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IMPORTANCE The recent advances in the field of machine learning have raised expectations

that computer-aided diagnosis will become the standard for the diagnosis of melanoma.

OBJECTIVE To critically review the current literature and compare the diagnostic accuracy of

computer-aided diagnosis with that of human experts.

DATA SOURCES TheMEDLINE, arXiv, and PubMed Central databases were searched to

identify eligible studies published between January 1, 2002, and December 31, 2018.

STUDY SELECTION Studies that reported on the accuracy of automated systems for melanoma

were selected. Search terms includedmelanoma, diagnosis, detection, computer aided, and

artificial intelligence.

DATA EXTRACTION AND SYNTHESIS Evaluation of the risk of bias was performed using the

QUADAS-2 tool, and quality assessment was based on predefined criteria. Data were

analyzed from February 1 to March 10, 2019.

MAIN OUTCOMES ANDMEASURES Summary estimates of sensitivity and specificity and

summary receiver operating characteristic curves were the primary outcomes.

RESULTS The literature search yielded 1694 potentially eligible studies, of which 132 were

included and 70 offered sufficient information for a quantitative analysis. Most studies came

from the field of computer science. Prospective clinical studies were rare. Combining the

results for automated systems gave amelanoma sensitivity of 0.74 (95% CI, 0.66-0.80) and

a specificity of 0.84 (95% CI, 0.79-0.88). Sensitivity was lower in studies that used

independent test sets than in those that did not (0.51; 95% CI, 0.34-0.69 vs 0.82; 95% CI,

0.77-0.86; P < .001); however, the specificity was similar (0.83; 95% CI, 0.71-0.91 vs 0.85;

95% CI, 0.80-0.88; P = .67). In comparison with dermatologists’ diagnosis, computer-aided

diagnosis showed similar sensitivities and a 10 percentage points lower specificity, but the

difference was not statistically significant. Studies were heterogeneous and substantial risk of

bias was found in all but 4 of the 70 studies included in the quantitative analysis.

CONCLUSIONS AND RELEVANCE Although the accuracy of computer-aided diagnosis for

melanoma detection is comparable to that of experts, the real-world applicability of these

systems is unknown and potentially limited owing to overfitting and the risk of bias of the

studies at hand.
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T
he rising incidence of melanoma, the benefits of early

diagnosis, and the limited access to dermatologic ser-

vices in some countries entailed increased efforts to

develop diagnostic systems that are independent of human

expertise. Most systems fall into the category of image-

based, automated diagnostic systems and use either clinical

or dermoscopic images. The hope is that computer-aided

diagnosis (CAD) could provide decision support for physi-

cians or could screen large numbers of images for telecon-

sultation services. Early studies on CAD of skin lesions

relied on hand-crafted feature engineering and segmenta-

tion masks. These methods showed promising results and

reached a diagnostic accuracy comparable to human ratings

in experimental settings.1 The accuracy of the automated

diagnostic system in real-life settings in the only prospec-

tive controlled trial to date was lower than expected.2

Recent advances in computer science3 and the introduction

of convolutional neural networks and deep-learning–based

approaches revolutionized the classification of medical

image analysis.4 Since the last meta-analysis that was pub-

lished in 2003,1 a significant number of new studies have

been published on this topic, but to our knowledge, there is

no study that summarizes the body of literature. The aims

of this meta-analysis were to critically review the current

literature on CAD for melanoma, evaluate the diagnostic

accuracy in comparison with that of dermatologists, analyze

the association between methodologic differences and per-

formance measures, and explore the applicability of CAD in

real-world settings.

Methods

Search Strategy and Selection Process

We searched the online databases MEDLINE, arXiv, and

PubMed Central, using specific search terms for each data-

base for articles published between January 1, 2002, and

December 31, 2018,without anyadditional limitations, aswell

as the reference lists of included articles. Data were analyzed

from February 1 to March 10, 2019. The key words used were

melanoma and (diagnosisordetection) forMEDLINE, theword

melanoma included in abstracts for arXiv, andmelanoma and

(diagnosis or detection) and (computer aided or artificial intel-

ligence) for PubMed Central. Additional studies were identi-

fied by 2 of us (H.K. and P.T.).

Studieswere eligible for inclusion if they investigated the

accuracyofCADsystemsthatwereorcouldbeused inascreen-

ing setting for cutaneous melanoma. Diagnostic methods for

lesions that have already been excised, methods that differ-

entiate only between different types of malignant skin le-

sions, or methods processing information gained by invasive

techniqueswere excluded. If an article discussedmore than 1

diagnosticmethod, only the best-performingmethodwas in-

cluded.

The titles andabstracts of retrievedarticleswere screened

by 2 of us (V.D. andH.K.). At this stage, articleswere excluded

if they were not published in English or German, if an ab-

stractwasunavailable, or if the contentwasnot relevant to the

research question. The full texts of articles that were not ex-

cluded during initial screeningwere retrieved and studied by

the same readers. At that time, articles were excluded if they

did not present original data or if their content was not rel-

evant to the researchquestion.Discrepancies regarding inclu-

sion or exclusion of specific studies were discussed and re-

solved by consensus. One of us (P.T.) was available to be the

decision maker in case no consensus could be reached.

Data Extraction

We used a standardized data extraction sheet to collect data

from all included studies. The extracted data fields were de-

termined inadvanceand includedstudy, test, andsamplechar-

acteristics, and outcomemeasures.

We extracted information on the selection of the study

sample, characteristics of included lesions, type of diagnos-

tic reference standard,methodof automated analysis, type of

classifier, preprocessing, segmentation, and extracted fea-

tures, if applicable. With regard to the method of automated

analysis, we differentiated between hardware-based meth-

ods, image analysis with feature extraction (computer

vision), and deep learning. According to our definition, hard-

ware-basedmethodsuse specific devices beyond simple con-

sumer cameras or smartphones (eg, spectroscopy,multispec-

tral imaging,orphotometric stereodevice).Toobtainoutcome

measures,weextracted the rawnumbersof trueand falseposi-

tives and true and false negatives from each study to calcu-

late summary statistics for the diagnostic accuracy of auto-

mateddiagnostic systems and, if available, of dermatologists.

Methodologic Analysis

Weassessedapplicabilityandriskofbiasaccordingto themodi-

fied version of theQUADAS-2 tool,5whichwe adapted for our

specific purpose with regard to sample selection, index test,

reference standard, flow, and timing. The studies were also

evaluated using the good-quality criteria suggested by

Rosado et al,1 which, if followed, should ensure transferabil-

ity of the results to a real-world setting. These criteria,

however, were not applicable to studies from the field of

computer science.

Statistical Analysis

For the quantitative meta-analysis, we used the results

of studies that either presented absolute numbers for true

Key Points

Question What is the accuracy of computer-aided diagnosis of

melanoma and how does it translate to clinical practice?

Findings In this meta-analysis of 70 studies, the accuracy of

computer-aided diagnosis is comparable to that of human experts.

However, current studies are heterogeneous andmost deviate

significantly from real-world scenarios and are prone to biases.

Meaning Although computer-aided diagnosis for melanoma

appears to be accurate according to the included studies, more

standardized and realistic study settings are required to explore its

full potential in clinical practice.
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and false positives and true and false negatives or offered

sufficient information to calculate these numbers for the

detection of melanoma vs benign lesions. If the same group

of authors published more than 1 study with overlapping

sets of lesions, only 1 publication was included in the statis-

tical analysis. If studies directly compared CAD with derma-

tologists, the corresponding sensitivities and specificities of

dermatologists were extracted in the same way.

The R Statistics6 package mada7 and the SAS8 Macro

MetaDAS9 were used for analyses. A coupled forest plot

of sensitivity and specificity was created using RevMan, ver-

sion 5.3.10 Summary receiver operating characteristic (ROC)

curves and mean estimates of sensitivity and specificity and

the corresponding 95% CIs were calculated by the bivariate

modelofReitsmaetal.11Heterogeneityandthepresenceofout-

liers were visually checked and the presence of between-

study variancewas tested.12Abivariatemeta-regressionwith

potential covariables was modeled to reduce any heteroge-

neity noted between the studies. For all studies, the use of in-

dependent test sets, of proprietary or public test sets, and the

method of analysis (computer vision, deep learning, or hard-

ware based) were available and investigated. In sensitivity

analyses, potential outliers were excluded to assess their as-

sociationwith the results.All testswerebasedona2-sidedsig-

nificance level of P = .05.

Results

General Study Characteristics

We identified 1694 potentially eligible articles, of

which 132 were included in the qualitative analysis and

70 provided sufficient data for a quantitative meta-analysis

(Figure 1, Figure 2, and Figure 3).2,13-81 We attributed

105 articles to the field of computer science and 27

to the field ofmedicine. Themethodsusedwere computer vi-

sion (n = 58), deep learning (n = 55), and hardware based

(n = 19) . Artificial neural networks and support vector ma-

chines were the most commonly applied machine-learning

techniques for classification (eTable 1 in the Supplement).

Fifty studies includedonlymelanocytic lesions,whilenon-

melanocytic lesionswere included in67 studies. Fifteen stud-

ies did not specify whether nonmelanocytic lesions were in-

cluded (eTable 1 in the Supplement). Twenty-two studies

reportedmelanoma thickness and28 studies noted the inclu-

sion of in situ melanomas. The median thickness of invasive

melanomas ranged from0.2 to 1.5mm. Publicly available im-

ages were used in 76 studies, while 56 studies used propri-

etarydata sets.Most studies (n = 119)didnot select lesions ran-

domly and 13 studies used consecutively collected samples.

Quality Assessment

According to the QUADAS-2 tool,5 13 studies showed moder-

ate applicability, and the concerns about the applicability of

the remaining studies was judged as low (eTable 2 in the

Supplement). The concerns about the risk of biaswere judged

as high in at least 1 category in all but 4 studies, and 58 stud-

iespresentedahigh riskofbias in at least 2 categories (eTable2

andeFigure in theSupplement). Thequality assessmentof the

27studies fromthemedical field,using thequality criteriapro-

posedbyRosado et al,1 showed that between 1 and7of 9qual-

ity criteria were met (eFigure in the Supplement). The

general characteristics of the 70 studies thatwere included in

the quantitative analysis are shown in eTable 1 in the

Supplement.

Diagnostic Accuracy

Based on the 70 studies that were included in the quantita-

tive analysis, the summary estimate for themelanoma sensi-

tivity of CAD systems was 0.74 (95% CI, 0.66-0.80) and the

specificitywas0.84 (95%CI, 0.79-0.88) (Table). The sensitiv-

ity was significantly lower for the 45 studies that used inde-

pendent test sets (0.51;95%CI,0.34-0.69vs0.82;95%CI,0.77-

0.86;P < .001). The summaryestimates for the corresponding

specificitieswere similar (0.83; 95%CI, 0.71-0.91 vs0.85; 95%

CI, 0.80-0.88; P = .67).

The 33 studies that used proprietary test sets had a sig-

nificantlyhigher sensitivity than the 37 studies that usedpub-

licly available test sets (0.87; 95% CI, 0.82-0.91 vs 0.57; 95%

CI, 0.44-0.68; P < .001); however, the specificity was signifi-

cantly lower (0.72; 95% CI, 0.63-0.79 vs 0.91; 95% CI, 0.88-

0.94; P < .001).

Computer-aided diagnosis systems using deep learning

achievedasensitivityof0.44 (95%CI,0.30-0.59;P < .001) and

a specificity of 0.92 (95% CI, 0.89-0.95; P < .001) and be-

haved significantly differently from theother 2methods. The

35 studiesusing computer visionachieveda sensitivityof0.85

Figure 1. Study Selection Process

1694 Studies identified in the literature search

326 Full-text versions read

132 Included in the qualitative analysis

70 Included in the quantitative analysis

1654 Abstracts screened

40 Duplicates

1328 Excluded

75 Unavailability of abstract

16 Language

1237 Title and abstract

194 Studies excluded

43 Reviews

141 Not applicable

2 Unavailable as full-text versions

8 Multiple articles reporting on them

62 Excluded from the quantitative analysis

Selection of studies according to inclusion and exclusion criteria at different

stages of themeta-analysis.
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Figure 2. Sensitivity and Specificity of 55 of 70 Included Studies
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25 12 13 26Amoabedini et al,132018 0.66 (0.49-0.80)

8 10 4 32Ascierto et al,14 2010 0.67 (0.35-0.90)

39 16 1 144Barata et al,15 2015 0.97 (0.87-1.00)

6 12 0 104Barzegari et al,16 2005 1.00 (0.54-1.00)

1 1 116 482Bi et al,17 2017 0.01 (0.00-0.05)

0.68 (0.51-0.82)

0.76 (0.61-0.88)

0.90 (0.84-0.94)

0.90 (0.83-0.95)

12 33 105 450Chang H et al,18 2017 0.10 (0.05-0.17)

52 51 23 253Codella et al,19 2016 0.69 (0.58-0.79)

64 722 7 283Del Rosario et al,20 2018 0.90 (0.81-0.96)

10 2 2 32Ding et al,21 2015 0.83 (0.52-0.98)

51 14 4 85Do et al,22 2017 0.93 (0.82-0.98)

0.93 (0.91-0.95)

0.83 (0.79-0.87)

0.28 (0.25-0.31)

0.94 (0.80-0.99)
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0.87 (0.84-0.90)
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40 3 4 56Garnavi et al,27 2012 0.91 (0.78-0.97)
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12 1 105 482Gonzalez Diaz,30 2017 0.10 (0.05-0.17)

0.95 (0.86-0.99)

0.83 (0.77-0.89)

0.64 (0.45-0.80)

0.88 (0.85-0.91)

19 29 1 51Haenssle et al,32 2018 0.95 (0.75-1.00)

104 21 15 66Haider et al,33 2014 0.87 (0.80-0.93)

48 139 5 192Har-Shai et al,34 2005 0.91 (0.79-0.97)

55 41 62 442Harangi et al,35 2017 0.47 (0.38-0.56)

783 938 330 7123Hardie et al,36 2018 0.70 (0.68-0.73)

0.64 (0.52-0.74)

0.76 (0.65-0.84)

0.58 (0.52-0.63)

0.92 (0.89-0.94)

0.88 (0.88-0.89)

52 9 8 231Jaworek-Korjakowska et al,37 2016 0.87 (0.75-0.94)

55 236 62 247Wiselin Jiji et al,38 2017 0.47 (0.38-0.56)

62 30 39 248Kawahara et al,39 2018 0.61 (0.51-0.71)

171 24 21 763Khan et al,40 2018 0.89 (0.84-0.93)

23 5 5 127Kostopoulos et al,41 2017 0.82 (0.63-0.94)

0.96 (0.93-0.98)

0.51 (0.47-0.56)

0.89 (0.85-0.93)

0.96 (0.91-0.99)

198 27 25 1585Li et al,42 2018 0.89 (0.84-0.93)

36 20 81 463Li et al,43 2017 0.31 (0.23-0.40)

65 29 11 153Liu et al,44 2015 0.86 (0.76-0.93)

46 6 4 48Magliogiannis et al,45 2015 0.92 (0.81-0.98)

47 91 70 392Mahbod et al,46 2017 0.40 (0.31-0.50)

0.84 (0.78-0.89)

0.89 (0.77-0.96)

0.81 (0.77-0.85)

256 956 9 501Malvehy et al,47 2014 0.97 (0.94-0.98)

15 5 8 104Manousaki et al,48 2006 0.65 (0.43-0.84)

29 4 21 46Marchetti et al,49 2018 0.58 (0.43-0.72)

16 33 1 113Marques et al,50 2012 0.94 (0.71-1.00)

86 72 31 411Matsunaga et al,51 2017 0.74 (0.65-0.81)

0.95 (0.90-0.98)

0.92 (0.81-0.98)

0.77 (0.70-0.84)

0.85 (0.82-0.88)

118 123 130 908Menegola et al,52 2017 0.48 (0.41-0.54)

64 24 53 459Menegola et al,53 2017 0.55 (0.45-0.64)

49 83 68 400Mirunalini et al,54 2017 0.42 (0.33-0.51)

42 640 2 87Møllersen et al,55 2015 0.95 (0.85-0.99)

61 9 9 91Munia et al,56 2017 0.87 (0.77-0.94)

27 54 90 429Murphree et al,57 2017 0.23 (0.16-0.32)

0.83 (0.79-0.86)

0.91 (0.84-0.96)

0.89 (0.86-0.91)

20 5 97 478Nader Vasconcelos et al,58 2017 0.17 (0.11-0.25)

15 2 0 43Patwardhan et al,59 2005 1.00 (0.78-1.00)

50 33 21 117Pellacani et al,60 2004 0.70 (0.58-0.81)

33 37 0 95Piccolo et al,61 2014 1.00 (0.89-1.00)

29 48 11 112Połap et al,62 2018 0.72 (0.56-0.85)

0.96 (0.85-0.99)

0.78 (0.71-0.84)

0.72 (0.63-0.79)

0.70 (0.62-0.77)

7 7 0 18Quinzán et al,63 2013 1.00 (0.59-1.00)

30 43 45 261Radhakrishnan et al,64 2017 0.40 (0.29-0.52)

31 6 9 39Ramezani et al,65 2014 0.78 (0.62-0.89)

794 199 359 7942Rezvantalab et al,66 2018 0.69 (0.66-0.72)

0.72 (0.51-0.88)

0.86 (0.81-0.90)

0.87 (0.73-0.95)

1.00 (0.99-1.00)

8 57 409 426Guo et al,31 2017 0.02 (0.01-0.04)

1.00 (0.99-1.00)

0.97 (0.95-0.98)

0.98 (0.98-0.99)

0.96 (0.94-0.97)

0.34 (0.32-0.37)

0.88 (0.86-0.90)

0.95 (0.93-0.97)

0.12 (0.10-0.15)

0.99 (0.98-1.00)

0.98 (0.97-0.98)

FN indicates false negative; FP, false positive; TN, true negative; and TP, true positive.
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(95%CI, 0.80-0.88;P < .001) anda specificity of0.77 (95%CI,

0.69-0.84;P < .001),and9studiesusinghardware-basedmeth-

ods reached a sensitivity of 0.86 (95%CI, 0.77- 0.92;P < .001)

and a specificity of 0.70 (95% CI, 0.54-0.82; P = .001). Stud-

ies based on computer vision and hardware-based methods

werenot significantly differentwith respect to sensitivity and

specificity.

A multiple bivariate meta-regression model showed that

sensitivity and specificity depended significantly on the test

set characteristics, the test set source, andthemethodofanaly-

sis. Sensitivity was significantly lower for independent (0.51;

95%CI,0.34-0.69)versusnonindependent test sets (0.82;95%

CI,0.77-0.86;P = .002). Specificitywas significantlyhigher for

deep learning (0.92; 95%CI, 0.89-0.95) than for computer vi-

sion (0.77; 95% CI, 0.69-0.84; P < .001) or hardware-based

methods (0.70; 95% CI, 0.54-0.82; P < .001) (Table). Analy-

seswere repeatedwith studies ofWolf et al77 andWiselin Jiji38

excluded because their distance from the summary ROC in-

dicatedpotential outliers; however, their influenceon theout-

come was minor (eTable 3 in the Supplement). Although the

bivariatemeta-regression reducedheterogeneity in themeta-

analysis, a significant between-study heterogeneity re-

mained in all subgroups (Figure 4).

A subset of 14 studies compared CAD with dermatolo-

gists,who reachedasensitivityof0.88 (95%CI,0.79-0.93) and

a specificity of 0.78 (95% CI, 0.76-0.79). Dermatologists and

CADattainedasimilar sensitivity (sensitivityofCAD:0.89;95%

CI, 0.87-0.91; P = .496); specificity, however, was 10 percent-

age points lower for CAD, although not statistically signifi-

cant (0.68; 95% CI, 0.60-0.77; P = .052).

Discussion

Computer-aided diagnosis of melanoma is an instructive ex-

ample of the currentmismatchbetween expectations and the

actual outcome ofmachine-learning approaches for accurate

predictions and diagnoses in health care. Despite numerous

breakthrough studies that demonstrate expert-level accu-

racyofCAD formelanoma, existingdevicesor applications are

notwidely used. A potential reason for thismismatchmay be

that the results of the studies conducted in this field cannot

be transferred directly to clinical practice.We performed this

meta-analysis with the aim to better characterize the studies

at hand and identify factors that explain the mismatch

between expectations and reality.

Most studies onCADcame from the field of computer sci-

ence, whereas clinical studies were sparse. The studies from

the field of computer science typically focused on technical

issues, such as preprocessing of images, image augmenta-

tion, segmentation, feature extraction and architecture, and

fine tuning of the classification algorithm. These studies usu-

ally did not address typical limitations of diagnostic studies,

such as the potential ambiguity of pathologic reports, the

complexity of clinical decision making in the presence of

uncertainty, and the types of biases involved in such studies.

Clinical information, such as age, anatomic site, and history

of melanoma, was rarely used, although it may significantly

improve the accuracy for melanoma detection.82

Computer-aided diagnosis studies were highly heteroge-

neous and at high risk for bias. Half of the studies, and prac-

tically all studies coming from the field of computer science,

were conducted in an experimental setting and used images

from publicly available databases. Most used convenience

samples or, at best, retrospectively collected consecutive

samples.Thesedatasetsareusuallypronetoselectionandveri-

fication bias. Overfitting is an inherent problem of machine

learning resulting in lack of generalizability, especially if the

training set and the test set are different from the group of le-

sions encountered in clinical practice. It is not surprising that

studies that used independent test sets reached a lower sen-

sitivity than the remaining studies. The fact that specificity is

Figure 3. Sensitivity and Specificity of 15 of 70 Included Studies
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not affected by overfitting may be explained by class imbal-

ance. Most data sets used for training and testing are imbal-

anced and containmorenevi thanmelanomas. Because over-

fitting ismore likely if the sample size is small, the sensitivity

for melanoma is more likely affected by overfitting than

the specificity.

Ideally, CAD should be trained and tested in the setting

of its intended use. The clinical setting may vary from gen-

eral population screening to surveillance of high-risk

patients with multiple nevi and a personal history of mela-

noma. Most clinical studies were conducted in specialized

referral centers with high melanoma prevalence. The sys-

tems were not tested in the general population or as screen-

ing tools.

Dermoscopywasmostwidely used for classification. Der-

moscopic imagescanbeobtainedwithdifferentdevices, includ-

ingsmartphones,whichmakesthemwidelyavailable.Although

dermoscopy is regardedas the stateof theart invivo technique

for thediagnosis ofmelanoma,most prospective clinical stud-

ies used othermethods, such as spectroscopy ormultispectral

images, which require exclusive hardware. Prospective, con-

trolled clinical studies of automated systems of dermoscopic

images or conventional close-ups are currentlymissing.

The restriction to melanocytic lesions was also a limita-

tion found in most of the studies of this meta-analysis. If

nonmelanocytic lesions were included, it was usually by

chance. The restriction to melanocytic lesions limits the

applicability of such systems in clinical practice. In a popu-

lation of individuals with extensive chronic sun damage, a

significant portion of pigmented lesions that are excised or

biopsied for diagnostic reasons are nonmelanocytic. A sys-

tem that is trained to differentiate melanoma from nevi will

not be suitable in a setting in which a significant portion of

lesions are seborrheic keratosis, solar lentigines, basal cell

carcinomas, actinic keratoses, or Bowen disease. Such a sys-

tem would need preselection of melanocytic lesions by

experts, but if experts are needed to handle the system it

would defy its own purpose. The lack of generalizability and

the problem of out-of-distribution lesions, such as rare or

unknown disease categories, is a limitation that is not

addressed by current studies. In a recent study, an other-

wise accurate CAD missed amelanotic melanomas, most

probably because they were underrepresented in the train-

ing set.83

When compared directly, CAD differentiated melanoma

from nevi with similar sensitivity to dermatologists but with

lower specificity. This difference, however, was not statisti-

cally significant and can also be attributed to a threshold ef-

fect. The optimal threshold and the tradeoff between sensi-

tivity and specificity is a problem.Althoughmetrics exist that

take into account the consequences of diagnostic decisions,

they are rarely used in the realm of machine learning, which

has also been criticized recently in an editorial by Shahet al.84

AsshowninFigure2,mostautomateddiagnostic systemsused

thresholds thatbalancedsensitivityandspecificityandavoided

extremevalues.This selectionof thresholdsmakes senseclini-

cally because if the sensitivity is maximized at an expense of

an intolerable low specificity, the systemwould be useless in

clinical practice.

Limitations

This meta-analysis has limitations. Because of the heteroge-

neity of the studies, the summary estimates of the quantita-

tivepart have tobe interpretedwith caution and in light of the

methodologic quality of the studies. Two studies in particu-

lar occurred as visual outliers in summary ROC space.

Wiselin Jiji et al38used a support-vectormachinewith signifi-

Table. Summary Estimates for Sensitivity and Specificity

Variable

Summary
Estimate
(95% CI)

P Value

Univariate Multiplea

CAD Overall (n = 70)

Sensitivity 0.74 (0.66-0.80) [Reference] [Reference]

Specificity 0.84 (0.79-0.88) [Reference] [Reference]

Independent Test Set (n = 25)

Sensitivity 0.51 (0.34-0.69) [Reference] [Reference]

Specificity 0.83 (0.71-0.91) [Reference] [Reference]

Nonindependent Test Set (n = 45)

Sensitivity 0.82 (0.77-0.86) <.001b .002b

Specificity 0.85 (0.80-0.88) .67b .006b

Public Test Set Source (n = 37)

Sensitivity 0.57 (0.44-0.68) [Reference] [Reference]

Specificity 0.91 (0.88-0.94) [Reference] [Reference]

Proprietary Test Set Source (n = 33)

Sensitivity 0.87 (0.82-0.91) <.001c .003c

Specificity 0.72 (0.63-0.79) <.001c <.001c

Computer Vision (n = 35)

Sensitivity 0.85 (0.80-0.88) [Reference] [Reference]

Specificity 0.77 (0.69-0.84) [Reference] [Reference]

Deep Learning (n = 26)

Sensitivity 0.44 (0.30-0.59) <.001d <.001d

Specificity 0.92 (0.89-0.95) <.001d <.001d

Hardware-Based (n = 9)

Sensitivity 0.86 (0.77-0.92) .71d .71d

<.001e .008e

Specificity 0.70 (0.54-0.82) .47d .28d

<.001e .17e

Dermatologists (n = 14)

Sensitivity 0.88 (0.79-0.93) NA NA

Specificity 0.78 (0.76-0.79) NA NA

Corresponding CADs (n = 14)

Sensitivity 0.89 (0.87-0.91) .50f NA

Specificity 0.68 (0.60-0.77) .052f NA

Abbreviations: CAD, computer-aided diagnosis; NA, not applicable.

aMultiple P value refers to significance testing with a multiple bivariate

meta-regressionmodel with variables test-set independence, test-set source,

and CADmethod included.

bCompared with independent test set.

c Compared with public test set source.

dCompared with computer vision.

e Compared with deep learning.

f Compared with dermatologists.

Research Original Investigation Accuracy of Computer-Aided Diagnosis of Melanoma

1296 JAMADermatology November 2019 Volume 155, Number 11 (Reprinted) jamadermatology.com

© 2019 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ on 08/27/2022

http://www.jamadermatology.com/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamadermatol.2019.1375


cantly lower performance compared with other competitors

of the International Symposium on Biomedical Imaging 2017

challenge, suggesting that implementationmayhavebeensub-

optimal.Wolf et al77 used a smartphone-based approach on a

retrospective convenience samplewithout specific details on

technical implementation.

Conclusions

It is likely that parts of the mismatch between promising

experimental results and limited usefulness in reality can be

attributed to issues beyond accuracy. Dermatologists, who

are regarded as the experts in the field of melanoma diagno-

sis, probably benefit the least and feel threatened the most.

There is a fear that less-skilled physicians or even nonmedi-

cal personnel will use such systems to deliver a service that

should be restricted to dermatologists. One could argue

that not all dermatologists are experts in dermoscopy and

that even experts could benefit from computer assistance

when related to repetitive tasks, such as comparing sequen-

tial images. Therefore, a successful CAD would most prob-

ably enhance and support dermatologists rather than

replace them. It is currently unclear in which setting and for

which task CADs are most useful, but if the setting and the

tasks are unclear, the systems cannot be trained and tested

sufficiently. If the systems are used in a setting in which

they are not accepted or for a task they have not been

trained for, they will be wasted, even if the technology is

exciting and accurate.

Figure 4. Summary Receiver Operating Characteristic (ROC) Curves
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dermatologists for the detection of melanoma vs benign lesions in studies when
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studies on automated systems for the detection of melanoma vs benign lesions

using independent and nonindependent test sets (B), different CADmethods

(C), and public or proprietary test data sets (D).
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