
 Open access  Proceedings Article  DOI:10.1109/NGI.2007.371190

Accuracy Evaluation of Application-Level Performance Measurements
— Source link 

Katarzyna Wac, Patrik Arlos, Markus Fiedler, Stefan Chevul ...+2 more authors

Institutions: University of Geneva, Blekinge Institute of Technology, University of Twente

Published on: 21 May 2007 - Next Generation Internet

Topics: Timestamp and Instrumentation (computer programming)

Related papers:

 On the Quality of Computer Network Measurements

 Measurements and analysis of application-perceived throughput via mobile links

 A passive test and measurement system: traffic sampling for QoS evaluation

 Performance analysis of end-to-end path capacity measurement tools

 
A Methodological Approach for Estimating Protocol Analyzer Instrumental Measurement Uncertainty in Packet
Jitter Evaluation

Share this paper:    

View more about this paper here: https://typeset.io/papers/accuracy-evaluation-of-application-level-performance-
5dadlriekl

https://typeset.io/
https://www.doi.org/10.1109/NGI.2007.371190
https://typeset.io/papers/accuracy-evaluation-of-application-level-performance-5dadlriekl
https://typeset.io/authors/katarzyna-wac-4zujszbe1o
https://typeset.io/authors/patrik-arlos-q7gese10fg
https://typeset.io/authors/markus-fiedler-1p25w5j5tr
https://typeset.io/authors/stefan-chevul-4afuoot5zc
https://typeset.io/institutions/university-of-geneva-1ljqrc07
https://typeset.io/institutions/blekinge-institute-of-technology-16qgxbak
https://typeset.io/institutions/university-of-twente-2jhelcx1
https://typeset.io/conferences/next-generation-internet-h4ev2quj
https://typeset.io/topics/timestamp-2pg3z7zb
https://typeset.io/topics/instrumentation-computer-programming-3782ub0e
https://typeset.io/papers/on-the-quality-of-computer-network-measurements-1uwxbx5g04
https://typeset.io/papers/measurements-and-analysis-of-application-perceived-1bcuxd4lwh
https://typeset.io/papers/a-passive-test-and-measurement-system-traffic-sampling-for-2fdzdibke7
https://typeset.io/papers/performance-analysis-of-end-to-end-path-capacity-measurement-566ihcni1l
https://typeset.io/papers/a-methodological-approach-for-estimating-protocol-analyzer-5587f039ms
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/accuracy-evaluation-of-application-level-performance-5dadlriekl
https://twitter.com/intent/tweet?text=Accuracy%20Evaluation%20of%20Application-Level%20Performance%20Measurements&url=https://typeset.io/papers/accuracy-evaluation-of-application-level-performance-5dadlriekl
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/accuracy-evaluation-of-application-level-performance-5dadlriekl
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/accuracy-evaluation-of-application-level-performance-5dadlriekl
https://typeset.io/papers/accuracy-evaluation-of-application-level-performance-5dadlriekl


Accuracy Evaluation of Application-Level

Performance Measurements

Katarzyna Wac∗‡, Patrik Arlos†, Markus Fiedler†, Stefan Chevul†, Lennart Isaksson† and Richard Bults‡

∗University of Geneva – Center for Informatics, 1211 Geneva, Switzerland

Email: katarzyna.wac@cui.unige.ch
†Blekinge Institute of Technology – Telecom. Sys. Dept. 37179 Karlskrona, Sweden

Email: {patrik.arlos, stefan.chevul, lennart.isaksson, markus.fiedler}@bth.se
‡University of Twente – Comp. Science Dept., 7500AE Enschede, the Netherlands

Email: {wac, bults}@cs.utwente.nl

Abstract— In many cases, application-level measurements can
be the only way for an application to evaluate and adapt to the
performance offered by the underlying networks. Applications
perceive heterogeneous networking environments spanning over
multiple administrative domains as ”black boxes” being inac-
cessible for lower-level measurement instrumentation. However,
application-level measurements can be inaccurate and differ
significantly from the lower-level ones, amongst others due to the
influence of the protocol stacks. In this paper we quantify and
discuss such differences using the Distributed Passive Measure-
ment Infrastructure (DPMI), with Measurement Points (MPs)
instrumented with DAG 3.5E cards for the reference link-level
measurements. We shed light on various impacts on timestamp
accuracy of application-level measurements. Moreover, we quan-
tify the accuracy of generating traffic with constant inter-packet-
times (IPTs). The latter is essential for an accurate emulation of
application-level streaming traffic and thus for obtaining realistic
end-to-end performance measurements.

I. INTRODUCTION

Application-level measurements are, in most cases, the only

way for an application to evaluate the performance offered

by the underlying heterogeneous networking environment,

spanning over multiple administrative domains. In this context

it is hard, for not saying impossible, to insert probes along the

application’s end-to-end communication path. An application

sees the network as a ”black-box” transport system accessible

via TCP or UDP, and may use measurements to adapt to

the perceived network conditions. A complication rises from

the fact that the observed application-level behavior can be

different from the behavior observed at the link-level due to

the influence of, for example the sender and receiver hosts’

protocol stacks on the packets’ generation and acquisition

processes, the Operating Systems (OSs), the systems clock

influencing application timestamps accuracy, or even the ap-

plication itself. However, if a host is not overloaded and the

protocol stack is properly implemented, parameters like an

inter-packet-time (IPT) for a certain load, ideally should be

the same at both application- and link-level. Assuming this,

we evaluate the accuracy of application-level measurements

with comparison to the reference link-level ones.

We study two different application-level active-

measurements-based tools - a tool developed in the

MobiHealth project [1] (referred further to as the tool

A) and in the Personal Information in Intelligent Transport

systems through Seamless communications and Autonomous

decisions (PIITSA) project [2], [3] (referred further to as

the tool B). The tools collect timestamps, which are then

used to calculate other metrics. The tool A calculates an

application-level Protocol Data Unit (PDU) one-way-transit-

time (OWTT), while the tool B calculates an application-level

throughput and data loss ratio. The major differences between

the tools are that the tool A uses TCP, while B uses UDP,

A is implemented in Java, while B in C#, and they differ in

functions used for generating PDUs at a steady rate and for

PDU timestamping (Section III). These differences influence

the accuracy of the generated IPTs and of the timestamps

(which in turn influence the one-way-transit-time (OWTT)

and throughput calculations). We evaluate the tools using the

Distributed Passive Measurement Infrastructure (DPMI) [4],

with Measurement Points (MPs)s equipped with DAG 3.5E

[5] cards.

There are many specialized application-level active mea-

surement tools, however, as indicated by Michaut et al. [6],

there are no guidelines for measurements’ quality assurance

and in most cases, tools are simply not evaluated. Most

of the tools are intended to operate under Unix/Linux OS,

hence their authors assume a µs resolution for timestamps [7].

Some authors theoretically calculate influence of timestamps

accuracy and hosts’ synchronization method on the results

obtained with their tools [8]. For example, the pathchar

authors indicate that their tool uses network delays estimations

(with 5 % accuraccy) to calculate bandwidth, and these are

not the main source of the tool’s measurement errors [9].

Similarly Ali et al. [10], used differential calculus to estimate

the errors introduced by timestamps inaccuracies in end-to-

end bandwidth measurements by four different tools: pathload,

pathChirp, spruce and IGI. The spruce tool estimates bandwith

with 23% error, while IGI with 29% error for timestamp

accuraccy of the order of 10µs. Moreover, Ali et al. estimate

a system clock access delay of 1 to 6µs using gettimeofday()

function, and protocol stack delay of 5 to 65µs per packet.

A measurements-based, thus the most practical evaluation

of selected application-level tools like ping and J-OWAMP

[11] has been conducted indicating measurements inaccuracies



under Windows OS [12]. Our study follows this approach.

Section 2 of this paper provides setup for evaluation of tools,

presented then in Section 3. Section 4 explains analysis method

for the collected data and Section 5 presents measurements

results. Finally, Section 6 concludes on our findings.

II. SETUP

Figure 1 presents the physical setup used in the experi-

ments. The evaluated tools A and B were installed on the

source/destination hosts: H1 and H2. The tools were instructed

to generate over the period of 25 minutes link-layer PDUs of

576 Bytes, corresponding to 526 Bytes for TCP and 536 Bytes

for UDP, with the nominal IPT (IPTnom) of (a)125 ms and

(b) 90 ms. This load corresponds to a mobile healthcare

application scenario when sending eight channels of patient’s

vital signs data from a mobile patient to the application server

in a hospital [1].

��

������������
��

������������
�	
������
��	����

����������

����

����������

����

����������

���� !�	�"	�

����!��#�$
%

&	�#'�

Fig. 1. Experimental setup

The hosts H1 and H2 were identical with respect to hard-

ware (Dell Optiplex), with 667 MHz Pentium-3 CPU, 256 MB

RAM and built-in 100 Mb/s full-duplex Ethernet cards. The

OS was Microsoft Windows XP with Service Pack 2 (updated

on 26.06.2006) with Java v1.5.0. We have chosen this OS

because in a mobile application scenario, a mobile device is

likely to be a Windows OS-based device, serving as a user’s

extension of mostly Windows OS-based desktop.

Both hosts ran Tardis v1.6 software [13] to synchronize

their clocks to a local Network Time Protocol (NTP) server

(time.bth.se). Access to this server was obtained via the

TS, which also acted as a traffic shaper on the traffic sent

between the hosts (thus not influencing the NTP traffic).

The TS introduced constant delay of 180 ms on traffic sent

between H1 and H2. Wiretaps [14] tapped the traffic between

H1 and TS, and between H2 and TS, and sent it to the

Measurement Points (MP), MP03 and MP12, that are a part

of a DPMI setup [4]. Both MPs were equipped with Endace

DAG 3.5E cards [5], synchronized using a TDS-2 connected

to an Acutime Global Positioning System (GPS) antenna,

yielding a timestamp accuracy of 60 ns [12]. The MPs and

wiretaps were wired such that a MP monitored traffic in one

direction on both links, i.e., MP03 captured traffic from H1

to TS and from TS to H2, while MP12 from H2 to TS and

TS to H1. This way, for each direction, the link-level PDU’s

timestamps were synchronized at the MP. A dedicated Gigabit

Ethernet (GE) switch connected the MPs, a Measurement Area

Controller (MArC) and a Consumer. The MArC managed the

MPs. The Consumer analyzed (non-intrusively) the streamed

measurement trace from the MPs in order to derive the setup

parameters (e.g. link utilization), to catch possible problems

or data discrepancies, as well as to store measurement data

into files after each measurement session.

III. TOOLS

Both tools have separate sender and receiver programs. A

sender has a configurable load generator with respect to a PDU

length, IPTs and number of PDUs. Both sender and receiver

have dedicated measurement function for collecting PDUs

timestamps at the ingress (sender) and egress (receiver) points

of the network. The receiver at both tools is implemented

such that it continuously attempts to receive data from the

network. During the measurement session, the tools collect

the measurements data in-memory (static vector), which is

then dumped into a file after the session, this to minimize

the influence of the data collection process on the ongoing

measurements.

A. Tool A

The tool A has been developed and used in the European

(FP6) MobiHealth project to evaluate the end-to-end perfor-

mance of a heterogeneous networking environment (with e.g.

3G as wireless technologies) supporting time-critical mobile

healthcare services [15]. The tool calculates (offline) per-

PDU OWTT, its variation and an application-level throughput.

The critical requirement for this tool is to have sender and

receiver’s time clocks precisely synchronized (by means of

e.g. NTP) in order to get usable PDU timestamps.

The tool was implemented in Java v.1.3.0, to comply with

e.g. IBM J9 JVM used on mobile devices. The tool uses TCP

as the transport system interface, with explicit data flush after

a PDU is send to the socket. The tool uses JavaThread.sleep()

functions to send PDUs at a given IPTs. The sender, based on

the required IPT, calculates and then tries to keep the required

number of PDUs per time-window of 1 second. That implies

change of the IPT of the last PDU send in the window, such

that the sum of all IPTs in the window equals to 1 s. The tool

uses System.currentTimeMillis() to obtain a PDU timestamp

just after each sent or received PDU. During a measurement

session, tool’s Text User Interface is disabled and the Java

thread has the priority set to HIGH in the OS.

B. Tool B

Tool B has been developed and applied in the Swedish

PIITSA project to evaluate performance of networks support-

ing mobile services for intelligent data transport systems [2],

[3]. The tool calculates (offline) observation-window-based

application-level throughput statistics (at sender and receiver

separately) and data losses. There is no explicit requirement

for the nodes’ clocks to be time-synchronized.



Fig. 2 presents the load generation and measurement func-

tion at the sender side. At the start of PDUs stream genera-

tion, sender acquires a reference timestamp (T0) and uses it

further as an absolute value to calculate all upcoming PDUs’

transmission times T2 = T0 + IPT × PDUseqnr. Each created

PDU, containing its sequence number (for data loss ratio

calculation), is timestamped (T1) and enters an active waiting

IPT loop, which is released only if measured T2b≥T2. In this

way, if a previous IPT was not fulfilled, e.g. due to PDU

send function delays, the waiting time for an actual PDU will

be shorter, to fulfill its required IPT. Finally, the sender take

timestamps (T3, T4) before and after each PDU send function.

Ideally, T2==T3, hence timestamp T3 is used to derive PDUs’

IPTs from tool’s measurements traces.

�����
���

�		

����� �

���

�� ��
����

���

�����

���

Fig. 2. Tool B load generator and measurement function at the sender.

The tool has been developed in C#, using the .NET frame-

work. The tool uses UDP as the transport system interface. To

get a µs timestamp resolution, the tool uses performance coun-

ters, the kernel32.dll QueryPerformanceCounter

and QueryPerformanceFrequency functions, in con-

junction with the system time. A timestamp is calculated by

dividing the counter value by the frequency value. The latter

one is evaluated only at the measurements initialization phase,

and assumed to be constant during a measurements session.

Moreover, during a session, tool’s Graphical User Interface is

disabled and tool’s priority is set to realtime in the OS.

IV. MEASUREMENT DATA ANALYSIS

The experiments were done by having host H1 (the sender)

and H2 (the receiver) running the tools (one at a time) and

collecting the application-level traces, while the DPMI was

collecting the link-level traces. The measurement data was

analyzed offline using Matlab 7.

Given Tx,y(k) as a PDU timestamp obtained at party x
(sender (s) or receiver (r)) at level y (application (a) or link

(l) level) for a PDU k ∈ (1 . . . n − 1), we calculated an IPT

for a PDU pair (k,k + 1) as

IPT x,y(k, k + 1) = Tx,y(k + 1) − Tx,y(k).

Moreover, we calculated a timestamp accuracy, T∆ [12] as

observed at the receiver’s application-level over the whole

measurements session, assuming the receiver’s link-level IPT

values as reference values. Therefore, we obtained

T∆ = |max(ǫk,k+1)| + |min(ǫk,k+1)| for k ∈ (1 . . . n − 1)
given a timestamp accuracy error for a PDU pair as

ǫk,k+1 = IPT a,r(k, k + 1) − IPT l,r(k, k + 1).

The T∆ value represents an extreme timestamp accuracy error

as it combines all error sources, e.g. these due to the clock

resolution, skew and drift, due to the clock access time or due

to the clock synchronization events and their associated errors.

V. RESULTS

In the following subsections we present the calculated (from

the measurements) IPTs at the application- and link-level for

the different IPTs. As we saw from the calculations, the

direction, in which PDUs were send (H1 to H2 or H2 to

H1) had no influence on obtained measurements, therefore we

present only the results in one direction (H1 to H2). In Fig. 3

(tool A) and Fig. 4 (tool B) we plot the IPTs as a function

of PDU sequence number for a nominal IPTnom=125 ms.

Tab. I and II presents the corresponding statistics together

with the estimated T∆ values. Both tool A and B display an

average IPT close to IPTnom, but the standard deviations differ

significantly. Tool A displays a standard deviation of 5.11 ms,

the main reason for which is seen from Fig. 3. Obviously,

the sender IPT alternates between 120 and 130 ms, which

probably stems from the 10 ms timestamp resolution of Java

System.currentTimeMillis() function used under Windows OS.

The corresponding sender’s link-level behavior is more stable

as seen from a smaller standard deviation of 1.13 ms. The

latter raises slightly on the way through the network due to

the impact of the traffic shaper. At the receiver, the observed

IPT again alternates between 120 and 130 ms (cf. Fig. 3) with

a similar effect on the standard deviation. One interesting

observation at the receiver’s application level is the minimum

IPT of 20 ms (Tab. I and II) occurring in the trace just after

a large IPT of 230 ms. Probably we face a PDU delayed in

the receiver’s stack, resulting from the scheduling of the Java

thread in the OS. Moreover, there is one sample of a maximum

IPT of 241 ms after which occurs an IPT of expected 120 ms.

A closer look at the sender’s trace reveals that this value

corresponds to the extraordinary sender IPT of 231 ms.

Turning our attention to tool B, cf. Fig. 4, we observe

that (1) the application and link-level graphs are more or less

identical at sender and receiver side, and (2) the sender and

receiver application-level traces are also very similar. These

observations are underlined by Tab. I and II, from which we

see that the statistical parameters (mean, median and standard

deviation) and the extreme values are almost identical, regard-

less of the host or level. The average of minimal and maximal

IPT matches IPTnom; this reveals the effort of the sender tool

to ”keep up” in case of extraordinary delays in PDU send

function. Looking closer at the sender’s application-level trace,

we observe this effect to exhibit some periodic behavior, with

a first large IPT value around sequence number of 1000, then

around 5000, followed by another deviation around sequence

number 9000. This behavior needs further investigation. For

this measurement, the priority of the receiver process was set

to realtime in the OS.

If we now look at the estimated T∆’s for IPTnom=125 ms,

we see that the tool A has a T∆ of 209 ms and tool B a

T∆ of 3.45 ms. Obviously, tool A does not only suffer from

the inherit 10 ms timestamp resolution, but also from PDU

queuing at the receiver, stemming from the Java-typical thread



0 2000 4000 6000 8000 10000 12000
110

115

120

125

130

135

140
Sender App.

IP
T

 [
m

s
]

0 2000 4000 6000 8000 10000 12000
110

115

120

125

130

135

140
Receiver App.

0 2000 4000 6000 8000 10000 12000
110

115

120

125

130

135

140
Data Link Sender

IP
T

 [
m

s
]

Samples
0 2000 4000 6000 8000 10000 12000

110

115

120

125

130

135

140
Data Link Receiver

Samples

IPT 125 ms

Fig. 3. Tool A: measured IPT at sender and receiver for IPTnom=125 ms

0 2000 4000 6000 8000 10000 12000
110

115

120

125

130

135

140
Sender App.

IP
T

 [
m

s
]

0 2000 4000 6000 8000 10000 12000
110

115

120

125

130

135

140
Receiver App.

0 2000 4000 6000 8000 10000 12000
110

115

120

125

130

135

140
Data Link Sender

IP
T

 [
m

s
]

Samples
0 2000 4000 6000 8000 10000 12000

110

115

120

125

130

135

140
Data Link Receiver

Samples

IPT 125 ms

Fig. 4. Tool B: Measured IPT at sender and receiver for IPTnom=125 ms

TABLE I

TOOL A: IPT’S STATISTICS AT SENDER AND RECEIVER FOR

IPTnom=125 ms.

Parameter Sender Receiver
[ms] Appl. Link Link Appl.

min 120.00 109.88 109.96 20.00
max 231.00 236.76 236.92 241.00
mean 125.43 125.43 125.43 125.43
median 130.00 125.41 124.96 130.00
std.dev. 5.11 1.13 1.23 5.33

T∆[ms] N/A 209.00

scheduling. In addition to this, the tool uses the system time

which is conditioned by the Tardis time synchronization tool.

In contrast, the tool B uses C# and its built-in performance

counters, which in theory gives a timestamp resolution of

1.5 ns (1/667 MHz). Furthermore, the tool assumes a sta-

tionary behavior of the CPU during a measurement, and

TABLE II

TOOL B: IPT’S STATISTICS AT SENDER AND RECEIVER FOR

IPTnom=125 ms.

Parameter Sender Receiver
[ms] Appl. Link Link Appl.

min 65.86 65.97 65.98 65.97
max 184.78 184.86 184.94 184.94
mean 124.91 125.00 125.00 125.00
median 124.93 125.00 124.96 124.95
std.dev. 0.86 0.81 0.85 0.85

T∆[ms] N/A 3.45

synchronizes only at the measurement session startup.

In Tab. III and IV we show the statistics for measurements

with IPTnom=90 ms. The fact that tool A is parameterized

by choosing the number of PDUs to be sent (here 11 PDUs

per second equivalent to IPT ≃ 90.9 ms) explains the slight

deviation of the average from the IPTnom. However, we also

see that tool A observed a minimum IPT of zero, which

indicates that at least two PDUs were received within the

same time interval corresponding to the timestamp resolution.

Looking at the statistics for tool B, we see that the tool’s

sender reports a quite small minimum IPT of 55.98 ms, cf.

the IPTnom=90 ms. The other minimal values on link-level

and on the receiver’s application level of around 70 ms and the

maximal values of ∼110 ms average to IPTnom. As opposed to

the IPTnom=125 ms-case, the priority of the receiver process

was set to normal in the OS, resulting in significant rise in

IPT standard deviation from link to the application level.

TABLE III

TOOL A: IPT’S STATISTICS AT SENDER AND RECEIVER FOR

IPTnom=90 ms

Parameter Sender Receiver
[ms] Appl. Link Link Appl.

min 90.00 82.17 81.97 0.00
max 200.00 205.12 204.92 210.00
mean 91.05 91.05 91.05 91.05
median 90.00 90.13 89.98 90.00
std.dev. 3.02 2.98 3.00 4.01

T∆[ms] N/A 201.00

TABLE IV

TOOL B: IPT’S STATISTICS AT SENDER AND RECEIVER FOR

IPTnom=90 ms

Parameter Sender Receiver
[ms] Appl. Link Link Appl.

min 55.98 69.84 69.98 69.96
max 109.96 110.07 109.96 109.91
mean 89.91 90.00 90.00 90.00
median 89.93 90.00 89.97 89.97
std.dev. 0.42 0.32 0.39 0.67

T∆[ms] N/A 30.75

Looking at the T∆ estimations for IPTnom=90 ms, the tool

A maintains estimate close to the estimate for IPTnom=125 ms,



while the tool B has a estimate that is ten times larger than

the first one. We explain this behavior by the fact that during

this test, tool’s priority at the receiver was set to normal in the

OS, while it was set realtime in the first test. As we observe

based on T∆, the tool’s priority in the OS has a major impact

on the PDU-receiving process, being in competition with the

other processes.

VI. CONCLUSIONS

In this paper we have analyzed and quantified the accuracy

of the application-level active-measurements using passive

link-level measurements as the reference measurements. We

have observed that the application-level behavior can be dif-

ferent from the behavior observed at the link-level due to

the influence of the OS at the sender and receiver as well

as their hosts’ protocol stacks on the packets’ generation and

acquisition processes, and the system clock resolution under

the Windows OS influencing application timestamps accuracy.

From the results we conclude that the tool A, using Java

thread sleeping functions to generate PDUs at a given IPTnom,

indeed generates PDUs at the required IPT, as seen from

the link-level data, but the application-level timestamps suf-

fer from the System.currentTimeMillis() method resolution of

10 ms under Windows OS. We also notice that the tool cannot

be configured to generate a constant IPT, but instead the

tool tries to generate a certain number of PDUs within a

1 second interval. Moreover, comparing the link-level with

the application-level statistics at the sender and receiver, we

see that the mean IPT is the same while the extreme vales

differ, which could be caused by e.g. the OS thread scheduling

mechanism for Java threads or PDU delays along the protocol

stack (especially at the receiver). We also see that for a given

load, the receiver has problems keeping up, and we observe

a IPT of zero value, meaning that some PDU was delayed

and delivered together with the next one. All these observed

behaviors are reflected in the tool’s poor timestamp accuracy

of around 200 ms translating into the fact, that for the tools

A, practically only the second part of the timestamps can be

considered to be true.

The tool B, implemented in C# using active waiting loop

for PDU generation and performance counters for PDU

timestamping, can generate PDUs with a constant IPT, and

timestamp them quite accurately. Under our test conditions, the

sender and receiver application-level statistics are quite iden-

tical to the link-level data. However, the sender needs further

evaluation of the possible periodic behavior causing extreme

values. We should also note that the tool is not synchronized

and it does not adjust for the CPU frequency oscillations,

which however does not seem to affect the tool accuracy in

the observed interval. When looking at the estimated T∆ for

the tool B, values increase up to ten times depending on if

tests were executed with tool’s priority set to realtime in the

OS. We shall notice that the best-case T∆ value for tool A is

in the order of 3.45 ms and indicate high accuracy of this tool.

The main conclusion on our findings is that pure theoretical

estimations of measurements accuracy may not sufficiently

reflect the real measurements quality. Instead, such estimations

may lead to too optimistic conclusions. Our strong recommen-

dation is that one should always quantitatively and precisely

evaluate the accuracy of an application-level measurement

tool in its operational state. This should be done before

using the results obtained with the tool by for adapting

the application to the behavior of underlying networks as

observed by the tool. Regarding the behavior of the underlying

networks, application-level measurements can be misleading

and not at all reflecting this behavior, neither an impact of the

networks on the application. As we have proved in this paper,

application-level measurements may rather reflect a random

and unpredictable behavior of the end hosts’ systems and their

protocol stacks. Measurement errors and observation discrep-

ancies may result in the (unnecessary) application adaptation,

which in critical cases may result in application crash (e.g.

due to buffers overflow). This should be avoided at all cost,

especially in mission-critical mobile services like for example

those in the healthcare domain.

REFERENCES

[1] A. van Halteren, R. Bults, K. Wac, and et al. Mobile patient moni-
toring: The mobihealth system. Journal on Information Technology in

Healthcare, 2(5), 2004.
[2] M. Fiedler, L. Isaksson, S. Chevul, J. Karlsson, and P. Lindberg. Mea-

surement and analysis of application-perceived throughput via mobile
links, Tutorial. In Performance modelling and evaluation of Heteroge-

neous Networks, UK, 2005.
[3] M. Fiedler, S. Chevul, L. Isaksson, P. Lindberg, and J. Karlsson. Generic

Communication Requirements of ITS-Related Mobile Services as Basis
for Seamless Communications. In 1st EuroNGI Conference on Traffic

Engineering, Italy, 2005.
[4] P. Arlos, M. Fiedler, and A. Nilsson. A Distributed Passive Measurement

Infrastructure. In Passive and Active Measurement Workshop (PAM05),
US, 2005.

[5] Endace Measurement Systems. URL: http://www.endace.com (verified
Sept. 2006).

[6] F. Michaut and F. Lepage. Application-oriented network metrology:
Metrics and active measurement tools. IEEE Comms. Surveys and

Tutorials, 7(2):2–24, 2005.
[7] B. Mah. Pchar: A Tool for Measuring Internet Path Characteris-

tics. URL: http://www.kitchenlab.org/www/bmah/Software/pchar/ (veri-
fied Aug. 2006).

[8] P. Beyssac. Bing: A point-to-point bandwidth measurement tool based
on PING, 1995. URL: http://spengler.econ.duke.edu/ ferizs/bing.txt
(verified Aug. 2006).

[9] B. Downey. Using pathchar to estimate Internet link characteristics. In
Conference on Applications, technologies, architectures, and protocols

for computer communication, US, 1999.
[10] A. Ali, F. Michaut, and F. Lepage. End-to-End Available Bandwidth

Measurement Tools: A Comparative Evaluation of Performances. In
4th Intl Workshop on Internet Performance, Simulation, Monitoring and

Measurement, Austria, 2006.
[11] H. Veiga, T. Pinho, and Oliveira. J-OWAMP: Java implementation of

the One-Way Active Measurement Protocol. URL: www.av.it.pt/jowamp
(verified Sept. 2006).

[12] P. Arlos. On the Quality of Computer Network Measurements. PhD
thesis, Blekinge Institute of Technology, Karlskrona, Sweden, 05:2005.

[13] Tardis 2000 software. URL: http://www.kaska.demon.co.uk (verified
Aug. 2006).

[14] Finisar Corporation. URL: http://www.finisar.com (verified Sept. 2006).
[15] R. Bults, K. Wac, A. van Halteren, and et al. Goodput Analysis of 3G

wireless networks supporting m-health services. In 8th International

Conference on Telecommunications (ConTEL05), Croatia, 2005.




