.e., AUC equals to

0.50). The ROC curve for horizontal coefficient lies in

Fig. 9 ROC of palm print modality for both the databases using horizontal coefficients only

Table 1 Comparison using three feature extraction techniques

Sr.
No.

Method used Acquired database COEP database

GARmin Accuracy GARmin Accuracy

1 Harris Corner Detector 0.9536 97.68% – –

2 DWT with approximate coefficients 0.972 98.60% 0.975 98.75%

3 DWT with horizontal coefficients 0.940 97.00% 0.950 97.50%
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between the two extremes. Therefore, it is proposed to

use “only approximate coefficients” or “only horizontal

coefficients” or “the combination of approximate plus

horizontal coefficients” for the formation of the feature

vectors. Analysis and further enhancing accuracy using

approximate and horizontal DWT coefficients is dis-

cussed in the following subsection.

4.4.2 Feature vectors using “only approximate” DWT

coefficients-based biometric recognition system

Using feature vectors based on only approximate DWT

coefficients, as per methodology discussed in Section

4.2.2, ROCs for our acquired PP database of 150 users

and the standard PP database provided by College of En-

gineering, Pune (COEP) are shown in Fig. 8. As ex-

plained earlier, tangential departure of the ROC from

FAR = 0 (i.e., Y-axis) gives the values for GARmin and

AUC values.

Following performance level can be determined using

the ROC curve plotted for our own acquired database.

� AUCAPP = 0.975

� GARmin = 0.972

� Accuracymin = 98.60% using Eq. (12)

For benchmarking purposes, the standard publically

available COEP database is used. (http://www.coep.

org.in/resources/coeppalmprintdatabase). This data-

base consists of eight different images of single user

having resolution of 1600 × 1200 pixels per image.

The database consists of total 1344 images pertaining

to 168 users. Figure 8 also includes ROC of the palm

print modality using COEP database. Following per-

formance level can be determined using the ROC

curve.

� AUCAPP = 0.98

� GARmin = 0.975

� Accuracymin = 98.75%

4.4.3 Feature vectors using “only horizontal” DWT

coefficients-based biometric recognition system

Using identical approach as explained in Section 4.2.2

ROCs are plotted using only horizontal DWT coeffi-

cients. The ROC curves for both the databases are

shown in Fig. 9. The parameters namely AUCHPP and

GARmin are determined and accuracy is calculated using

Eq. (12) for acquired database as shown below.

� AUCHPP = 0.9211

� GARmin = 0.94

� Accuracymin = 97.00%

Similarly, Fig. 9 also includes ROC of the palm print

modality for COEP database. Following performance

level is determined using the ROC curve.

� AUCHPP = 0.94

� GARmin = 0.95

Fig. 10 Flow chart indicating sequence of iteration process
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� Accuracymin = 97.50%

Table 1 shows GARmin and accuracy values using three

feature extraction techniques for PP recognition. Com-

paring the accuracies for DWT features for our database

and COEP standard database, it is seen that our algo-

rithm gives comparable performance levels for both da-

tabases. This indicates that the algorithm proposed can

very well be used irrespective of database. As accuracies

predicted for our own database (which is error free data-

base) and COEP database are almost same, it also sug-

gests that COEP database is also fairly clean and error

free database.

The accuracies indicated in Table 1 are good. However,

in order to further boost accuracies, “Empirical method”

or “OWA” can be used. These methods are discussed in

the following subsections.

4.5 Performance prediction using combination of feature

vectors

Two different methods namely “OWA” and “Empir-

ical method” are discussed below to combine ap-

proximate and horizontal DWT coefficients to create

new feature vectors in order to boost accuracy of

the system.

4.5.1 Performance prediction using analytical approach

Suppose there are “n” coefficients be combined, the gen-

eralized formulation to decide the weights of coefficients

of the system can be expressed as

W n ¼ ∝� AUCn with;
XN

n¼1
W n ¼ 1 ð22Þ

In Eq. (22), each of Wn (0 <Wn ≤ 1) represents weight

for the nth coefficient with AUC for ROC curve denoted

by AUCn (0.5 < AUCn ≤ 1). In our case, we consider only

two coefficients, approximate and horizontal. Therefore,

N = 2. For deciding optimum values of weights W1APP and

W2HPP, areas under two ROCs of acquired database

(shown in Figs. 7 and 8 respectively) are to be considered.

The proportionality constant “α” can now be determined

using

W 1APP þW 2HPP ¼ 1 ð23Þ

Above Eq. (23) leads to the equation,

W n ¼
AUCn

PN
1 AUCn

ð24Þ

In the proposed system, considering AUCAPP = 0.975,

AUCHPP = 0.9211, we get α = 0.5291005291, giving values

of W 0
1App ¼ 0:5132275132 and W 0

2HPP ¼ 0:4867724868.

We now commence our iteration process for the zer-

oth iteration (i = 0) with above values of W 0
1APP and

W 0
2HPP By using these weights, area under the revised

ROC curve (AUC0) was 0.9720 and GARmin was mea-

sured as 0.9800. This results in accuracy of 99.00% using

Eq. (12). The performance can be further improved

through series of iterations as illustrated below.

For this, it was observed that AUCAPP > AUCHPP.

Therefore, we go on increasing weight of approximate

coefficients “W 0
1APP ” in small positive steps (Δ = 0.05) in

each iteration and weight of horizontal coefficients “

W 0
2HPP” has to be decreased appropriately.

The general equations for iterations are as follows.

W iþ1
1APP ¼ W i

1APP þ Δ ð25Þ

and

Table 2 Summary of parameters at different iterations for our acquired database

Sr. No. of iteration (i) W i
1APP W i

2HPP
GARmin % of minimum accuracy achievable Performance

0 0.513227513 0.486772487 0.9800 99.00 Good

1 0.563227513 0.438172487 0.9810 99.05 Good

2 0.613227513 0.389572487 0.9810 99.05 Good

3 0.663227513 0.340822487 0.9810 99.05 Good

4 0.713227513 0.292072487 0.9820 99.10 Better

5 0.763227513 0.243247487 0.9820 99.10 Better

6 0.813227513 0.191322487 0.985 99.25 Best

7 0.863227513 0.144422487 0.9820 99.10 Better

8 0.913227513 0.09522386 0.9810 99.05 Good

Table 3 Results obtained for different combinations of weights

Sr. No. ESUMPP Our acquired database

GARmin Accuracy Performance

1 [(0.5 × EAPP) + (0.5 × EHPP)] 0.9810 99.05 Good

2 [(0.6 × EAPP) + (0.4 × EHPP)] 0.9810 99.05 Good

3 [(0.7 × EAPP) + (0.3 × EHPP)] 0.9820 99.10 Better

4 [(0.8 × EAPP) + (0.2 × EHPP)] 0.984 99.20 Best

5 [(0.85 × EAPP) + (0.15 × EHPP)] 0.9810 99.05 Good
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W iþ1
2HPP ¼ W i

2HPP−Δ� AUCi ð26Þ

In Eqs. (25) and (26), Wi + 1 represents the weight

assigned for (i + 1) iteration, where i = 1, 2, 3, 4….. repre-

sents the iteration sequence number and AUCi repre-

sents area under the corresponding ROC curve after ith

iteration. After each iteration, two parameters namely

AUC and the new value of GARmin with revised ROC

are determined. Using the GARmin, the accuracy predic-

tion is done using Eq. (12). It is observed that after every

iteration, the accuracy goes on increasing. Iteration

process is continued until accuracy reaches to max-

imum. After this, any further increase in W1APP leads to

reduced value of GARmin which decreases the accuracy.

We stop the iteration process at this point. Typical se-

quence of iterations is depicted in Fig. 10. The iteration

process implemented is illustrated in the following.

4.5.1.1 First iteration Let us take i = 1. Take the previ-

ous value of W 0
1APP = 0.5132275132 and Δ = 0.05. Using

Eq. (25), we get W 1
1APP = equal to 0.563227513. Using

Eq. (26), we get W 1
2HPP equal to 0.438172487. Using

these new weights, the new revised ROC was plotted

and the area under this new ROC curve (AUC1) was

0.9720 and GARmin was measured as 0.9810, giving an

accuracy of 99.05%. To improve the accuracy further, we

continued the same process in second iteration.

4.5.1.2 Second iteration To explore further improve-

ment possible, the weight for approximate coefficients

was further increased by Δ = 0.05 to W 2
1APP ¼ 0:61322

7513 . Following exactly identical procedure, as in the

first iteration, the new weights are determined as,

W 2
1APP ¼ 0:613227513 and W 2

2HPP

¼ 0:389572487

Using these new weights, the new ROC was plotted

and the area under this new ROC curve (AUC2) was

0.9750 and GARmin was measured as 0.9820, giving an

accuracy of 99.10% which is marginally higher than the

accuracy obtained in the first iteration. This process has

been continued further. Table 2 shows the summary of

the number of iterations carried out.

From Table 2, it can be observed that values of weights

for the 6th iteration yields the highest maximum accu-

racy. Beyond this, the accuracy decreases for the sub-

sequent iterations. Hence, those values of weights are

considered as optimal values. Hence, the optimum

values of the weights after 6th iteration are as follows,

W 6
1APP = 0.813227513 and W 6

2HPP = 0.191322487.

Using these new weights, the new ROC was plotted

and the area under this new ROC curve was 0.9776 and

GARmin works out to be 0.9885, giving an accuracy of

99.25%, which is the highest possible value of the accu-

racy of the system. Based on the above optimum weight

algorithm, Sum rule is,

ESUM ¼ 0:813227513�WAPPð Þ þ 0:191322487�WHPPð Þ

ð27Þ

4.5.2 Weights selection using empirical method

In addition to analytical method, one can use simple em-

pirical method to decide the weights. The simple

method is described in the following. After feature ex-

traction, score normalization is done using “Z score”

normalization technique [4]. In order to increase the ac-

curacy of the system, the horizontal and approximate

normalized scores are combined with the following sum-

ming rule:

Table 4 Comparison between two configurations

Sr. No. Parameters Configuration 1
Dell Inspiron N5050

Configuration 2
HP Pavilion 15 cc134tx

1 Processor used Intel I3 2350M Intel Core i7

2 Clock speed 2.3 GHz 4.0 GHz

3 Processor generation 2nd generation 8th generation

Table 5 Mapping time required using approximate plus horizontal coefficients

Sr.
No.

Acquired database
(approximate + horizontal
coefficients)

Mapping time required per image in seconds

Configuration 1
Dell Inspiron N5050

Configuration 2
HP Pavilion 15 cc134tx

1 60 users (60 × 6 = 360 hands) 1.88625 0.96312

2 100 users (100 × 6 = 600 hands) 2.99375 1.49687

3 150 users (150 × 6 = 900 hands) 4.115625 2.15781
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ESUM ¼ W 1APP � NSAPPð Þ þ W 2HPP � NSHPPð Þ½ �

ð28Þ

In Eq. 28, W1APP and W2HPP are the weights empiric-

ally chosen for normalized scores of approximate

(NSAPP) and horizontal (NSHPP) coefficients of PP mo-

dality respectively. Here, we start with equal weights

W1APP =W2HPP = 0.5. Comparing the two ROC curves,

we know that AUCAPP > AUCHPP. Therefore, weight of

approximate coefficients is increased in the step of 0.1

and weight of horizontal coefficients is decreased ac-

cordingly. For each step, the new ROC is plotted and

GARmin is determined. The accuracy is determined using

Eq. 12. The results of GARmin and accuracy for different

empirical choices of W1APP and W2HPP are indicated in

Table 3.

From Table 3, it can be observed that GARmin and

accuracy values appear to be best for the following rule:

ESUM ¼ 0:8� NSAPPð Þ þ 0:2� NSHPPð Þ½ � ð29Þ

It is readily observed that the above weights based on

empirical method are fairly closer to the weights sug-

gested by “OWA” in Section 4.5.1.

4.6 Evaluation of the system effectiveness

Time required for extracting palm print features of a

new users’ hand image is observed to be approximately

3 se. After feature extraction, the average feature map-

ping time has also been recorded. While taking average,

20 iterations are done and average time of these twenty

iterations is recorded. The average mapping time varies

according to database size (i.e., 60, 100 or 150 users) and

also depends upon the computational complexity in the

hardware used. Comparison between the two configura-

tions from hardware complexity view point is depicted

in Table 4 below.

All the other parameters such as type of display, Cache

memory, RAM/ROM sizes, etc. are not relevant for our

application and therefore not considered for complexity

estimation. Here, clock speeds for the two configurations

are different. Cost for the two configurations would vary

substantially and it would also depend upon local taxes,

duties, etc. Therefore, the cost is not included in de-

ciding Cc values. We determine the computational

complexity “Cc” factor as follows:

Cc for configuration 1 ¼ Dell Inspiron N5050 ¼ 1:0
Cc for configuration 2 ¼ HP Pavilion 15 cc134tx

¼ 4GHz=2:2GHz ¼ 1:8181

Tables 5 and 6 show the mapping time required for

the two main feature extraction techniques namely, only

approximate DWT coefficients and combined approxi-

mate plus horizontal DWT coefficients using above con-

figurations. These two configurations were used for

system effectiveness calculations as the two configura-

tions were readily available with us at our research cen-

ter. Form Tables 5 and 6, it is seen that there is very

small difference between mapping times for DWT

methods using “only approximate coefficients” and using

combined “approximate plus horizontal coefficients” for

two different configurations. But the accuracy prediction

results indicate that there is some definite improvement

in accuracy when both “approximate and horizontal co-

efficients” are combined (refer serial no. 6 from Table

no. 2).

It can be seen from Tables 5 and 6 that mapping time

varies as per size of database. As expected, the mapping

time increases if size of the database is increased from

60 to 100 and from 100 to 150. Therefore, system effect-

iveness calculations will also change as per the size of

the database. Just for illustration, a system effectiveness

Table 6 Mapping time required using only approximate coefficients

Sr.
No.

Acquired database
(approximate coefficients)

Mapping time required per image in seconds

Configuration 1
Dell Inspiron N5050

Configuration 2
HP Pavilion 15 cc134tx

1 60 users (60 × 6 = 360 hands) 1.77797 0.88998

2 100 users (100 × 6 = 600 hands) 2.96562 1.48281

3 150 users (150 × 6 = 900 hands) 3.948437 1.995618

Table 7 Summary of results for CC = 1.0

Sr.
No.

Technique used GARmin t in seconds System effectiveness
for CC = 1.0

CC = 1.0

1 DWT with approximate coefficients 0.972 2.96562 1.6387804

2 DWT with horizontal coefficients 0.940 2.96560 1.5848394

3 DWT with approximate and horizontal coefficients 0.985 2.99375 1.6450939
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calculation for the database of 100 users is shown in the

next section.

5 Results and discussion
Based on the approach described in Section 4 above, the

summarized results are presented in what follows.

Further illustrative results for database of 100 users only

are included.

5.1 System effectiveness calculations for N = 100

Tables 7 and 8 summarize the results for system effect-

iveness for database of 100 users for the two configura-

tions CC = 1.0 and CC = 1.8181 respectively. As discussed

in Subsection 3.2, we use Eq. (15) for system effective-

ness calculations.

It is clearly seen from Table 8 that when the “configur-

ation 2” computing facility is used for combined “ap-

proximate and horizontal coefficients” technique with

the use of weight optimization algorithm, the effective-

ness increases to 5.9818. This is due to substantial

higher clock frequency of configuration 2, as compared

to configuration 1.

5.2 Performance prediction using combination of feature

vectors-based biometric recognition system

Figure 11 shows ROC of the palm print modality using

both approximate and horizontal coefficients as per “op-

timal weights algorithm.”

� AUCPP = 0.9776

� GARmin = 0.985

� Accuracymin = 99.25%

Similar procedure was also carried out for COEP data-

base for validation and benching marking of the optimal

weights algorithm. Figure 11 also shows ROC of the

palm print modality using both approximate and hori-

zontal coefficients using optimum weights algorithm.

� AUCPP = 0.97

� GARmin = 0.984

� Accuracymin = 99.20%

System gives an enhanced accuracy of 99.25% using

this “optimal weights algorithm.” From the above dis-

cussions, it can be seen that ROC and accuracy of PP

modality using combined approximate and horizontal

Table 8 Summary of results for CC = 1.8181

Sr.
No.

Technique used GARmin t in seconds System effectiveness
for CC = 1.8181

CC = 1.8181

1 DWT with approximate coefficients 0.972 1.48281 5.9589

2 DWT with horizontal coefficients 0.940 1.44232 5.9245

3 DWT with approximate and horizontal coefficients 0.985 1.496875 5.9818

Fig. 11 ROC of palm print modality for both the databases using optimal weights algorithm for approximate and horizontal coefficients
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coefficients are certainly better than ROC and accuracy

of palm print modality using only approximate coeffi-

cients or using only horizontal coefficients. The summa-

rized results using different techniques using our own

database and also using a publically available COEP

database are depicted in Table 9. It may be seen from

Table 9 that our proposed “optimum weights algorithm”

gives same enhanced accuracies using acquired database

as well as COEP database. Further, we make use of only

two techniques indicated at serial no.3 and serial no.4

(refer to Table 9) as they provide best possible accur-

acies. It is proposed to use optimum weight algorithm

with values of 0.81 for the approximate coefficients and

0.19 for horizontal coefficients, as it would provide best

possible percentage accuracy.

6 Conclusion and future scope
The paper provides a mathematical basis for evaluating

the accuracy of the biometric recognition system. This

paper clearly brings out a strong correlation between the

detection accuracy of the system with the area under the

curve (AUC) of its ROC. It has been shown that combin-

ing various useful DWT features leads to enhancement in

accuracy. Use of iterative optimal weights algorithm

(OWA) is proposed to further improve the accuracy of

the system. Testing, validation, and benchmarking of the

algorithm are done using the acquired database, as well as

with standard publically available COEP database. The

proposed system gives enhanced accuracy of 99.25% with

very low FAR level of 0.0001. This represents fairly accur-

ate and significantly user-friendly biometric system, suit-

able for higher security applications. Even though we have

used the algorithm only for combining the two types of

coefficients, the proposed optimization algorithm may be

very effectively used for combining different normalized

scores of any multimodal (N > 2) biometric recognition

system, with a view to boost the accuracy and increase the

effectiveness of multimodal systems. Further, one can also

consider systematically extending the procedure to more

number of modalities using the standard principles of

mathematical induction.
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