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Abstract

Background: Genomic selection based on genotyping-by-sequencing (GBS) data could accelerate alfalfa yield

gains, if it displayed moderate ability to predict parent breeding values. Its interest would be enhanced by

predicting ability also for germplasm/reference populations other than those for which it was defined. Predicting

accuracy may be influenced by statistical models, SNP calling procedures and missing data imputation strategies.

Results: Landrace and variety material from two genetically-contrasting reference populations, i.e., 124 elite genotypes

adapted to the Po Valley (sub-continental climate; PV population) and 154 genotypes adapted to Mediterranean-climate

environments (Me population), were genotyped by GBS and phenotyped in separate environments for dry matter yield

of their dense-planted half-sib progenies. Both populations showed no sub-population genetic structure. Predictive

accuracy was higher by joint rather than separate SNP calling for the two data sets, and using random forest imputation

of missing data. Highest accuracy was obtained using Support Vector Regression (SVR) for PV, and Ridge Regression

BLUP and SVR for Me germplasm. Bayesian methods (Bayes A, Bayes B and Bayesian Lasso) tended to be less accurate.

Random Forest Regression was the least accurate model. Accuracy attained about 0.35 for Me in the range of 0.30-0.50

missing data, and 0.32 for PV at 0.50 missing data, using at least 10,000 SNP markers. Cross-population predictions

based on a smaller subset of common SNPs implied a relative loss of accuracy of about 25 % for Me and 30 % for PV.

Genome-wide association analyses based on large subsets of M. truncatula-aligned markers revealed many SNPs

with modest association with yield, and some genome areas hosting putative QTLs. A comparison of genomic vs.

conventional selection for parent breeding value assuming 1-year vs. 5-year selection cycles, respectively, indicated over

three-fold greater predicted yield gain per unit time for genomic selection.

Conclusions: Genomic selection for alfalfa yield is promising, based on its moderate prediction accuracy, moderate

value of cross-population predictions, and lack of sub-population structure. There is limited scope for searching

individual QTLs with overwhelming effect on yield. Some of our results can contribute to better design of genomic

selection experiments for alfalfa and other crops with similar mating systems.
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Background
Crop yield, which generally is the main objective of

breeding programs, has been improved essentially by

phenotypic selection, owing to inability of marker devel-

opment to ensure sufficient genome coverage for this

complex trait. This holds true also for alfalfa (Medicago

sativa L. subsp. sativa), which is the most grown peren-

nial forage legume globally [1] with potential interest

also as a dual-purpose crop for bioenergy and protein

feed [2]. Yield breeding progress for this crop has been

particularly slow compared with other major field crops,

owing to low breeding investment, long selection cycles,

high material evaluation cost, impossibility to capitalize

on harvest index, low narrow-sense heritability (hN
2)

partly due to a large component of non-additive genetic

variance, outbreeding mating system associated with

* Correspondence: paolo.annicchiarico@entecra.it
1Council for Agricultural Research and Economics (CREA), Research Centre for

Fodder Crops and Dairy Productions, 29 viale Piacenza, 26900 Lodi, Italy

Full list of author information is available at the end of the article

© 2015 Annicchiarico et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Annicchiarico et al. BMC Genomics  (2015) 16:1020 

DOI 10.1186/s12864-015-2212-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-015-2212-y&domain=pdf
http://orcid.org/0000-0001-8027-1035
mailto:paolo.annicchiarico@entecra.it
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


severe inbreeding depression, and high genotype-

environment interaction [3, 4]. Published estimates of

hN
2 for alfalfa biomass yield ranged from 0.15 to 0.30,

including the value of 0.21 observed for one set of Italian

alfalfa genotypes that was also used for the current study

[1]. Such low hN
2 values, and the long and expensive

selection cycles, emphasize the practical importance of

exploring selection procedures for higher biomass yield

that use marker information as a partial substitute for

field-based selection [5].

Early research work aimed to identify molecular

markers strongly linked to quantitative trait loci (QTL)

for alfalfa forage yield could rely on about 150–200

RFLP, AFLP, SSR or RAPD markers [6–9]. Of necessity

with so few markers, QTL discovery focused on a

limited genetic base represented by F1 progenies of a bi-

parental population, which, along with the expected

absence of individual markers with high yield effect,

limited the practicality of a marker-assisted selection

program. The availability of large numbers of SNP which

could be turned into markers [10, 11] has enhanced the

opportunities for marker-assisted selection, allowing for

exploring wider genetic bases through association map-

ping [12, 13]. The development of an alfalfa Illumina

Infinium SNP array containing about 10,000 SNP

markers has provided a high-throughput platform [14].

Such high marker number may also allow for sufficient

genome saturation for genomic selection, by which phe-

notyping and genotyping data of a genotype sample

representing a target genetic base (reference population)

are combined into a model that estimates breeding

values for future plant selection [15, 16]. Simulation and

empirical studies proved that genomic selection is super-

ior to conventional marker-assisted selection based on

limited marker numbers in prediction of breeding values

for complex polygenic traits, such as crop yield [17, 18].

The recent development of methods to genotype

directly from sequence data, such as genotyping-by-

sequencing (GBS) [19], can decrease the cost of marker-

based selection for production traits compared to SNP

array platforms. A GBS-based high-density linkage map

for tetraploid alfalfa including over 3500 SNP markers

has been constructed [20]. However, GBS commonly

generates large amounts of missing data that must be

imputed before fitting a genomic prediction model.

Imputation method [21] and the genomic selection

model [16] may influence prediction accuracy, i.e., the

correlation between predicted and true breeding values.

Genomic prediction accuracy and narrow-sense herit-

ability of the yield trait are crucial genetic parameters

for the comparison of selection strategies in terms of

expected yield gain, for the popular scheme of parent

selection based on half-sib progeny responses [4]. Gen-

omic selection models with accuracies as high as 0.66

for cross-validation within a given location and cycle

and 0.40 for predicting genotype yields in a following

cycle were obtained for parent material phenotyped and

selected as individual cloned plant [22]. However, the

ideal phenotypic data on which to base a genomic selec-

tion model for perennial forage crops would be sward

plot yield of half-sib progenies rather than cloned space-

planted parents, to closely represent actual production

environments and to focus on additive genetic variance,

the relevant variance for synthetic variety breeding [4].

Thus, successful application of genomic prediction

models to a half-sib breeding program would provide

better evidence that GS could accelerate yield gain in al-

falfa. Also, understanding how well genomic selection

models can predict yield in germplasm/reference popu-

lations other than those for which they were defined

would help clarify the cost of incorporating GS models

into a breeding program [4].

This study provides an unprecedented, thorough as-

sessment of the potential value of genomic selection for

assessing alfalfa parent breeding values for biomass yield

based on GBS data. Results are provided for two refer-

ence populations that represent quite distinct genetic

bases, namely, one assembled from elite landrace and

variety germplasm adapted to the sub-continental cli-

mate conditions of Northern Italy [23], and the other

constituted by repeated intercrossing of genotypes from

three populations that were top-performing across

Mediterranean-climate environments of the Western

Mediterranean basin [24]. These populations differed

also for conditions of biomass yield phenotyping. Gen-

omic selection models for parent selection were con-

structed from phenotypic data of their dense-planted

half-sib progenies, assessing their selection accuracy for

different SNP calling procedures, strategies and algo-

rithms for missing data imputation, and prediction

models. In addition, we performed a genome-wide asso-

ciation analysis for a subset of M. truncatula-aligned

SNP markers, and verified the cross-population accuracy

of the genomic selection models.

Results

Phenotypic variation

Half-sib progenies differed for total dry matter (DM) yield

in both populations (P < 0.001). Best linear unbiased pre-

dictors (BLUP) values ranged from 19.8 to 28.1 t/ha for

the 124 progenies of parent genotypes from the reference

population PV originated in the Po Valley, and from 6.4 to

8.8 t/ha for the 154 progenies of parent material from the

population Me adapted to Mediterranean-climate envi-

ronments. The difference in yield levels between popula-

tions reflected the different duration of their respective

phenotyping experiments (3 years for PV vs. 1 year for

Me). In both populations, the distribution of parent
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breeding values (as inferred from yield values of their half-

sib progenies) visually approached the expected normal

distribution [see Additional file 1: Figure S1].

GBS data

The total number of polymorphic SNPs without regard

to the amount of missing data after applying read-depth

filtering amounted to 68,972 for PV and 77,610 for Me.

Obviously, increasingly stricter thresholds for the

number of genotypes with missing data resulted in pro-

gressively fewer SNPs available for genomic selection

(Fig. 1). SNP number, however, remained relatively high

even at a fairly stringent missing data thresholds, e.g.,

over 11,000 for the population Me and 7000 for PV at

the 0.20 threshold. In general, marker counts for popula-

tion PV were lower than those for Me, probably re-

flecting the more selective adapter used for GBS library

construction of this population. Marker counts for each

population were very similar between separate and joint

SNP calling, with just a slight advantage in marker

number for separate SNP calling in the Me population

(Fig. 1).

Population structure

In both populations, the substantially flat response of

the log likelihood values of posterior probability for

increasing numbers of possible sub-populations indi-

cated the absence of population structure (Fig. 2). This

result was confirmed by results of Evanno’s criterion, as

well as by the lack of genotype groups with consistently

greater genetic similarity in the kinship matrix analysis

[see Additional file 2: Figure S2]. These findings supported

the omission of a parameter for population structure in

genomic selection models of both populations.

SNP calling procedures and imputation method in

genomic selection models

SNP calling for PV and Me was envisaged either separ-

ately (data sets PV_Sep and Me_Sep), or jointly followed

by application of missing data thresholds to separate

populations (data sets PV_Joint and Me_Joint). SNP call-

ing procedures were assessed with reference to Support

Vector Regression with linear kernel (SVR-lin) and Ridge

Regression BLUP, since these models displayed higher

predictive accuracies than other genomic selection

models in following analyses. Prediction accuracy values

were obtained for the two data sets and a combination

of four imputation methods, namely, Mean imputation

(MNI), Singular value decomposition imputation (SVDI),

Random forest imputation (RFI) and Localized haplotype

clustering imputation (LHCI). The results highlighted

the merit of RFI for both data sets, both using SVR-lin

(Fig. 3) and Ridge Regression BLUP [see Additional

file 3: Figure S3]. This method performed slightly better

than, or comparably to, any other method, with the excep-

tion of the data set PV_Sep for the missing data thresholds

0.20 and 0.30 (Fig. 3). As expected, the differences in ac-

curacy between imputation algorithms increased with re-

laxed thresholds for missing genotype data (implying

greater amounts of estimated missing data) (Fig. 3).

Results in Fig. 3 also revealed the trend towards

greater accuracy of data sets of the two populations that

underwent joint SNP calling (PV_Joint, Me_Joint), com-

pared with data sets subjected to separate SNP calling

(PV_Sep, Me_Sep). Averaged across the six missing data

thresholds and RFI, the accuracy gain obtained by joint

Fig. 1 Number of SNP markers for different genotype missing data

thresholds and SNP calling strategies. Results for 124 genotypes of the

Po Valley population (PV) and 154 genotypes of the Mediterranean

population (Me) subjected to separate SNP calling (data sets PV_Sep

and Me_Sep), or joint SNP calling with subsequent application of

missing data thresholds to separate populations (PV_Joint and

Me_Joint) or joint populations (COMMON)

Fig. 2 STRUCTURE analysis of sub-populations. Log likelihood values of

posterior probability as a function of the number of sub-populations,

separately for the Po Valley (PV) and the Mediterranean

(Me) populations
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SNP calling was 10.1 and 6.4 % for PV and Me popula-

tions, respectively.

In general, the prediction accuracy of parent breeding

values was higher for Me germplasm than PV material.

With reference to the preferable configuration of joint

SNP calling and RFI using the SVR-lin model, the ac-

curacy response as a function of genotype missing data

thresholds was roughly flat for the Me population (with

values around 0.35 in the range of 0.30–0.50 missing

data), while showing a peak of 0.32 accuracy at 0.50

missing data for PV germplasm (Fig. 3). Such top-

performing genomic selection models included at least

10,000 SNP markers (Fig. 1). The list of detected SNPs

and their identifying flanking sequences are provided in

[Additional file 4] and [Additional file 5].

Comparison of genomic selection models

Support Vector Regression using Linear and Gaussian

Kernel, Ridge regression BLUP, Random Forest Regression

and three Bayesian models, namely, Bayes A, Bayes B and

Bayesian Lasso, were compared in terms of predictive ac-

curacy for the preferable configuration of joint SNP calling

and RFI. We found only limited differences between

methods on Me germplasm (Fig. 4), where only Random

Forest Regression stood out as the worst-performing

candidate. On PV germplasm, however, Support Vector

models outperformed all other models, with a constant

advantage of about 0.05–0.07 on the third best-

performing model. In general, the two Support Vector

kernels performed comparably and with no clear dis-

cernible trend in accuracy. However, SVR-lin resulted in

shorter computation times.

Among Bayesian methods, Bayesian Lasso tended

towards greater accuracy than Bayes A and B for PV ma-

terial, whereas the three methods performed comparably

for Me germplasm (Fig. 4). On average, Ridge Regression

BLUP slightly outperformed Bayesian methods, a trend

confirmed also in data sets that underwent separate SNP

calling (PV_Sep and Me_Sep) (data not reported).

Genomic selection: cross-population predictions

This assessment was carried out using the COMMON

data set, which included only the SNPs that satisfied fil-

tering criteria simultaneously for PV_Joint and Me_Joint

data sets. This data set exhibited relatively small SNP

numbers (Fig. 1), which averaged 37 % of those featuring

the smaller of the joint data sets (PV_Joint) across geno-

type missing data thresholds.

The accuracies of cross-population predictions by

SVR-lin and Ridge Regression BLUP models were

Fig. 3 Prediction accuracy for different genotype missing data imputation methods, SNP calling strategies and missing data thresholds. Results

for four imputation methods (MNI, Mean imputation; SVDI, Singular value decomposition imputation; RFI, Random forest imputation; LHCI, Localized

haplotype clustering imputation) applied to Po Valley (PV) and Mediterranean (Me) data sets subjected to separate SNP calling (PV_Sep and Me_Sep)

or joint SNP calling (PV_Joint and Me_Joint), using Support Vector Regression with linear kernel
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compared with intra-population predictions by the same

models, using same markers (COMMON data set). Fig. 5

also includes, as a reference, intra-population prediction

accuracies based on all available markers (PV_Joint and

Me_Joint data sets). The advantage of using the

complete marker data set was high for PV germplasm

and only marginal for the Me one, especially considering

the much higher number of SNPs available.

In both populations, cross-population prediction ac-

curacies were definitely lower than intra-population ones

based on same markers (Fig. 5). However, the relative

disadvantage of cross-population prediction decreased

Fig. 4 Prediction accuracy of four genomic selection models at different genotype missing data thresholds. Results for Support Vector Regression

with linear (SVR-lin) and gaussian (SVR-gau) kernel, Random Forest Regression (RFR), Ridge Regression BLUP (rrBLUP), Bayes A, Bayes B and Bayesian

Lasso models applied to Po Valley (PV_Joint) and Mediterranean (Me_Joint) data sets subjected to joint SNP (random forest imputation of

missing data)

PV - rrBLUP Me - rrBLUP

PV - SVR-lin ME - SVR-lin

Fig. 5 Accuracy of genomic selection for intra-population and cross-population prediction strategies at different genotype missing data thresholds.

Intra-population prediction using all markers subjected to joint SNP calling (PV_Joint and Me_Joint data sets) or only markers satisfying the common

filtering criteria (COMMON data set), and cross-population predictions using the COMMON data set, for Po Valley (PV) and Mediterranean (Me)

populations, using Support Vector Regression with linear kernel or Ridge Regression BLUP (random forest imputation of missing data)

Annicchiarico et al. BMC Genomics  (2015) 16:1020 Page 5 of 13



for more relaxed thresholds of genotype missing data

and reached a minimum at 50 % missing data, where the

relative loss of accuracy was comparable for both

models. This loss amounted to about 28 and 25 % for

PV and Me germplasm, respectively, using SVR-lin, and

30 and 25 % for PV and Me germplasm, respectively,

using Ridge Regression BLUP.

Genome-wide association analysis

We selected for M. truncatula alignment the SNP

markers of PV_Joint and Me_Joint data sets that tended

to maximize intra-population prediction accuracy,

namely, those of 50 % missing data threshold for PV and

30 % threshold for Me (both imputed with RFI). Non-

aligned markers (placed on the fictitious chromosome

N) were 28.1 % for PV and 24.5 % for Me populations.

The aligned markers were 7544 for PV and 8648 for Me

populations, resulting in an average physical distance

between SNPs of 40 Kbp for PV and 34.5 Kbp for Me.

As expected for a complex traits such as crop yield,

we found a high number of SNPs that tended towards a

modest association with the trait (Fig. 6). The simul-

taneous inspection of the Manhattan plots for the two

populations suggested some consistency of genome areas

hosting putative QTLs, such as those around the end of

the chromosomes 1 and 6, or an area in the last third of

chromosome 8 (Fig. 6).

Discussion

The phenotyping of PV material, which extended over

3 years, was consistent with the actual alfalfa cycle

duration in Northern Italy. Parent breeding values based

on 3-year DM yield were the result of intrinsic yielding

ability as expressed by short-term DM yield, and persist-

ence. The latter trait may depend on the plant’s ability to

accumulate assimilates in the root for further regrowth

under moisture-favorable conditions and to survive

across stress periods by various physiological mecha-

nisms under unfavorable conditions [25]. Both compo-

nents of persistence were likely to be relevant under the

moderate-drought stress phenotyping conditions that

featured PV material. Hence, PV parent breeding value

was based on a more complex and partly different DM

yield trait relative to Me parent breeding value, which

reflected only intrinsic yielding ability as revealed in the

short term. The somewhat lower prediction accuracy ob-

served for biomass yield of PV material relative to Me

germplasm (about 0.32 vs. 0.35 for best-performing

models) can be the result of greater complexity of its

yield trait (as determined by persistence besides intrinsic

yield potential), smaller genotype sample or lower num-

ber of SNPs that were available for this population.

SNP marker number made available by GBS in these

data sets was in the range of 7000-11,000 for reasonably

low rates of missing data. These values compare favor-

ably with an earlier assessment of GBS in alfalfa [20],

while approaching the SNP numbers obtainable by

Illumina Infinium SNP array [14]. Compared with GBS,

Infinium array has a higher cost per data point but also

necessarily expensive genotyping experiments, owing to

its need for large numbers of samples to be analyzed

simultaneously. Our GBS-generated marker numbers

might roughly suffice for genome exploration of

broadly-based alfalfa populations, considering that at

least 1000 SNP markers were estimated as necessary for

a narrow-based population [13]. However, suboptimal SNP

numbers might occur when attempting cross-population

predictions, as we observed with the COMMON data set.

On average, the original GBS protocol by [19] as ap-

plied to Me material resulted in greater SNP number

than the modified protocol applied to PV germplasm.

Without ruling out the effect of genetic differences be-

tween populations, this result suggests that greater amp-

lification of fewer target sites was not a useful strategy

to limit the amount of missing data resulting from insuf-

ficient read depth. In contrast, this strategy showed

some merit for soybean [26]. The consistent use of the

same restriction enzyme limited the occurrence of dis-

tinct SNP markers for the two data sets. Indeed, the

joint SNP calling in the two sets produced a sizable

increase of genomic prediction accuracy, suggesting

some advantage of the pooled information from the two

data sets to improve the SNP calling quality for each

data set. Joint SNP calling is operationally necessary to

ensure the same SNP naming across different data sets

in alfalfa and other crops that lack a stable reference

genome and a public repository of unique SNP identi-

fiers. The different GBS protocol, and genetic differences

between populations, may account for the fact that the

COMMON data set contained only a minority of the

total SNP markers from Me_Joint and PV_Joint data

sets, instead of approaching the SNP number of the

more restrictive PV_Joint set.

Prediction accuracy was also affected by missing data

imputation method, for which RFI emerged as a solid

choice for the current unordered SNP data, as well as by

the adopted statistical model for genomic selection. The

effect of allowed missing data thresholds on prediction

accuracy, which mostly displayed an accuracy peak in

the range of 30–50 %, was consistent with the expected

trade-off between increased information (more markers)

and increased noise (higher imputation errors) arising

from increasing thresholds.

The good performance of SVR models in this study

agrees with the theoretical expectation of high accuracy

for these methods when applied to traits that involve

many QTLs with small individual effects [27, 28]. This

was particularly true for PV germplasm, where genome-
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enabled predictions were more difficult than for Me

because of various factors (greater complexity of the

yield trait; less test genotypes; less markers), possibly

because of the recognized value of SVR in high-noise

conditions [29]. SVR and Ridge Regression BLUP

performed were similarly for Me germplasm. The good

performance of the latter method agrees with theoretical

expectations [15, 16].

Fig. 6 Association (Manhattan plot) of M. truncatula-aligned SNP markers with total dry matter yield. Results for Po Valley (PV) and Mediterranean

(Me) populations
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The complexity of the alfalfa biomass yield trait was

confirmed by the high number of putative QTLs that

emerged for both data sets from genome-wide association

analysis. We believe that mapping individual QTLs for

yield holds lower practical interest than genomic selection,

for yield improvement programs of alfalfa and probably

other crops.

The observed lack of sub-population structure facili-

tates the application of genomic selection by allowing

for the adoption of simple genomic selection models.

Lack of structure was purposefully searched for in the

development of the Me, through repeated intercrossing

of progenies generated by intercrossing genotypes from

different populations. For population PV, whose geno-

type sample derived from several landraces and varieties

from Northern Italy, lack of sub-population structure

was not quite expected. A reason for this finding could

be much higher intra-population variation relative to

inter-population variation, which emerged for PV mater-

ial from the study of several morphophysiological traits

[23] and recent studies of SSR- and SNP-based genetic

diversity (Annicchiarico et al. unpublished data). The

population used by [22] in their prediction experiment

was a strain cross of three cultivars subsequently inter-

crossed for two generations. It likewise had no sub-

population structure. The pattern of these three very dif-

ferent populations suggests that application of marker

prediction methods will not be limited within breeding

programs by population structure.

The current predictions of parent breeding values

proved much less accurate than predictions of alfalfa yield

responses of cloned parents in an earlier study [22], likely

because of the large extent of non-additive genetic vari-

ation reported consistently for this trait in various genetic

studies [4] including one for the population PV [1]. Hence,

focusing on parent breeding values (i.e., those of relevance

in synthetic variety breeding) is of paramount importance

for a realistic assessment of genomic selection in alfalfa

and other crops with a similar mating system. It should be

noted, however, that even a genomic prediction accuracy

of breeding values (rA) around 0.32 (as achieved for PV

material) can be promising for genomic selection. Consid-

ering the estimated narrow-sense heritability (hN
2) of 0.21

reported for the same set of PV parent plants [1], selection

cycles of 1 year for genomic selection (including genotyp-

ing plus polycrossing of selected genotypes) and 5 years

for conventional parent selection based on half-sib pro-

geny test (year 1, half-sib seed production from poly-

crossed replicated candidate parents; years 2–4, half-sib

biomass yield evaluation; year 5, polycrossing of selected

genotypes) and same selection intensity for both selection

strategies, the comparison of genomic vs. conventional se-

lection in terms of predicted yield gain per unit time re-

duces, according to formulae in [4], to rA vs. (hN/5). This

would indicate over three-fold greater efficiency for gen-

omic selection [0.32 vs. (0.46/5)], assuming no degradation

in the predictive power of the model across a few selection

cycles (which may substantially hold, considering the fairly

slow change in marker frequency expected for so high a

number of loci subjected to selection). In addition, gen-

omic selection is likely to allow for higher numbers of

evaluated candidate parents (hence, higher selection in-

tensity) than conventional selection, for same evaluation

costs. GE interaction effects are bound to decrease

genomic prediction accuracies [16] and yield gains over a

target region, but this is applies as well to conventional

selection, depending in all cases on the consistency of

phenotyping or selection conditions with those prevailing

in cropping environments [4]. Models developed across

two locations actually had slightly higher accuracies for

predicting yield of individual genotypes in a subsequent

generation than models from either location independ-

ently [22], demonstrating that if extreme GE interactions

are not present, broader inference across locations is

desirable. For PV germplasm, the moderate summer

drought stress conditions adopted for phenotyping and

assessment of rA and hN parameters were suitable for

minimizing GE interactions across Northern Italy [30].

Since a model’s prediction accuracy evaluated by cross-

validations within the training population (as done here)

may overestimate the model accuracy for selection within

other genotypes of the same reference populations, future

research work will compare genomic vs. phenotypic

selection on the basis of actual yield gains obtained from

selection within an independent genotype sample of the

PV population. Other work will assess the potential of

genomic selection for predicting breeding values of Me

germplasm across a range of target environments, includ-

ing some with severe drought or salinity stress.

That we observed only moderate loss of accuracy for

cross-population predictions relative to within-population

predictions is fairly surprising, especially considering the

contrasting origin and the different duration and environ-

mental conditions for biomass yield assessment of the two

populations. Quite poor cross-population predictions were

reported for wheat [31], in the presence of partly related

populations evaluated under the same phenotyping condi-

tions. The current result was probably favored by the high

rate of within-population genetic variation that is typical

of alfalfa, to which the development of broadly-based ref-

erence populations further contributed. It provides further

support for the introduction of genomic selection in alfalfa

breeding programs, whose selection is frequently carried

out simultaneously on different germplasm pools.

Conclusions
Our results indicate that genomic selection for alfalfa bio-

mass yield is promising, based on its moderate prediction
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accuracy, moderate value of cross-population predictions,

and lack of sub-population genetic structure. Genome-

wide association results confirmed the complexity of the

yield trait and the limited scope for searching individual

QTLs with overwhelming effect on it. Some of our results

concerning GBS procedures, SNP calling strategies,

missing data imputation methods and statistical models

for genomic selection can contribute to better design of

genomic selection experiments for alfalfa and other crops

with similar mating systems and commercial cultivar

targets.

Methods
Reference population PV (Po Valley): composition and

phenotyping

This reference population included elite germplasm

from the Po Valley, Italy and was represented by a

sample of 125 parental genotypes whose selection and

phenotyping of their half-sib progenies for DM yield

were described previously [1]. In brief, PV genotypes

were chosen by stratified mass selection for DM yield

over three harvests among 4480 densely planted geno-

types grown in Lodi (Northern Italy) under field con-

ditions in 2002 and 2003. The initial set of 4480

genotypes, whose origin and phenotypic variation are

described in [23], represented well the germplasm from

Northern Italy, including fixed amounts of randomly

chosen genotypes from eleven farm landraces collected

across the entire region and seven elite varieties. These

populations had fall dormancy class 5 or 6, except for a

few with dormancy 4 or 7. Half-sib progeny seed was

obtained in summer 2005 by polycrossing the selected

cloned genotypes in two large isolation cages, each in-

cluding three complete crossing blocks with different

genotype randomizations. Pollination in this and follow-

ing intercrossing work was carried out by placing one

micro-hive of bumblebees (Bombus terrestris L.) in each

cage. We pooled the seed harvested from the six clones

of each parent.

Half-sib progenies of the 125 genotypes were sown in

jiffy pots and transplanted in November 2005 in a field

experiment in Lodi that was designed as a randomized

complete block with two replications. Each plot included

21 plants arranged in seven rows of three plants each,

spacing plants at 0.12 m across and within rows, and

using the two edge rows as border plants. Total DM

yield was recorded across 12 harvests: five in 2006 and

2007 and two in spring 2008. The experiment received

two irrigations of 30 mm each in 2006 and one irrigation

of 40 mm in 2007, imposing a moderate level of summer

drought stress that is consistent with the objective of

selecting material widely adapted to Northern Italy [30].

On average, the experiment received 454 mm of water

(rainfall plus irrigation) in the period March-October

(when plant growth is substantial). DM yield values for

genomic selection and genome-wide association studies

were adjusted using BLUP computed from half-sib pro-

geny mean values, as described in [32], i.e., by shrinking

progeny main effects through multiplication by broad-

sense heritability on a progeny mean basis (hB
2) of the

half-sib material estimated as:

hB
2 ¼ Shs

2= Shs
2 þ Se

2=r
� �

where Shs
2 and Se

2 are estimates of variance components

for half-sib progeny and experiment error variation, and

r is the number of experiment replications. One of the

125 parent genotypes was eliminated from genomic

selection analyses, owing to poor quality (as number of

reads) of its sequencing data.

Reference population Me (Mediterranean): composition

and phenotyping

This population represented elite germplasm adapted to

Mediterranean-climate environments and included 154

parental genotypes that derived from two cycles of free

intercrossing among three outstanding populations in a

previous multi-environment study [24]. These popula-

tions, whose fall dormany class ranged from 7 to 10, were:

(i) the drought-tolerant Sardinian landrace Mamuntanas;

(ii) the salt-tolerant Moroccan landrace Erfoud 1; (iii) the

Australian variety SARDI 10, widely adapted across

moisture-favorable and drought-prone sites. The first

intercrossing generation took place in 2009 and included

210 genotypes, 70 randomly chosen from each population.

One seed per parent plant was harvested to establish the

second intercrossing generation in 2010. One seed from

each of 154 randomly-chosen parent plants on this

generation was harvested, to establish the parent sample.

Half-sib progeny seed of these 154 genotypes was ob-

tained in 2011 and 2012 from three large isolation cages,

each including three complete crossing blocks of ran-

domized genotypes, pooling seed harvested over the nine

clones of each parent.

Half-sib progenies of the 154 genotypes were sown in

jiffy pots and then transplanted in mid-April 2012 in a

field experiment in Lodi that was designed as an alpha

lattice with three replications. Each plot included 36

plants arranged in nine rows of four plants each, spacing

plants at 0.080 m across rows and 0.075 m within rows,

and using the two edge rows as border plants. Pheno-

typing of Me focused on short-term DM yield in

moisture-favorable, irrigated conditions. The experiment

received 750 mm of water over the period March-

October, assessing plot DM yields four times from June

to October 2012. DM yield values were adjusted using

BLUP as described for population PV.
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DNA isolation, GBS library construction and sequencing

DNA was isolated from fresh leaf tissues by the Wizard®

Genomic DNA Purification Kit (Promega, A1125) and

quantified with a Quant-iT PicoGreen dsDNA assay kit

(Life Technologies, P7589). One library was constructed

for each population, using the protocol by [19] with

modifications. Briefly, 100 ng of each DNA was digested

with ApeKI (NEB, R0643L) and then ligated to a unique

barcoded adapter and a common adapter. Equal volume

of the ligated product was pooled and cleaned up with

QIAquick PCR purification kit (QIAGEN, 28104) for

PCR amplification. In PCR, 50 ng template DNA was

mixed with two primers and Taq polymerases in a 50 ul

total volume. For the reference population Me, 5 nmoles

each of the primers and NEB 2X Taq Master Mix (NEB

Cat # M0270S) were included in the PCR reaction

according to [19] original protocol. Amplification was

carried out on a thermocycler for 18 cycles with 10 s of

denaturation at 98 °C, followed by 30 s of annealing at

65 °C, and finally 30 s extension at 72 °C. For the

reference population PV, we used a modified common

adapter where “W” was changed to “A”, to reduce the

number of target sites. The modifications in PCR

included 25 nmoles of each primer instead of 5 nmoles,

KAPA library amplification readymix (Kapa Biosystems

Cat # KK2611) instead of NEB Taq Master Mix, and

10 cycles of reaction instead of 18. Each library was

sequenced in two lanes on Illumina HiSeq 2000 at the

Genomic Sequencing and Analysis Facility at the University

of Texas at Austin, TX, USA.

Genotype SNP calling

We used the UNEAK pipeline [33] for SNP discovery

and genotype calling. The raw reads (100 bp, single end

read) obtained from the sequencer were first quality-

filtered and de-multiplexed. All reads beginning with the

expected barcodes and cut site remnant were trimmed

to 64 bp. Identical reads were grouped into one tag. Tags

with 10 or more reads across all individuals were

retained for pairwise alignment, which aimed to find tag

pairs that differed by 1 bp. For each SNP marker, the

reads distribution of the paired tags in each individual

was used for SNP genotype calling. The three possible

types of heterozygous of this autotetraploid species (i.e.,

Aaaa, AAaa and AAAa) were marked as diploid hetero-

zygous (i.e. Aa), while the two homozygous were marked

as diploid homozygous (i.e., AA or aa), according to

[20]. One genotype of the PV population that generated

a particularly low number of reads was discarded from

all statistical analyses.

The SNP calling procedure was performed on each of

the individual data sets (denoted PV_Sep and Me_Sep),

and once on a joint data set obtained after collating the

raw reads from the two sequencing runs. The latter

calling procedure was used to create a consistent SNP

naming across data sets in the absence of a reference

genome. This joint data set was then split into two parts

(denoted PV_Joint and Me_Joint) reflecting the two

reference populations.

Data filtering and imputation strategies

GBS can generate a great number of de-novo markers,

but its information is typically limited by high number

of missing values. The most-known and successful

imputation algorithms were developed for species with a

reference genome, which is missing in M. sativa,

justifying our assessment of imputation algorithms as a

function of their phenotype prediction accuracy. We

considered four possible imputation algorithms, namely,

MNI (Mean imputation), SVDI (Singular value decom-

position imputation), RFI (Random forest imputation)

and LHCI (Localized haplotype clustering imputation).

For all algorithms, we imputed a M ×N matrix of M in-

dividuals and N markers whose data points, defined in

{0,1,2,NA}, represented the three possible genotypes and

the missing value, respectively. MNI simply replaces

each missing data point with the mean of the non-

missing values for that marker, which are then discre-

tized to the closer value in {0,1,2}. The algorithm was

directly implemented as an R [34] function. SVDI oper-

ates a singular value decomposition on the genotype

matrix to obtain a set of the k most significant eigen-

vectors of the markers. These k eigen-vectors are used

as the predictors for linear regression estimation of the

missing data points, which are then discretized to the

closer value in {0,1,2}. The algorithm was implemented

using the R package “bcv” [35]. RFI uses random forest

regression [36] to grow, for each missing data point, a

set of random regression trees. We implemented RFI

using the “MissForest” [37] R package, with the config-

uration ntree = 100, maxiter = 10, parallelize = ‘variables’.

After the regression the imputed data were then discre-

tized to the closer value in {0,1,2}. LHCI is implemented

in the Beagle software [38] for use when a reference gen-

ome is available (since SNPs are imputed according to

their physical order on chromosomes). We included it as

a reference, repeating the analysis 20 times with different

random reordering of imputed SNPs and verifying ex-

perimentally that SNP order had no influence on pheno-

type prediction models.

The four data sets (PV_Sep, Me_Sep, PV_Joint and

Me_Joint) were filtered for increasing levels of allowed

missing values, excluding SNPs whose missing rate over

genotypes was greater than a fixed thresholds of 10, 20,

30, 40, 50 and 70 %. We estimated missing data accord-

ing to each of the four imputation algorithms, and then

filtered data to exclude markers with minor allele fre-

quency < 2.5 %. Filtering and missing data estimations
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were performed independently for PV_Sep and Me_Sep

data sets, and jointly for PV_Joint and Me_Joint (i.e.,

considering the joint matrix including 124 PV genotypes

plus 154 Me genotypes). Our aim was verifying whether

the greater information provided to imputation algo-

rithms by joining the two data sets could result in

greater accuracy of the genomic selection models.

We also created a COMMON data set that included

only the SNPs that were consistently present in both

data sets (hence, satisfying filtering criteria simultan-

eously for PV_Joint and Me_Joint data sets). COMMON

was filtered over the same levels of missing data, and

imputed with the four different algorithms.

Population structure analysis

We verified the need for taking account of sub-

populations and genetic structure in genomic selection

and genome-wide association analyses by two methods

applied separately to PV_Sep and Me_Sep data sets with

10 % SNP missing rate and RFI estimation of missing data.

The first contemplated a Bayesian cluster analysis by the

software STRUCTURE version 2.3 [39] using an admix-

ture model with correlated allele frequencies, assessing

the log likelihood values of posterior probability and the

criterion proposed by [40] for optimal number of geno-

type groups across group numbers varying from 1 to 5.

The analysis included six independent runs of 100,000 it-

erations preceded by a burn-in of 10,000 iterations. The

second method explored the genetic relatedness between

individuals through the analysis of the kinship matrix [41].

Phenotype prediction for genomic selection

Different statistical models have been developed for gen-

omic selection [15, 16]. We currently tested Ridge Regres-

sion BLUP, three Bayesian models, two Support Vector

Regression models, and Random Forest Regression. The

accuracy of predictions was assessed by Pearson’s correl-

ation between predicted and observed phenotypes, split-

ting randomly 90 % genotypes to a training set and 10 %

to a validation set. This cross-validation procedure was re-

peated 500 times, averaging the resulting accuracies.

Ridge regression BLUP (rrBLUP) assumes a linear

mixed additive model where each marker is assigned an

effect as a solution of the equation:

y ¼ μþ G uþ ε

where y is the vector of observed phenotypes, μ is the

mean of y, G is the genotype matrix (e.g., {0,1,2} for

biallelic SNPs), u ~N (0, Iσ2u) is the vector of marker

effects, and ε is the vector of residuals. Solving with the

standard ridge-regression method, the solution is:

û ¼ G0 G G0 þ λ Ið Þ
−1

y−μð Þ

where λ = σ2e / σ2u is the ridge parameter, representing

the ratio between residual and markers variance [42].

Given the vector of effects, it is then possible to predict

phenotypes and estimate genetic breeding values. Ridge-

regression BLUP analysis was performed through the R

software package rrBLUP [43], estimating λ in a re-

stricted maximum likelihood schema implemented by a

spectral decomposition algorithm [44], and solving the

resulting linear model.

Bayesian-based models assign prior densities to

markers effects inducing different types of shrinkage.

The solution is obtained by sampling from the resulting

posterior density through a Gibbs sampling approach, as

described by [45, 46]. We examined the phenotype

prediction performances of three Bayesian prediction

models, namely: (i) Bayes A [47]; (ii) Bayes B [48]; and

(iii) the Bayesian Lasso [49]. Bayesian models were in-

vestigated by the R software package BGLR [50], using

the following parameters: number of iterations = 5000;

burn-in = 500; thinning = 5.

Support Vector Regression models are based on the

computation of a linear regression function in a high

dimensional feature space where the input data are

mapped via a kernel function [29]. We considered two

major kernel functions, namely, linear (SVR-lin) and

gaussian (SVR-gau). We used the ε-insensitive regression

present in the Weka framework [51], which ignores

residuals smaller in absolute value than some constant (ε)

and assigns a linear loss function for larger residuals. The

regression was run using the following values: C = 1,

ε = 0.1.

RFR is a combination of decision trees, each one gen-

erated from a subset of individuals selected by bootstrap

[52]. RFR uses stochastic perturbation and averages the

decision trees outputs to avoid over-fitting [53]. In this

study the R package ‘RandomForest’ [54] was used with

the following settings: number of variables tried at each

split mtry = p/3, number of trees = 500 and minimum

node size = 5.

We used SVR-lin and Ridge Regression BLUP consist-

ently for all analyses, since these models tended to

higher prediction accuracy than the other tested models.

SVR-lin and SVR-gau displayed similar accuracies, but

we preferred the former because of its faster computa-

tion time. For each reference population, genomic pre-

diction using these models was explored for 48 data sets

deriving from the combination of two SNP calling strat-

egies, four imputation algorithms and six thresholds for

missing data.

Genotypes of the COMMON data set were used for

cross-population predictions based on SVR-lin and

Ridge Regression BLUP, training the models on all geno-

types of one population to predict the phenotypes of the

other population. This analysis was performed for each
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of the six thresholds for missing data, using RFI. Pheno-

types within each population were normalized to zero

mean and unit variance prior to the analysis.

Alignment to M. truncatula genome, and genome-wide

association analysis

The Bowtie 2 tool [55] was used to query the consensus

sequence of each tag pair containing a SNP against the

M. truncatula reference genome Version 4.1 using the

verysensitivelocal preset. SNP not aligning were placed

in a fictitious chromosome N for visualization purposes.

A genome-wide association analysis was conducted

based on the EMMAX mixed model as described in [45]

and implemented through the R package rrBLUP [44].

Availability of supporting data

The data sets supporting the results of this article are

available in the NCBI’s Sequence Read Archive (SRA)

repository [Me population: http://www.ncbi.nlm.nih.gov/

sra/SRX1421601, PV population: http://www.ncbi.nlm.

nih.gov/sra/SRX1420586]. The information required to

demultiplex the raw reads are provided in [Additional

file 6] for PV data set and [Additional file 7] for Me data

set.
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genetic similarity. (PDF 99 kb)
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and Me_Joint), using Ridge Regression BLUP. (PDF 45 kb)
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