
Accuracy in Dead-Reckoning Based Distributed
Multi-Player Games

Sudhir Aggarwal Hemant Banavar Amit Khandelwal
Department of Computer Science

Florida State University, Tallahassee, FL
Email: {sudhir, banavar, amit}@cs.fsu.edu

Sarit Mukherjee Sampath Rangarajan
Center for Networking Research

Lucent Technologies Bell Laboratories, Holmdel, NJ
Email: {sarit, sampath}@lucent.com

ABSTRACT
Distributed multi-player games use dead reckoning vectors to inti-
mate other (at a distance) participating players about the movement
of any entity by a controlling player. The dead reckoning vector
contains the current position of the entity and the velocity compo-
nents. When a participating player receives a vector, traditionally
it puts the entity at the current position specified by the vector and
starts projecting the path of the entity from that point using the
local clock of the receiver. In this paper we show that this tradi-
tional method of usage of dead reckoning vector brings in inaccu-
racy in the receivers’ rendering of the entity. This inaccuracy can
be substantial even with low network delay between the sender-
receiver pairs and increases with network delay. We propose the
use of globally synchronized clocks among the participating play-
ers and a time-stamp augmented dead reckoning vector that enables
the receiver to render the entity accurately. We modified the pop-
ular game BZFlag with this technique, and compared the accuracy
seen in game playing using the traditional method and the proposed
technique. We conducted several types of experiments varying the
frequency of generation of dead reckoning vectors and the delay
between the sender and the receivers. The experiments show sig-
nificant quantitative improvement in accuracy even for 100ms de-
lay between the sender-receiver pairs and appreciable qualitative
improvement in game playing experience.

Categories and Subject Descriptors:C.2.4 [Distributed Systems]:
Distributed Applications

General Terms: Design, Experimentation, Human Factors.

Keywords: Distributed Multi-Player Games, Accuracy,
Dead-Reckoning, Clock Synchronization, Network Delay.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’04 Workshops,Aug. 30+Sept. 3, 2004, Portland, Oregon, USA.
Copyright 2004 ACM 1-58113-942-X/04/0008 ...$5.00.

1. INTRODUCTION
In a distributed multi-player game, players are normally geo-

graphically distributed. In such games, the players are part of the
game and in addition they may control entities that make up the
game. During the course of the game, the players and the enti-
ties move within the game space. A technique referred to asDead
Reckoning(DR) is commonly used to exchange information about
player/entity movement among the players [1, 2, 3]. A player sends
information about her movement as well as the movement of the
entities she controls to the other players using a Dead Reckoning
(DR) vector. A DR vector typically contains information about the
current position of the player/entity in terms of x, y and z coor-
dinates (at the time the DR vector was sent) as well as the trajec-
tory of the entity in terms of the velocity component in each of
the dimensions. Each of the players that form part of the game
receives such DR vectors from each other and renders the other
players/entities on the local console until a new DR vector is re-
ceived for that player/entity. Thus, the DR vector is a model of
expected future behavior, and is used to “predict” the position of
the player/entity until an updated DR vector is received. Normally,
a new DR vector is sent whenever the path of the player/entity at
the sender deviates from the path corresponding to the previous DR
vector (say, in terms of distance in the x, y, z plane) by some amount
specified by a threshold. In a peer-to-peer game, players send DR
vectors directly to each other; in a client-server game, these DR
vectors may be forwarded through a game server. The idea of DR
vector is used because it is almost impossible for players/entities to
exchange their current positions continuously or at some very small
time unit.

Because of the nature of the use of DR vectors to project the tra-
jectory of entities, when a DR vector is received and rendered at
a receiver, the original trajectory of the player/entity at the sender
may have already changed. Thus, in physical time, there is a de-
viation at the receiving player between the real trajectory (which
we refer to asreal path) and the rendered trajectory (which we re-
fer to asplaced path). This is unavoidable unless every coordinate
change of a player/entity is constantly sent to all the players, which
is impossible; that is why DR vectors are used in the first place. As
long as the message delay is negligible, a DR vector that specifies
the location of a player/entity sent by a sender can be considered to
have been essentially received instantaneously at all the receivers.
In this sense, at any point in physical time, the location of each of
the players/entities at all the player consoles is the same except for

the rendering of the entity controlled by the player herself. Further-
more, because the deviation between thereal pathand theplaced
path is considered small (note that a new DR vector is sent when-
ever the deviation is above a tolerance threshold) this discrepancy
is acceptable and does not affect game playing.

But with distributed multi-player games involving a large num-
ber of players across the Internet, message delays between players
are not negligible. When network delay is non-negligible, the tra-
jectory of an entity that the sender expects receivers to follow in
physical time may not be followed in physical timebeforeand even
afterthe receivers receive the DR vectors. This means, there is a de-
viation in physical time between theplaced pathat the receiver and
the path that follows the DR vector exported by the sender (which
we refer to as theexported path). We refer to this deviation as the
export error).

In this paper, we explore this problem by considering the fol-
lowing path trajectories:(a) the trajectory of the player/entity at
the receiver before the DR vector is received, and(b) the trajec-
tory of the player/entity after the DR vector is received. We show
that by synchronizing the clocks at all the players and by using
a technique based on time-stamping messages that carry the DR
vectors, we can guarantee that theplacedand theexportedpaths
matchafter the DR vector is received; i.e, the export error after the
DR vector is received is zero (we refer to this as theafter export
error). We instrumented the game BZFlag (Battle Zone Flag) [4]
with this technique and use an experimental setup to perform(a)
quantitative experiments to show the reduction in export error, and
(b) qualitative experiments to show the improvement in game play-
ing experience. Although we use BZFlag to illustrate our results,
the idea that we intend to convey through this work is that the game
playing accuracy of any distributed multi-player game can be sig-
nificantly improved using synchronized clocks among players and
using a global time to project the trajectory of entities. The trajec-
tory of the player/entity at the receiverbeforethe DR vector is re-
ceived will follow the trajectory specified by the previous DR vec-
tor, which means there will be a non-zeroexport errorbefore the
DR vector is received (we refer to this as thebefore export error).
With non-negligible network delay this is unavoidable. However,
we show by experimentation that this error can be significantly re-
duced by the proposed technique.

Modifications to dead reckoning have been suggested by [5], [6]
and [7] but not from the accuracy perspective. Previous work
has considered solutions that compensate for different network de-
lays at different players. For example, the concept oflocal lag has
been used where each player delays every local operation for a cer-
tain amount of time so that remote players can receive information
about the local operation (for example in the form of a DR vec-
tor) and execute the same operation at the about same time, thus
reducing state inconsistencies [2]. The online multi-player game
MiMaze [1, 8] takes a static bucket synchronization approach to
compensate for the unfairness introduced by variable network de-
lays. There has also been work that focuses on how to either reduce
or mask player experienced response time. For client-server based
first person shooter games, [9] discusses a number of latency com-
pensating methods at the application level which are proprietary
to each game. In [10, 11] synchronized message delivery tech-
niques for client-server game architectures are discussed that aim
to compensate for variable message delays from different players
to the game server. As far as we are aware, there is no systematic
study on the effect of network delay on theaccuracyof distributed
multi-players games that use DR vectors to exchange movement
information.

In the next section, we use an example to illustrate thebeforeand
after export errors. In Section 3, quantitative results based on the
modified implementation of BZFlag are used to show the reduction
in export error compared to the current implementation of BZFlag.
Conclusions from our work are presented in Section 4.

2. EXPORT ERRORS
In current implementations of multi-player games the clocks at

the players arenot synchronized and the DR vectors are generated
and used as follows. Each DR vector sent from one player to an-
other specifies the trajectory of exactly one player/entity. In the
description below we assume the use of alinear DR vectorin that
the information contained in the DR vector used by the receiving
player is enough to compute the trajectory and render the entity in
a straight line path. Such a DR vector contains information about
the starting position and velocity of the entity where the velocity is
considered to be constant1. Thus, the DR vectors sent by a player
specifies the current position of the player/entity in terms of the x,
y, z coordinates and the velocity vector in the direction of x, y and
z coordinates.

In the following discussion when we consider the export error,
we will consider a sequence of DR vectors sent by only one player
and for only one entity. We will useDRi to denote theith such DR
vector. This DR vector will denote the tuple(xi, yi, zi, vxi, vyi, vzi).
When this DR vector is received, the receiver will use thexi, yi, zi

values to project the entity on the local console and then use the ve-
locity vectorsvxi, vyi andvzi to continuously project and render
the trajectory of the entity. This trajectory will be followed until a
new DR vector is received which changes the position and/or ve-
locity of the entity.

time
T1

Real

Exported

Placed

dt1

A

B’

C

D

T0 dt0

Placed

E

H

B
H = A = (x1, y1)
HC = after export error at T1+dt1

due to DR1

BB’ = after export error at T1

due to DR0

Figure 1: Trajectories and errors.

Based on this model, Figure 1 illustrates the sending and receiv-
ing of DR vectors and the different errors due to the deviation in the
trajectory of the entity at the same physical time between the sender
and the receiver. For ease of description, the DR vectors shown in
the figure illustrate only two dimensions. The figure shows the re-
ception of DR vectors at a player (henceforth called thereceiver).
The horizontal axis shows the time as per the sender’s clock. Also,
the sender’s clock is used as the reference physical time for the
1Other types of DR vectors include vectors defining constant speed
circular motion, quadratic DR vectors which specify the acceler-
ation of the entity and cubic spline DR vectors that attempt to
smoothly fit a path between a starting position and velocity and
an ending position and velocity of the entity.

description below. The vertical axis tries to conceptually capture
the two-dimensional position of an entity. Assume a traditional
game environment where the player clocks are not synchronized.
Assume that at timeT0, a DR vectorDR0 = (x0, y0, vx0, vy0),
is computed by the sender and immediately sent to the receiver.
Assume thatDR0 is received at the receiver after a delay ofdt0
time units. The receiver will place this entity at(x0, y0) which
are the coordinates specified inDR0 (note that because of delay
dt0, this entity will be at a different position at the sender at the
same physical time). This will now become the placed path at the
receiver for that entity and this pathED is the trajectory of the
entity at the receiver. Assume that at timeT1 a new DR vector
DR1 = (x1, y1, vx1, vy1) is computed for the same entity and
immediately sent to the receiver. At this time, at the sender, the
entity is at location(x1, y1)

2. Assume thatDR1 is received at
the receiver after a delay ofdt1 time units. When this DR vec-
tor is received, assume that the entity is at point D at the receiver.
The entity is now moved at the receiver to(x1, y1) which is the
coordinate specified in the DR. This is shown as point H in the fig-
ure. Note that the coordinates of point A and H are the same, as
the figure shows the progression in time as the X-axis (andnot the
coordinate axes). At this physical time when the entity is at point
H (x1, y1) at the receiver, the trajectory of the entity at the sender is
following the same path except that the entity is at a different posi-
tion (shown as point C). Point C isaheadin the trajectory because
the entity was at point A(x1, y1) at timeT1 at the sender and only
at timeT1 + dt1 has it been put at the same coordinate position
at the receiver. This means, the placed path at the senderleadsthe
placed path at the receiver although they follow the same trajectory.
This error between the position of the entity at the sender (point C)
and the position of the entity at the receiver (point H) is theafter
export error. Note that the trajectory of the entity due toDR0 also
has a similar after export error where the receiver lags the sender.
At time T1, the entity at the sender is at point B (from which it is
moved to point A due to the computation ofDR1) and the entity at
the receiver lags the sender and is at point B’.

Again, consider Figure 1 but now assume that the clocks are
synchronized at the players. In addition to maintaining synchro-
nized clocks, the DR vectors sent includes the timesT0 and T1

at which they are sent. WhenDR0 = (T0, x0, y0, vx0, vy0) is
received, the receiver will compute the initial position of the en-
tity as (x0 + vx0 × dt0, y0 + vy0 × dt0) (shown as point E).
The receiver can figure outdt0 as the time difference between
when it receivedDR0 andT0 (which has been appended toDR0).
Again, the lineED represents the placed path at the receiver. When
DR1 = (T1, x1, y1, vx1, vy1) is received, a new position for the
entity is computed as(x1 + vx1 × dt1, y1 + vy1 × dt1) and the
entity is moved to this position (point C). Again, the receiver can
figure outdt1 as the time difference between when it receivedDR1

andT1. The velocity componentsvx1 andvy1 are used to project
and render this entity further. Note that when the entity is moved
to point C at the receiver at timeT1 +dt1, the position of the entity
at the sender is exactly the same (that is, points H and C are the
same). This means, with synchronized clocks, there is noafter ex-
port error and the placed paths at the sender and the receiver after
the DR is received at the receiver is exactly the same.

Let us now consider thebefore export error. We mentioned ear-
lier that this error due to network delay is unavoidable even if the
clocks are synchronized. AlthoughDR1 was computed at time

2Normally, DRs are not computed on a periodic basis but on an on-
demand basis where the decision to compute a new DR is based on
some threshold being exceeded between the deviation of the real
path and the path exported by the previous DR.

T1 and sent to the receiver, it did not reach the receiver until time
T1 +dt1. This means, although the exported path based onDR1 at
the sender at timeT1 is the trajectory AC, until timeT1+dt1, at the
receiver, this entity was being rendered based onDR0 at trajectory
BD in case of synchronized clocks and B’D in case the clocks are
not synchronized. Only at timeT1 + dt1 did the entity get moved
to point C in case of synchronized clocks and to point H in case the
clocks are not synchronized. This is thebefore export errordue to
DR1 (that is, the error component due to the use ofDR0 to render
the entity at the receiver beforeDR1 is received). A way to rep-
resent this error is to compute the integral of the distance between
the two trajectories (AC and BD in case of synchronized clocks and
AC and B’D in case the clocks are not synchronized) over the time
that they are out of sync. Note that there would have been abefore
export errorcreated due to the reception ofDR0 at which time the
placed path would have been based on a previous DR vector. This
is not shown in the figure but it serves to remind the reader that
the export error is cumulative when a sequence of DR vectors are
received.

Although even with synchronized clocks there does exist abe-
fore export error, in the next section, using a modified version of
BZFlag and using experimental measurements from the modified
implementation, we show that the total export error (which includes
the before errorand theafter error) is significantly reduced with
our new implementation that uses synchronized clocks compared
to the current implementation. The modifications to the BZFlag
incorporates synchronized clocks and the time-stamping of the DR
vector with the sending time of the DR vector as described above.

3. INSTRUMENTATION OF BZFLAG AND
NUMERICAL RESULTS

BZFlag (Battle Zone Flag) is afirst-person shootergame where
the players in teams drive tanks and move within a battle field. The
aim of the players is to navigate and capture flags belonging to the
other team and bring them back to their own area. The players shoot
each other’s tanks using “shooting bullets”. The movement of the
tanks (players) as well as that of the shots (entities) are exchanged
among the players using DR vectors. The current implementation
of BZFlag uses local clocks (i.e., not synchronized) for dead reck-
oning of the players on the screen.

We have modified the implementation of BZFlag to incorporate
global clocks (i.e., synchronized) among the players and the server
and exchange time-stamps with the DR vector. Our instrumentation
traces the real path traversed by a player/entity as a sender of the
object. A receiver logs the reception of a DR vector and renders the
player/entity to account for the delay between the sender and the
receiver so that a single instance of game playing generates placed
paths for both global and local clocks.

We set up a testbed with four player stations. One station acts as
a sender where the tank is moved, real path is traced and logged,
and DR vectors are generated and sent. The other three stations
act as receivers. We use NIST Net [12] to insert different but fixed
amounts of delay, 100ms, 300ms and 800ms, between the three
sender-receiver pairs. Each receiver gets the same DR vector from
the sender, computes the placed path based on both local and global
clocks, and logs the corresponding placed paths.

We conducted three different sets of experiments, each differing
in the frequency at which the DR vectors are generated. In the
Linear Motioncase, the tank is navigated (by human) in a straight
line thereby generating very few DR vectors. TheCircular Motion
moves the tank in a circular path. This also generates a few DR
vectors as BZFlag detects circular motion and dead-reckons using

 0

 0
.5 1

 1
.5 2

 2
.5 3 5

01
5

 5
02

0
 5

02
5

 5
03

0
 5

03
5

 5
04

0
 5

04
5

Error (BZFlag Scale)

T
im

e
(S

ec
on

ds
)

L
in

ea
r

M
ot

io
n:

 1
00

m
s

D
el

ay
Lo

ca
l D

ea
d

R
ec

ko
ni

ng
G

lo
ba

l D
ea

d
R

ec
ko

ni
ng

 0

 0
.5 1

 1
.5 2

 2
.5 3

 3
.5 4

 4
.5 5 5

01
5

 5
02

0
 5

02
5

 5
03

0
 5

03
5

 5
04

0
 5

04
5

Error (BZFlag Scale)

T
im

e
(S

ec
on

ds
)

L
in

ea
r

M
ot

io
n:

 3
00

m
s

D
el

ay
Lo

ca
l D

ea
d

R
ec

ko
ni

ng
G

lo
ba

l D
ea

d
R

ec
ko

ni
ng

 0 2 4 6 8 1
0

 1
2 5

01
5

 5
02

0
 5

02
5

 5
03

0
 5

03
5

 5
04

0
 5

04
5

Error (BZFlag Scale)

T
im

e
(S

ec
on

ds
)

L
in

ea
r

M
ot

io
n:

 8
00

m
s

D
el

ay
Lo

ca
l D

ea
d

R
ec

ko
ni

ng
G

lo
ba

l D
ea

d
R

ec
ko

ni
ng

 0

 0
.5 1

 1
.5 2

 2
.5 3

 3
.5 8

29
5

 8
30

0
 8

30
5

 8
31

0
 8

31
5

 8
32

0
 8

32
5

Error (BZFlag Scale)

T
im

e
(S

ec
on

ds
)

C
ir

cu
la

r
M

ot
io

n:
 1

00
m

s
D

el
ay

Lo
ca

l D
ea

d
R

ec
ko

ni
ng

G
lo

ba
l D

ea
d

R
ec

ko
ni

ng

 0 1 2 3 4 5 6 7 8
29

5
 8

30
0

 8
30

5
 8

31
0

 8
31

5
 8

32
0

 8
32

5

Error (BZFlag Scale)

T
im

e
(S

ec
on

ds
)

C
ir

cu
la

r
M

ot
io

n:
 3

00
m

s
D

el
ay

Lo
ca

l D
ea

d
R

ec
ko

ni
ng

G
lo

ba
l D

ea
d

R
ec

ko
ni

ng

 0 2 4 6 8 1
0

 1
2

 1
4 8

29
5

 8
30

0
 8

30
5

 8
31

0
 8

31
5

 8
32

0
 8

32
5

Error (BZFlag Scale)

T
im

e
(S

ec
on

ds
)

C
ir

cu
la

r
M

ot
io

n:
 8

00
m

s
D

el
ay

Lo
ca

l D
ea

d
R

ec
ko

ni
ng

G
lo

ba
l D

ea
d

R
ec

ko
ni

ng

 0 2 4 6 8 1
0

 1
2

 1
4

 1
6 5

55
5

 5
56

0
 5

56
5

 5
57

0
 5

57
5

 5
58

0

Error (BZFlag Scale)

T
im

e
(S

ec
on

ds
)

R
an

do
m

 M
ot

io
n:

 1
00

m
s

D
el

ay
Lo

ca
l D

ea
d

R
ec

ko
ni

ng
G

lo
ba

l D
ea

d
R

ec
ko

ni
ng

 0 2 4 6 8 1
0

 1
2

 1
4

 1
6

 1
8

 2
0 5

55
5

 5
56

0
 5

56
5

 5
57

0
 5

57
5

 5
58

0

Error (BZFlag Scale)

T
im

e
(S

ec
on

ds
)

R
an

do
m

 M
ot

io
n:

 3
00

m
s

D
el

ay
Lo

ca
l D

ea
d

R
ec

ko
ni

ng
G

lo
ba

l D
ea

d
R

ec
ko

ni
ng

 0 5 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0 5

55
5

 5
56

0
 5

56
5

 5
57

0
 5

57
5

 5
58

0

Error (BZFlag Scale)

T
im

e
(S

ec
on

ds
)

R
an

do
m

 M
ot

io
n:

 8
00

m
s

D
el

ay
Lo

ca
l D

ea
d

R
ec

ko
ni

ng
G

lo
ba

l D
ea

d
R

ec
ko

ni
ng

Figure 2: Error between real and placed paths with local and global clocks.

a circular motion DR vector. In theRandom Motioncase we move
the tank in a random fashion which generates moderate to large
numbers of DR vectors. In each experiment, the real and the placed
paths using both local and global clocks are logged. The logs are
used to compute the instantaneous error between the two paths (i.e.,
the distance between them at any point in time) using local and
global clocks. In Figure 2 we show snapshots between 25 to 30
seconds (in the X-axis) of the entire game play. The Y-axis shows
the error between the real and the placed paths in terms of distance
between BZFlag coordinate point units. The size of a BZFlag tank
in these units is 2.8 units wide and 6 units long. The errors due to
local and global clock are henceforth referred to as the local and
global errors, respectively.

For theLinear Motioncase, frequency of generation of DR vec-
tors is low. Due to this, the exported DR vector is rendered “cor-
rectly” before the next DR vector is generated. This leads to mostly
zero global error as the entity is placed exactly where it would be
in the sender’s screen. As the delay between the sender and the
receiver increases, the possibility of the sender generating a new
DR vector before the previous one reaching and getting rendered
on the receiver’s screen increases. Therefore, we observe relatively
higher peaks in the global error. In all cases the global error is much
smaller than the local error. For example, with a delay of 300ms be-
tween the sender and the receiver (which is quite typical), the local
error could be up to 2 tank units, whereas the global error is close
to zero. TheCircular Motion case is similar to the Linear Motion
case except that it captures the situation with a different type of DR
vector (circular motion DR).

For theRandom Motioncase, the DR vectors are generated with
moderate to high frequency. For low delay most of the DR vectors
reach and get rendered accurately at the receiver and the global er-
ror reaches zero quite often. As the delay increases, the sender gen-
erates the next DR vector before the previous one reaches and gets
rendered; this increase the global error. There are a few instances
where global error is larger than the local error. This happens when
a moving player becomes stationary (i.e., a tank stops). A new DR
vector indicating the stationarity is sent to all the receivers. Till
it reaches the receiver, the receiver computes the placed path us-
ing the previous DR vector. With global clock, since the player is
placed in the exact position, the trajectory overshoots the station-
ary point by the time the DR vector arrives. With local clock, the
placed path always (time-)lags by the amount of delay between the
sender and the receiver. So the player’s path does not overshoot but
become stationary after a time lag. In general the average global
error is substantially less than the average local error leading to
the conclusion that globally synchronized clock among the players
will substantially increase the accuracy of a distributed multi-player
game.

So far we have shown the improvement in accuracy provided
by our technique (applied on the players only) using quantitative
results. To evaluate the qualitative game playing experience, we
applied our technique on the “shots” as well, and played the game
between two players with different delays. We played the game
several times using both local and global clocks in order to quali-
tatively assess the differences in the two approaches. We observed
that the hit rate (due to the “shots”) was better in case of global
clock as compared to local clock particularly when the delay was
high. This was because the player who was being dead reckoned
was more accurately placed on the other players’ screen and hence
the other player was able to hit her where she could see her as com-
pared to using local clock where the other player would miss her if
she tried to hit her where she saw her.

4. CONCLUSIONS
This paper discussed the use of synchronized clocks in distributed

multi-player games to improve the accuracy of game playing. We
showed that the current technique of using a DR vector without
any timing information to render an entity at a player brings in in-
accuracy in game playing and this inaccuracy is substantial even
with low network delay between the sender-receiver pairs. We pro-
posed the use of globally synchronized clocks among the partic-
ipating players and a time-stamp augmented dead reckoning vec-
tor that enables the receiver to render the entity accurately. Using
BZFlag as an example, we showed through experiments that the ac-
curacy of game playing using our technique that uses synchronized
clocks among the players is much improved compared to the cur-
rent implementation. In general our results are intended to show
that globally synchronized clocks among players should improve
game playing accuracy for any distributed multi-player game.

Acknowledgments:We would like to thank the developers of BZFlag
and especially Tim Riker, Sean Morrison and Tupone Alfredo for
their help and insights. We would also like to thank Vikram Aggar-
wal for help with Perl scripts used for data analysis.

5. REFERENCES
[1] L. Gautier and C. Diot, “Design and Evaluation of MiMaze,

a Multiplayer Game on the Internet,” inProc. of IEEE
Multimedia (ICMCS’98), 1998.

[2] M. Mauve, “Consistency in Replicated Continuous
Interactive Media,” inProc. of the ACM Conference on
Computer Supported Cooperative Work (CSCW’00), 2000,
pp. 181–190.

[3] S.K. Singhal and D.R. Cheriton, “Exploiting Position
History for Efficient Remote Rendering in Networked
Virtual Reality,” Presence: Teleoperators and Virtual
Environments, vol. 4, no. 2, pp. 169–193, 1995.

[4] BZFlag Forum, “BZFlag Game,” URL:
http://www.bzflag.org .

[5] Z. B. Simpson, “A Stream Based Time Synchronization
Technique for Networked Computer Games,” URL:
http://www.mine-control.com/zack/
timesync/timesync.html .

[6] URL: http://p24.bakadigital.com/p24bb/
viewtopic.php?t=14 .

[7] L. Pantel and L. Wolf, “On The Suitability of Dead
Reckoning Schemes for Games,” inProc. of NetGames2002,
2002.

[8] L. Pantel and L.C. Wolf, “On the Impact of Delay on
Real-Time Multiplayer Games,” inProc. of ACM
NOSSDAV’02, May 2002.

[9] Y. W. Bernier, “Latency Compensation Methods in
Client/Server In-game Protocol Design and Optimization,” in
Proc. of Game Developers Conference’01, 2001, URL:
http://www.gdconf.com/archives/
proceedings/2001/prog_papers.html .

[10] Y. Lin, K. Guo, and S. Paul, “Sync-MS: Synchronized
Messaging Service for Real-Time Multi-Player Distributed
Games,” inProc. of 10th IEEE International Conference on
Network Protocols (ICNP), Nov 2002.

[11] K. Guo, S. Mukherjee, S. Rangarajan, and S. Paul, “A Fair
Message Exchange Framework for Distributed Multi-Player
Games,” inProc. of NetGames2003, May 2003.

[12] Nation Institute of Standards and Technology, “NIST Net,”
URL: http://snad.ncsl.nist.gov/nistnet/ .

