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Abstract

Background: Wrist-worn smart watches and fitness monitors (ie, wearables) have become widely adopted by consumers and
are gaining increased attention from researchers for their potential contribution to naturalistic digital measurement of health in a
scalable, mobile, and unobtrusive way. Various studies have examined the accuracy of these devices in controlled laboratory
settings (eg, treadmill and stationary bike); however, no studies have investigated the heart rate accuracy of wearables during a
continuous and ecologically valid 24-hour period of actual consumer device use conditions.

Objective: The aim of this study was to determine the heart rate accuracy of 2 popular wearable devices, the Apple Watch 3
and Fitbit Charge 2, as compared with the gold standard reference method, an ambulatory electrocardiogram (ECG), during
consumer device use conditions in an individual. Data were collected across 5 daily conditions, including sitting, walking, running,
activities of daily living (ADL; eg, chores, brushing teeth), and sleeping.

Methods: One participant, (first author; 29-year-old Caucasian male) completed a 24-hour ecologically valid protocol by wearing
2 popular wrist wearable devices (Apple Watch 3 and Fitbit Charge 2). In addition, an ambulatory ECG (Vrije Universiteit
Ambulatory Monitoring System) was used as the gold standard reference method, which resulted in the collection of 102,740
individual heartbeats. A single-subject design was used to keep all variables constant except for wearable devices while providing
a rapid response design to provide initial assessment of wearable accuracy for allowing the research cycle to keep pace with
technological advancements. Accuracy of these devices compared with the gold standard ECG was assessed using mean error,
mean absolute error, and mean absolute percent error. These data were supplemented with Bland-Altman analyses and concordance
class correlation to assess agreement between devices.

Results: The Apple Watch 3 and Fitbit Charge 2 were generally highly accurate across the 24-hour condition. Specifically, the
Apple Watch 3 had a mean difference of −1.80 beats per minute (bpm), a mean absolute error percent of 5.86%, and a mean
agreement of 95% when compared with the ECG across 24 hours. The Fitbit Charge 2 had a mean difference of −3.47 bpm, a
mean absolute error of 5.96%, and a mean agreement of 91% when compared with the ECG across 24 hours. These findings
varied by condition.

Conclusions: The Apple Watch 3 and the Fitbit Charge 2 provided acceptable heart rate accuracy (<±10%) across the 24 hour
and during each activity, except for the Apple Watch 3 during the daily activities condition. Overall, these findings provide
preliminary support that these devices appear to be useful for implementing ambulatory measurement of cardiac activity in
research studies, especially those where the specific advantages of these methods (eg, scalability, low participant burden) are
particularly suited to the population or research question.

(JMIR Mhealth Uhealth 2019;7(3):e10828) doi: 10.2196/10828
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Introduction

Background
Wrist-worn smartwatches and fitness monitors or wearables
have been widely adopted by consumers and are currently
gaining increased attention by researchers for their potential
contribution to digital measurement of health, especially in big
data studies as these devices are scalable, unobtrusive, and
potentially provide greater ecological validity (ie, the degree to
which a research design matches naturalistic environments to
generalize results to real-life settings), as compared with
laboratory studies. These devices contain a multitude of sensors,
often including an optical sensor that uses
photoplethysmography (PPG) that allows these devices to collect
pulse rate or volumetric changes in blood profusion that act as
a surrogate for heart rate (HR). Although often used
interchangeably, it is important to note that pulse rate and HR
are 2 different physiological signals [1], with pulse rate
representing the rate of change in blood pressure because of the
ventricular ejection of blood, whereas HR represents the rate
of heart contraction as indexed by heart electrical impulses. As
such, the goal of wearable HR accuracy validation studies is to
assess that device measurements, such as those between
wearables and a reference method (ie, electrocardiogram; ECG),
are not outside of clinically important limits of agreement (LoA),
so that devices can supplement, replace, or even be used
interchangeably [2].

Recently, there have been a variety of studies that have
examined the accuracy of wearable PPG sensors as compared
with ECG [3-9], polar chest straps [10,11], or pulse oximeters
[12] across various controlled laboratory conditions, including
sitting, treadmill protocols for walking and running, cycling,
weight training, and sleeping. The current gold standard
reference method for assessing HR is the ECG, which highlights
the limitations of many studies that have utilized chest straps
[10,11] or pulse oximeters [12], which themselves contain a
degree of error when compared with ECG. Therefore, many
studies are comparing wearable HR accuracy with suboptimal
comparison methods, which likely undermine findings. Below,
we primarily reviewed the existing wearable HR literature that
has used an ECG as the comparison method.

Previous research comparing wearables with the gold standard
ECG, which uses electrodes to measure cardiac muscular
contractions from electrical activity of the heart, has shown that
that wearables underestimate absolute HR as compared with
reference methods [3-4,6,8-11,13]. Prior research has also shown
that the Apple Watch has greater accuracy than Fitbit devices
[7-9]. Specifically, prior research has found that the Apple
Watch has lower overall error [3,7,10], lowest mean difference
[8], and higher agreement with ECG than Fitbit devices [3,9],
but that wearables’ accuracy depends on activity [5]. Research
has shown that at rest, wearables can perform similarly to an
ECG but not with moderate exercise [14]. There has been a

substantial amount of research that has shown that wearable
devices are more accurate during rest and low intensity exercise
as compared with exercises at higher intensity [3,5,9,15-17],
which may be because of the position of the device during rest
[18] and less movement of the wearable device around the wrist
at rest, although this is not found in all studies [7,10-11,19].
Specifically, 1 study found that there was not a significant
difference in HR accuracy across baseline or vigorous activity
[10], whereas a second study found that HR accuracy was
highest during running––a very intense activity [19], and a third
found that walking, running, and cycling were more accurate
for some devices than sitting [7]. Therefore, it is possible that
activity intensity may be less important to device accuracy than
the degree of erratic wrist movements performed during physical
activity, which tend to co-occur with more vigorous physical
activity.

Four Challenges Limiting Progress for Wearable Heart
Rate Accuracy
Currently, prior research has greatly improved our understanding
of wearable HR accuracy, but there remain 4 challenges that
limit progress in this area. First, as mentioned above, many
studies lack an appropriate comparison method by opting to
utilize chest straps [10,11] or pulse oximeters [12], rather than
an ECG, which themselves contain a degree of error when
compared with ECG. Therefore, many studies are comparing
wearable HR accuracy with suboptimal comparison methods,
which likely undermine findings. Second, wearable
manufacturers use proprietary algorithms to translate PPG
signals to HR measurements. These algorithms are likely altered
with firmware updates, yet most studies fail to report firmware
information. This may lead to poor reproducibility as 2 studies
investigating the same device with different firmware versions
might actually come to different conclusions even if all other
variables are held constant. Third, almost all prior studies have
utilized laboratory paradigms, rather than naturalistic settings.
Recent research has called for the test of devices in the setting
appropriate for intended use [20]. Although controlled
laboratory settings are important for maintaining experimental
control, this design involves a trade-off that often creates an
artificial environment during which individual behaviors may
deviate from that in naturalistic settings of lived daily
experience. For example, laboratory settings tend to test specific
movements within predetermined time frames, whereas
consumers use wearables in naturalistic settings that often
involve more variable and sporadic movements, which may not
be accurately captured during laboratory paradigms. As such,
the accuracy of wearables in controlled settings may deviate
from accuracy during the daily living conditions of consumers.
The 2 studies that were identified to have been conducted in
more naturalistic settings have either occurred within a medical
setting [6], which inherently does not capture the vast majority
of consumer device use conditions, or only collected a maximum
of 6 hours of free-living nonsleep conditions without the use of
a gold standard ECG as a reference method [21]. Finally, the
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speed of wearable technological advancements often outpaces
the typical research cycle [22], making it very difficult for
studies to validate each new iteration of wearables. This calls
for novel rapid response designs to quickly assess initial
wearable HR accuracy in order for the research cycle to keep
pace with technological advancements.

This study addresses each of the current limitations in wearable
studies as it (1) uses a gold standard comparison method for
movement within daily life––ambulatory ECG, (2) reports
firmware versions, (3) increases the ecological validity of
wearable HR accuracy by taking place during actual consumer
device use conditions across a 24-hours period, and (4) takes
place within an individual, rather than a traditional group of
research participants, which creates an agile and novel rapid
response design to quickly assess initial wearable HR accuracy
in order for the research cycle to keep pace with technological
advancements. This design also controls most between-subject
variability and potential confound variables, allowing wearable
devices to be the only study variable that varies; thus, providing
a powerful (albeit potentially less generalizable) test of device
accuracy.

Study
This study was preregistered (hypotheses and methods) with
open code and data on Open Science Framework (OSF) [23].
The objective of this study was to determine the HR accuracy
of 2 of the most popular wearables, the Apple Watch 3 and
Fitbit Charge 2, as compared with the gold standard method for
continuous recording in real-world settings––an ambulatory
ECG. As mentioned above, a single-subject design was used
for this initial study on the ecological validity of wearables to
provide a proof-of-concept research design that will allow
research cycles to keep pace with the technological
advancements of wearables, while also eliminating
between-subject variability. Although a single-subject design
is a limitation, a recent study has highlighted the possibility that
group-level findings do not apply to the individual [24] and that
N of 1 trials are a promising approach to empirical decision
making [25]. Furthermore, single-subject designs are being
increasingly used [26-28], even in leading journals [29-31]. One
strength of this design is that all potential confound variables
can be held constant, except for the wearable devices; thus,
providing a powerful test of accuracy of the devices per se.

This study hypothesized that (1) the Apple Watch 3 would be
more accurate at measuring HR than the Fitbit Charge 2 when
compared with an ambulatory ECG across all conditions, (2)
both wearables would underestimate HR across all conditions,
and (3) device measurement of HR would become increasingly
inaccurate as activity intensity increased.

Methods

Recruitment
We investigated the accuracy of wearable HR from 2 popular
devices in a single healthy human (first author) who completed
a 24-hour protocol. The participant (29-years-old Caucasian
male; body mass index=21.1; Fitzpatrick skin tone measure=2;
right wrist (cm)=7.0; left wrist (cm)=6.5; right hand dominant)

conceptualized and initiated this study, with the purpose of
having the data published. Therefore, approval from the
University of Oregon ethics committee was unnecessary and
not obtained. The first author gave consent for collecting and
using the data for study purposes.

Study Protocol
Participant’s psychophysiology recordings began at 18:28 on
day 1 and briefly stopped at 17:10 on day 2 before the run
condition. Recording resumed at 17:37 for the run condition
and stopped at 18:50 on day 2. Age, gender, height, and weight
were used to set up both wearable devices.

Conditions
A total of 5 daily conditions were recorded throughout the
24-hour study using a digital notebook (Google Sheets) to record
activity times, resulting in 84 start and stop marker times. These
included sitting, which included any seated activity; walking;
running (this occurred on a treadmill to allow for a stable
ambulatory ECG signal); activities of daily living (ADL), which
included activities such as cleaning, brushing teeth, and cooking;
and sleeping. Although prior research has excluded HR data
during activity transitions, these were not excluded in this study
to preserve ecological validity of device usage in real-world
conditions. Therefore, although transition periods generally
yield higher device error, we wanted to capture this variability
as part of device accuracy in this study.

Gold Standard Reference Method
ECG data were acquired using a standard 3-lead ambulatory
ECG (Vrije Universiteit Ambulatory Monitoring System)
[32,33]. ECG sampling frequencies were 1000 Hz, and HR was
exported in 1-min epochs, from 00 seconds to 59 seconds.

Wearable Devices

Apple Watch 3
The Apple Watch Series 3 (2017 version, Apple Inc, California,
USA, v. 4.2.3) 42 mm was worn on the right wrist. According
to Apple, the Apple Watch 3 samples HR approximately every
10 min or continuously during workouts using PPG with either
a green light emitting diode or infrared light and photodiode
sensors. In other words, during this study, the Apple Watch 3
collected HR data as would occur in real-world conditions,
continuously for walking and running and approximately every
10 min during all other activities. The Apple Watch 3 was
synced with the Apple Health app on the iPhone and then
exported in XML format for analysis. The Apple Health
Analysis GitHub repository [34] was used to convert the XML
file to a data frame in R Studio to access per min data for
analysis. When more than 1 heart rate measurement was
collected each min during continuous HR recording for walking
and running activities, the average of these measurements was
used in line with prior wearable research [7].

Fitbit Charge 2
The Fitbit Charge 2 (2017 version, Fitbit Inc, California, USA,
v. 22.55.2) was worn on the left wrist. According to Fitbit, the
PurePulse PPG technology utilizes green LED light to
continuously index HR. The Fitbit GitHub repository [35] was
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used to interact with the Fitbit app programming interface to
access per minute data for analysis.

Error
To assess error, we used mean error (ME), mean absolute error
(MAE), and mean absolute percent error (MAPE). In line with
prior wearable research [3,11,23,36,37] as well as
recommendations from the Association for the Advancement
of Medical Instrumentation, the Consumer Technology
Association [38] and the American National Standards Institute
[39], we defined an acceptable error rate for a physical
monitoring device to be ±10%, as this is considered an accurate
threshold for medical ECG monitors. We recognize that this is
more lenient than some prior health sciences research on
wearable HR accuracy [7] and pedometer step counting accuracy
[40,41] that have defined an acceptable error rate to be ±5%.
In line with recent recommendations [37,38], we used MAPE
to determine acceptable error rate. Outliers were not removed
as this would interfere with determining device accuracy during
consumer use conditions.

Statistical Analysis
All analyses were performed in R (version 3.4.3) using R Studio
(version 1.1.383). Scripts can be found on GitHub [34,35] and
OSF [23]. Data can be found on OSF. Analyses were performed
using the beats per minute (bpm) separately for each wearable
device as compared with the gold standard ECG data for HR
calculated as bpm.

Mean Error
The ME was calculated as the difference between the device
measurement and the gold standard measurement.

Mean Absolute Error
The MAE was calculated as the average absolute distance
between the device measurement and the gold standard
measurement.

Mean Absolute Percent Error
The MAPE relative to the ECG was calculated for each wearable
device by averaging the individual absolute percent errors.

Bland-Altman Analysis
Bland-Altman analysis and 95% LoA were calculated using the
blandr [42] and BlandAltmanLeh R packages [43]. This is the
recommended method to determine agreement between medical
instruments [2,44], rather than other methods of agreement,
because it is unlikely that devices will have an exact agreement,
and therefore, the importance lies in how close pairs of
observations are, as small differences between devices are
unlikely to impact patient decisions [45].

Concordance Class Correlation
Finally, although not one of the analyses that was preregistered,
we also ran concordance class correlation (CCC) analyses
between the ECG and each wearable device separately across
all conditions using the DescTools R Package [46] to assist in
Bland-Altman plot interpretation. In line with prior wearable
research [8], the strength of agreement was interpreted based
on the following, weak (CCC<.5), moderate (CCC=.5-.7), and
strong (CCC>.7).

Results

Descriptives
The ECG collected 1424 HR observations, the Apple Watch 3
collected 394 HR observations (only collects measurements
every 10 min, except during walking and running), and the Fitbit
Charge 2 collected 1425 observations, resulting in a total of
3243 HR observations across devices (see Figure 1). See Table
1 for number of observations and HR descriptive statistics for
each condition. See Figure 2 for descriptives of HR trajectories
across the 24 hours with activity type (note that the bottom
figure has less resolution as the Apple Watch 3 collected HR
every 10 min, except for walking and running conditions).
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Figure 1. Rainbow plot of heart rate observations for electrocardiogram (ECG), Fitbit Charge 2, and Apple Watch 3. bpm: beats per minute.
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Table 1. Heart rate descriptive statistics by condition.

Heart rate rangeHeart rate, mean (SD)Observations, nActivity and device

24 hours

51-16172.65 (16.92)1424ECGa

49-16578.78 (25.74)394Apple Watch 3

50-15369.10 (15.10)1446Fitbit Charge 2

Sitting

55-9770.41 (7.24)535ECG

54-9867.91 (7.69)144Apple Watch 3

55-9165.72 (5.51)535Fitbit Charge 2

Walking

61-127102.32 (16.87)100ECG

55-139106.06 (15.03)79Apple Watch 3

54-13295.47 (17.88)100Fitbit Charge 2

Running

104-161147.82 (13.13)22ECG

120-165149.59 (10.24)22Apple Watch 3

95-153133.09 (12.72)22Fitbit Charge 2

Activities of daily living

58-11584.16 (11.28)216ECG

52-12574.94 (14.53)34Apple Watch 3

56-12180.38 (13.08)214Fitbit Charge 2

Sleeping

51-7861.93 (4.94)551ECG

49-7360.60 (4.06)110Apple Watch 3

50-7460.82 (4.40)551Fitbit Charge 2

aECG: electrocardiogram.
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Figure 2. Fitbit Charge 2 (top) and Apple Watch 3 (bottom) compared to the electrocardiogram (ECG) across 24-hours. bpm: beats per minute.

Percent Error
Overall, across the 24-hour recording, the Apple Watch 3 had
a MAPE of 5.86%, whereas the Fitbit Charge 2 had MAPE of
5.96%. During sitting conditions, the Apple Watch 3 had a
MAPE of 7.21%, whereas the Fitbit Charge 2 had a MAPE of
6.93%. During walking conditions, the Apple Watch 3 had a
MAPE of 4.64%, whereas the Fitbit Charge 2 had a MAPE of

9.21%. During the running condition, the Apple Watch 3 had
a MAPE of 3.01%, whereas the Fitbit Charge 2 had a MAPE
of 9.88%. During ADL, the Apple Watch 3 had a MAPE of
13.70%, whereas the Fitbit Charge 2 had a MAPE of 8.29%.
Finally,, during the sleep condition, the Apple Watch 3 had a
MAPE of 3.12%, whereas the Fitbit Charge 2 had a MAPE of
3.36% (see Table 2 for percent error statistics and Figure 3 for
MAPE by device across activities).

JMIR Mhealth Uhealth 2019 | vol. 7 | iss. 3 | e10828 | p. 7https://mhealth.jmir.org/2019/3/e10828/
(page number not for citation purposes)

Nelson & AllenJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Device error statistics and Bland-Altman analyses.

Bland-Altman analysisDevice errorActivity and device

Upper LoALower LoAbMean error (SD)Mean absolute percent errora (%)Mean absolute error

24 hours

12.71−16.31−1.80 (7.40)5.864.72Apple Watch 3

8.62−15.55−3.47 (6.17)5.964.71Fitbit Charge 2

Sitting

12.01−16.94−2.47 (7.39)7.215.24Apple Watch 3

4.91−14.29−4.69 (4.90)6.935.93Fitbit Charge 2

Walking

14.41−14.180.11 (7.29)4.644.77Apple Watch 3

14.81−28.51−6.85 (11.05)9.219.55Fitbit Charge 2

Running

13.33−9.781.77 (5.90)3.014.05Apple Watch 3

0.31−29.77−14.73 (7.67)9.8814.73Fitbit Charge 2

Activities of daily living

16.78−33.78−8.50 (12.90)13.7011.74Apple Watch 3

12.41−19.88−3.73 (8.24)8.297.05Fitbit Charge 2

Sleeping

4.50−6.39−0.95 (2.78)3.121.96Apple Watch 3

5.17−7.28−1.11 (3.20)3.362.15Fitbit Charge 2

aValidity was established as devices having a MAPE value <10%.
aLoA: limits of agreement.

Figure 3. Mean absolute percent error (MAPE) by device across types of activities. Note: Horizontal line represents threshold for validity.
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Bland-Altman Analysis and 95 Percent Limits of
Agreement
Overall, across the 24-hour recording (see Figure 4), the Apple
Watch 3 had an ME of −1.80 bpm (lower LoA-upper LoA:
−16.31 to 12.71 bpm) and an MAE of 4.72, whereas the Fitbit
Charge 2 had an ME of −3.47 bpm (lower LoA-upper LoA:
−15.54 to 8.62 bpm) and an MAE of 4.71. Visual inspection of
the Bland-Altman plots revealed a tendency for the Apple Watch
3 to both over- and underestimate HR values when observations
were between 70 bpm to120 bpm, whereas the Fitbit Charge 2
had a tendency to underestimate HR values, particularly once
HR values exceeded approximately 80 bpm (see Table 3 for
Bland-Altman statistics).

During sitting conditions, the Apple Watch 3 had an ME of
−2.47 bpm (lower LoA-upper LoA: −16.94 to 12.01 bpm) and
an MAE of 5.24, whereas the Fitbit Charge 2 had an ME of
−4.69 bpm (lower LoA-upper LoA; −14.29 to 4.91 bpm) and
an MAE of 5.93. During walking conditions, the Apple Watch

3 had an ME of 0.11 bpm (lower LoA-upper LoA: −14.18 to
14.41 bpm) and an MAE of 4.77, whereas the Fitbit Charge 2
had an ME of −6.85 bpm (lower LoA-upper LoA: −28.51 to
14.81 bpm) and an MAE of 9.55. During the running condition,
the Apple Watch 3 had an ME of 1.77 bpm (lower LoA-upper
LoA: 9.78 to 13.33 bpm) and an MAE of 4.05, whereas the
Fitbit Charge 2 had an ME of −14.73 bpm (lower LoA-upper
LoA: −29.77 to 0.31 bpm) and an MAE of 14.73. During ADL,
the Apple Watch 3 had an ME of −8.50 bpm (lower LoA-upper
LoA: −33.78 to 16.78 bpm) and an MAE of 11.74, whereas the
Fitbit Charge 2 had an ME of −3.73 bpm (lower LoA-upper
LoA: −19.88 to 12.41 bpm) and an MAE of 7.05. Finally, during
the sleep condition, the Apple Watch 3 had an ME of −0.95
bpm (lower LoA-upper LoA: −6.39 to 4.50 bpm) and an MAE
of 1.96, whereas the Fitbit Charge 2 had an ME of −1.11 bpm
(lower LoA-upper LoA: −7.28 to 5.17 bpm) and an MAE of
2.15 (see Table 3 for device error and Bland-Altman statistics
and Figures 5-9 for Bland-Altman plots by activity type).

Figure 4. Bland-Altman plot and density plots across 24-hours of the Apple Watch 3 (left) with 394 heart rate observations and Fitbit Charge 2 (right)
with 1425 heart rate observations.
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Table 3. Device error statistics and Bland-Altman analyses.

Bland-Altman analysisDevice errorActivity and device

Upper LoALower LoAaMean error (SD)Mean absolute error

24 hours

12.71−16.31−1.80 (7.40)4.72Apple Watch 3

8.62−15.55−3.47 (6.17)4.71Fitbit Charge 2

Sitting

12.01−16.94−2.47 (7.39)5.24Apple Watch 3

4.91−14.29−4.69 (4.90)5.93Fitbit Charge 2

Walking

14.41−14.180.11 (7.29)4.77Apple Watch 3

14.81−28.51−6.85 (11.05)9.55Fitbit Charge 2

Running

13.33−9.781.77 (5.90)4.05Apple Watch 3

0.31−29.77−14.73 (7.67)14.73Fitbit Charge 2

Activities of daily living

16.78−33.78−8.50 (12.90)11.74Apple Watch 3

12.41−19.88−3.73 (8.24)7.05Fitbit Charge 2

Sleeping

4.50−6.39−0.95 (2.78)1.96Apple Watch 3

5.17−7.28−1.11 (3.20)2.15Fitbit Charge 2

aLoA: limit of agreement.

Figure 5. Bland-Altman plots by daily activity. Left: Apple Watch 3 during sitting; right: Fitbit Charge 2 during sitting.

JMIR Mhealth Uhealth 2019 | vol. 7 | iss. 3 | e10828 | p. 10https://mhealth.jmir.org/2019/3/e10828/
(page number not for citation purposes)

Nelson & AllenJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 6. Bland-Altman plots by daily activity. Left: Apple Watch 3 during walking; right: Fitbit Charge 2 during walking.

Figure 7. Bland-Altman plots by daily activity. Left: Apple Watch 3 during running; right: Fitbit Charge 2 during running.
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Figure 8. Bland-Altman plots by daily activity. Left: Apple Watch 3 during activities of daily living; right: Fitbit Charge 2 during activities of daily
living.

Figure 9. Bland-Altman plots by daily activity. Left: Apple Watch 3 during sleep; right: Fitbit Charge 2 during sleep.

Concordance Class Correlation
Overall, across the 24-hour recording, the Apple Watch 3
(CCC=.955, 95% CI 0.945-0.963) and the Fitbit Charge 2
(CCC=.906, 95% CI 0.896-0.914) had strong agreement with
the reference method. During sitting conditions, the Apple
Watch 3 (CCC=.453, 95% CI 0.321-0.567) had weak agreement
and the Fitbit Charge 2 (CCC=.561, 95% CI 0.515-0.603) had
moderate agreement with the reference method. During all
walking activities, the Apple Watch 3 (CCC=.871, 95% CI
0.807-0.915) and the Fitbit Charge 2 (CCC=.740, 95% CI
0.645-0.812) had strong agreement with the reference method.
During the running condition, the Apple Watch 3 (CCC=.864,
95% CI 0.731-0.934) had strong agreement with the reference
method, whereas the Fitbit Charge 2 (CCC=.490, 95% CI
0.268-0.663) had weak agreement with the reference method.
During the ADL condition, the Apple Watch 3 (CCC=.460,
95% CI 0.204-0.656) had weak agreement with the reference
method, whereas the Fitbit Charge 2 (CCC=.739, 95% CI
0.676-0.791) had strong agreement with the reference method.
Finally, during the sleep condition, the Apple Watch 3
(CCC=.791, 95% CI 0.715-0.849) and the Fitbit Charge 2
(CCC=.745, 95% CI 0.707-0.779) had strong agreement with
the reference method.

Discussion

Principal Findings
This study provided the first continuous and ecologically valid
assessment of the accuracy of the Apple Watch 3 and the Fitbit
Charge 2 as they were devised to be used by consumers (ie,
during ecologically valid daily activities) during a 24-hour
paradigm of consumer device use conditions.

In line with previous controlled laboratory research
[4,5,7-9,11,12], our findings indicated that both wearable
devices provided acceptable overall aggregated accuracy (<10%
MAPE) across the 24-hour recording period as well as during
each type of activity, except for the Apple Watch 3 during ADL.
In addition, in line with previous research, both the Apple Watch
3 and the Fitbit Charge 2 slightly underestimated HR across the
24-hour study as compared with ECG and other reference
methods [3,4,6,8-11], although this underreporting of absolute
HR is unlikely to be problematic in most contexts as this was
less than 5 bpm. Although these wearables slightly
underestimated HR when values were aggregated by activity,
there were a number of individual observations that were
inaccurate by significantly large margins, which would be
problematic in some contexts (eg, medical settings). This has
potential implications for liability of device usage in medical
settings [47], indicating that although overall summary statistics
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may be very accurate for research purposes, any single
observation in real time may have a large degree of error, which
could be significant for moment-to-moment observations in
medical settings. In addition, we found it surprising that the
Apple Watch 3 had such a high MAPE (13.70%) during ADL
as compared with the Fitbit Charge 2 MAPE (8.29%). This
difference was likely because of the fact that the Apple Watch
3 was worn on the dominant hand, which may have made more
erratic movements than the Fitbit Charge 2 on the nondominant
hand during ADL. In other words, this may have potentially
moved the position of the wearable more frequently on the
dominant hand, making it more difficult for the PPG sensor to
assess and accurately measure HR, as has been found in prior
studies [18].

Overall, the Apple Watch 3 had acceptable error across the
entire 24-hour period as well as all activities except when the
error rate rose above the ±10% threshold for the Apple Watch
3 during ADL (13.70%), while the Fitbit Charge 2 had
acceptable error across the entire 24-hour period as well as all
activities, although its error got close to the ±10% threshold
during walking (9.21%) and running (9.88%). In addition, both
devices slightly underestimated heart rate. Finally, as movement
became more erratic during certain conditions and as HR
increased, the devices became less accurate.

Strengths and Limitations
This study had a number of strengths that addressed 4 current
limitations in wearable studies: this study (1) used a gold
standard comparison method for movement within daily
life––ambulatory ECG, (2) reported firmware numbers, (3)
increased the ecological validity of wearable HR accuracy by
taking place during actual consumer device use conditions across
a 24-hour period, and (4) took place within an individual, rather
than a traditional group of research participants, which creates
a novel rapid response design to quickly assess initial wearable
HR accuracy in order for the research cycle to keep pace with
technological advancements while also controlling for
between-subject variability and most potential confounding
variables, which allowed for the wearable devices to be the only
study variable that varied, thus, providing a powerful test of
device accuracy. Furthermore, prior research has shown that
there is a 24-hour circadian rhythm to HR [48] and that this can
be particularly important as adverse cardiovascular events such
as heart attacks, stroke, and cardiac deaths tend to occur in the
late mornings [49]. The approach of this study also captured
the 24-hour circadian rhythm HR from 3 different devices during
real-life conditions, which indicates that these devices can detect
changes in HR across the day.

In addition to these strengths, there were also a number of
limitations. First, the single-subject design limited various
participant demographic factors, such as body mass index, skin
tone, and wrist circumference, which have been shown to
correlate with HR error rate [7,16]. Future studies should attempt
to replicate these results across multiple individuals with diverse
body mass index, wrist circumference, skin tone, fitness level,
and stress level. Another limitation in this study was that the
Fitbit Charge 2 and Apple Watch 3 collected HR measurements
at different frequencies. Specifically, the Fitbit Charge 2

recorded an HR measurement each minute, whereas the Apple
Watch 3 collected continuous HR measurements during walking
and running tasks (the average of these measurements was used
for each minute in line with prior research [7]) and every 10
min for all other activities. This discrepancy in device sampling
rates combined with proprietary underlying algorithms for the
way per minute HR is calculated for each wearable device might
help account for the lower reported accuracy of the Apple Watch
3 during the ADL condition. In addition, the single-subject
design combined with the Apple Watch 3 sampling rate of
approximately every 10 min led to a small number of
observations for some conditions. Although continuous
recording was not activated on the Apple Watch 3 to
approximate real-world usage conditions, future studies should
aim to collect larger numbers of subjects to increase the
observations for each condition and potentially activate
continuous recording on this device. Similarly, although this
study had the strength of providing the first 24-hour continuous
and ecologically valid assessment of wearable accuracy in
real-world conditions, this was also a limitation as this design
inherently could not take place within more controlled laboratory
settings that used a stationary ECG, rather than an ambulatory
ECG that may introduce some additional error. In fact, the
running condition had to take place on a treadmill to keep the
ECG device stable enough to prevent excessive artifacts.
Another limitation of this study is that although that overall
error rates of both devices were low, there were some individual
observations that were inaccurate by significantly large margins.
This indicates that although overall summary statistics for
conditions may be very accurate, any single observation in real
time may have a large degree of error. Researchers should keep
this in mind when using wearable devices in research settings,
and this finding emphasizes the importance of data cleaning.
Implementing these devices in research settings would likely
benefit from automated outlier detection and deletion techniques
as would the underlying scoring algorithms. Finally, this study
did not counterbalance wrist placement of the wearables to rule
out potential influences of wrist circumference, musculature,
or movement on the accuracy of HR readings. The subject was
right-handed, and therefore, the lower accuracy of the Apple
Watch 3 as compared with the Fitbit Charge 2 during the ADL
condition may have been because of more erratic wrist motions
that accompany many activities in this condition as prior
research has indicated that the lack of smooth wrist movements
introduces larger HR measurement error [10]. Future studies
should provide both between-subjects analyses and
within-subjects analyses with devices on both wrists to assess
the accuracy of wearables, as hand dominance may influence
accuracy.

Conclusions
This study provided the first continuous and ecologically valid
assessment of the accuracy of the Apple Watch 3 and the Fitbit
Charge 2 HR measurements as they were devised to be used by
consumers out in the real world during a 24-hour paradigm of
actual consumer device use conditions. Overall, both the Apple
Watch 3 and Fitbit Charge 2 had acceptable HR accuracy when
aggregated overall across the 24-hour period and during each
condition, except for the Apple Watch 3 during the ADL
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condition. In addition, both the Apple Watch 3 and Fitbit Charge
2 slightly underestimated HR. Furthermore, both erratic wrist
movements and higher HR were associated with lower device
accuracy. It is important to note that although overall HR
accuracy statistics for most conditions were acceptable, there
were a number of individual observations that varied widely
from the gold standard ECG, which indicates that any single
measurement viewed in real time cannot be interpreted as an
accurate measurement that has implications for medical liability

of device usage [47]. Overall, wearable devices likely will not
be replacing the gold standard ECG in a medical setting anytime
soon, but both the Apple Watch 3 and the Fitbit Charge 2 can
be used to supplement these gold standard methods in research
and clinical applications. They may be particularly useful in
big data studies as these devices had acceptable error rate in
almost all activities while being relatively cheap, mobile,
unobtrusive, and scalable as compared with gold standard
medical equipment.
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