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Abstract

In this article we construct a hybrid model by spatially coupling a lattice Boltz-
mann model (LBM) to a finite difference discretization of the partial differen-
tial equation (PDE) for reaction-diffusion systems. Because the LBM has more
variables (the particle distribution functions) than the PDE (only the particle
density), we have a one-to-many mapping problem from the PDE to the LBM
domain at the interface. We perform this mapping using either results from
the Chapman-Enskog expansion or a point-wise iterative scheme that approx-
imates these analytical relations numerically. Most importantly, we show that
the global spatial discretization error of the hybrid model is one order less ac-
curate than the local error made at the interface. We derive closed expressions
for the spatial discretization error at steady state and verify them numerically
for several examples on the one-dimensional domain.

Keywords : accuracy, spatial discretization error, hybrid model, lattice Boltz-
mann, finite difference, spatial coupling, constrained runs.
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Abstract

In this article we construct a hybrid model by spatially coupling a lattice
Boltzmann model (LBM) to a finite difference discretization of the partial
differential equation (PDE) for reaction-diffusion systems. Because the LBM
has more variables (the particle distribution functions) than the PDE (only
the particle density), we have a one-to-many mapping problem from the PDE
to the LBM domain at the interface. We perform this mapping using either
results from the Chapman-Enskog expansion or a point-wise iterative scheme
that approximates these analytical relations numerically. Most importantly,
we show that the global spatial discretization error of the hybrid model is one
order less accurate than the local error made at the interface. We derive closed
expressions for the spatial discretization error at steady state and verify them
numerically for several examples on the one-dimensional domain.
Keywords: accuracy, spatial discretization error, hybrid model, lattice Boltz-
mann, finite difference, spatial coupling, constrained runs.
AMS(MOS) Classification: 76M28, 65M99, 35K57.

1 Introduction

When given the task of simulating a dynamical system, one has a variety of mod-
els to choose from, each operating on a different level of abstraction. It depends
both on the complexity of particle interactions (atoms or molecules) and the cor-
responding level of detail required (either for correct simulation or the detail of
interest to the user) which model is appropriate. On the microscopic level, one has
molecular dynamics methods which monitor the individual particles. Kinetic Monte
Carlo methods provide a higher level of abstraction by modeling the statistics of the
particle interactions. Even more coarse-grained are mesoscopic or pseudo-particle
models, like lattice Boltzmann models (LBMs). They describe the system’s evolu-
tion through generalized distributions of particles which are limited to move on a
grid with particular velocities only. Finally, on the macroscopic or continuum level,
one has appropriately discretized ordinary or partial differential equations (ODEs or
PDEs) in terms of a few low order moments (observables like density, flow velocity,
pressure, . . . ).

The choice for a particular model depends on several criteria. Macroscopic-level
models, like PDEs, typically have a smaller dimensional state space and in general
allow large time steps during simulation. When a macroscopic description for the
system’s evolution can not be derived in terms of the macroscopic variables only,
i.e. when the macroscopic model does not close, a lower level model describing the
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same physics in more detail should be used. Because of their notion of, albeit ideal-
ized, particles, mesoscopic models like LBMs allow the incorporation of complicated
physics in a more bottom-up way than macroscopic models. Also, the LBM particle
distribution functions contain information on the spatial derivatives of the macro-
scopic variables because they are linked to the particle velocities. Finally, they can
treat irregular domain boundaries in a natural way. However, these models typi-
cally require more variables and smaller time steps. Similar advantages apply to
microscopic models, but simulation with these models can be very expensive and
often becomes prohibitive.

Sometimes, the level of detail required to model a physical system changes from
region to region and different models have to be used on different parts of the
domain. Many hybrid methods which couple a particle-based to a continuum model
have already been well developed, see e.g. [1, 4, 14, 17, 20, 25] and references therein.
At the interface between the regions, there will be a mismatch in the kind (and
number) of variables used by the different models. There, the variables have to
mapped to one another.

In this article, we analyze hybrid models obtained by spatially coupling a LBM
and the finite difference discretization (FD) of a PDE describing a reaction-diffusion
system in different regions of the spatial domain. We are particularly interested in
the spatial discretization error of the hybrid model. In [2, 3, 24], Albuquerque et al.
reported a second order discretization error in space (just like both the discretized
PDE and LBM on the full domain). We will study this claim further and derive
closed expressions for the error at steady state for some basic problems.

For analysis purposes, we only consider one-dimensional reaction-diffusion prob-
lems. For this setup, the LBM has three times as much variables (the particle
distribution functions) as the PDE, which evolves only the particle density. At
the interface, densities are obtained as the zeroth order velocity moments of the
distribution functions. However, the inverse mapping from the PDE to the LBM
domain is not univocal. Note that the same one-to-many problem also occurs when
initializing a LBM from macroscopic initial data [28, 35, 36].

We discuss two methods to solve the mapping problem at the interface. The
first, analytical method was introduced by Albuquerque et al. [2, 3]. They used the
Chapman-Enskog expansion to write the missing distribution functions at the hy-
brid interface as a first order functional of the density variable. We will use the same
concept but a different implementation. The second method is a point-wise iterative
scheme that approximates the Chapman-Enskog relations numerically. It is useful
when these functionals are not available or difficult to obtain analytically. Examples
are the constrained runs scheme developed by Gear and Kevrekidis [19, 18] in the
context of equation-free computing and the scheme developed by Mei et al. [28, 8]
in the context of LBM initialization. Here we use the former. The constrained runs
scheme performs a series of short microscopic (here LBM) simulations and resets the
lowest order velocity moment (density) to its initial value while leaving the higher
order moments unchanged. We showed in [36] that the application of the scheme
to the LBM considered here, produces a numerical approximation of the analytical
Chapman-Enskog relations that is correct up to first order.

The work described in this article is a step in the development of efficient meth-
ods for hybrid LBM/PDE coupling. In the discussion, we have made some sim-
plifying assumptions. First, we use the same time step and grid spacing for both
the PDE and LBM. Using different space-time grids on the sub-domains is an in-
teresting topic of further research. For the time dependent problem, we refer to
grid refinement techniques like adaptive mesh refinement (AMR) [5] for the PDE
and the different approaches in [31, 15, 16, 23] for the LBM and to certain im-
plicit [9, 26, 33] or outer explicit [38] time discretization schemes. For the time
independent problem, ideas from multigrid [34] for the PDE and [27, 32] for the
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LBM or iterative methods, like the preconditioned Generalized Method of Residuals
(GMRES) [6, 7] or the biconjugate gradient algorithm [39] could be used. Second,
we limit ourself to one-dimensional diffusive problems for analysis purposes. Al-
buquerque, Latt and coworkers already used the Chapman-Enskog based coupling
method for two-dimensional diffusion [3] and Poiseuille flow [24]. Finally, we work
with LBM and PDE models which are equivalent in the macroscopic limit. I.e.
since the macroscopic solution profile is sufficiently smooth on the whole domain,
we could have used either the PDE or LBM on the full domain. The coupling of a
PDE and a LBM describing distinct dynamical behavior will be discussed elsewhere.

This article is organized as follows. In Sect. 2, we introduce the PDE and LBM
for one-dimensional reaction-diffusion systems and the relations between the two.
In Sect. 3, we discuss the constrained runs scheme. Section 4 presents the different
coupling schemes. We derive expressions for the steady state discretization error
in Sect. 5. The theoretical results are verified numerically in Sect. 6. Finally, in
Sect. 7, we summarize the main conclusions of the paper.

2 Reaction-Diffusion Models

In this section, we present the macroscopic PDE (Sect. 2.1) and mesoscopic LBM
with BGK collision model (Sect. 2.2) for one-dimensional reaction-diffusion systems.
In Sect. 2.3 we describe the relations between the two.

2.1 Partial Differential Equation (PDE)

For diffusive systems, the macroscopic variable describing the system’s evolution is
the particle density (concentration) ρ(x, t) as a function of space x and time t. The
corresponding PDE is given by

∂ρ(x, t)

∂t
= D

∂2ρ(x, t)

∂x2
+ F (ρ(x, t)) , (1)

where D is the diffusion coefficient and F (ρ(x, t)) a macroscopic reaction force term
which depends on ρ(x, t) only. This continuous equation is discretized with finite
differences (FD) (explicit forward difference in time and central difference in space)
to obtain

ρ(x, t+∆t) = ρ(x, t)+
∆tD

∆x2

(

ρ(x+∆x, t)−2ρ(x, t)+ρ(x−∆x, t)
)

+∆t F (ρ(x, t)) (2)

with ∆x and ∆t the corresponding space and time step. It is well known that the
discretization error for (2) is first order in time and second order in space (to leading
order: −(∆x2/12)∂4ρ(x, t)/∂x4). Note that this discretization typically entails a
stability condition of the form ∆t ≤ C∆x2, e.g. for pure diffusion, the constant C
equals 1/(2D).

2.2 Lattice Boltzmann Model (LBM)

Lattice Boltzmann models (LBM) [10, 11, 29] describe the evolution of particle
distribution functions fi(x, t) discretized in space x, time t and velocity vi. These
distributions are defined on a space-time lattice with grid spacing ∆x in space and
∆t in time. On a one-dimensional domain, only three values are considered for the
velocity (D1Q3 model):

vi = ci

∆x

∆t
, ci = i ∈ {−1, 0, 1} , (3)
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with ci the dimensionless lattice velocity.
The lattice Boltzmann equation (LBE) describing the evolution of the distribu-

tion functions is defined as

fi(x + ci∆x, t + ∆t) = (1 − ω)fi(x, t) + ωfeq
i (x, t) + Ri(x, t) (4)

for i ∈ {−1, 0, 1}. The right hand side of (4) updates the values fi(x, t) to post-
collision values f⋆

i (x, t⋆) (with t < t⋆ < t+∆t). Afterwards, these values propagate
to a neighboring lattice site according to their velocity direction (left hand side of
(4)). Diffusive collisions are modeled by the Bhatnagar-Gross-Krook (BGK) colli-
sion term −ω(fi(x, t)−feq

i (x, t)) in (4) as a relaxation to a local diffusive equilibrium
feq

i (x, t) with relaxation coefficient ω [30, 37], while reactions are modeled by the
term Ri(x, t) [30, 13] as

feq
i (x, t) =

1

3
ρ(x, t) , ω =

2

1 + 3D ∆t
∆x2

, Ri(x, t) =
∆t

3
F (ρ(x, t)) , (5)

with D and F (ρ(x, t)) defined in (1). Here, it is assumed that reactions occur at
the local diffusive equilibrium [12]. As shown in [22], the LBM discretization error
is of second order in space.

The particle density ρ(x, t) is defined as the zeroth order velocity moment of the
distribution functions

ρ(x, t) =
1

∑

i=−1

fi(x, t) =
1

∑

i=−1

feq
i (x, t) , (6)

where the second equality expresses that the BGK diffusive collisions locally con-
serve density (compare (5)). When we define momentum φ and (kinetic) energy ξ as
the first respectively (1/2 times the) second order velocity moment, the LBM state
at time t and position x can also be described in terms of these moments. Using
f = [f−1 f0 f1]

′ and ̺ = [ρ φ ξ]′, one can easily switch from one representation to
the other by

̺ =





ρ
φ
ξ



 =





1 1 1
−1 0 1

1
2 0 1

2









f−1

f0

f1



 = M f (7)

and vice versa f = M−1
̺ (one-to-one relationship). Note that we refer to the higher

order velocity moments φ and ξ as “momentum” and “energy” although these are
non-conserved quantities in a diffusive system.

2.3 Relations between LBM and PDE

When the system’s solution varies slowly on a macroscopic length and time scale,
both the LBM and PDE can be used to describe its evolution. Under this condition,
the LBM from Sect. 2.2 can be reduced to the PDE from Sect. 2.1 using a multiscale
Chapman-Enskog expansion [10, 11]. For the model problem discussed here, the
details are given in [37]. In this expansion, the distribution functions are written as

fi(x, t) = f
[0]
i (x, t) + f

[1]
i (x, t) + f

[2]
i (x, t) + . . . (8)

in terms of increasingly higher order contributions. The zeroth and first order

contribution f
[0]
i and f

[1]
i are

f
[0]
i = feq

i =
1

3
ρ , f

[1]
i = −

∆x

ω
ci · ∇f

[0]
i = −

ci∆x

3ω

∂ρ

∂x
, (9)
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Algorithm 1 Constrained runs scheme for diffusive LBM

Required: ρ(0) = ρ(x, 0), a norm || · || and a user-defined tolerance θ ≪ 1

f
(0)
i = wi ρ(0) ; e.g. wi = 1/3 Choose f

(0)
i as e.g. (5)

repeat
f (k+1) = LBM(f (k)) LBM simulation (4) over time δt
̺

(k+1) = M f (k+1) Corresponding φ(k+1) and ξ(k+1) (7)
ρ(k+1) = ρ(0) Reset macroscopic variables
f (k+1) = M−1

̺
(k+1) Map back (7)

until ||φ(k+1)(x) − φ(k)(x)|| < θ and ||ξ(k+1)(x) − ξ(k)(x)|| < θ

while the second order contribution f
[2]
i can be derived as

f
[2]
i = −

∆t

6ω
(3c2

i − 2)

(

F (ρ) −
∂ρ

∂t

)

= −
∆x2

18ω2
(ω − 2)(3c2

i − 2)
∂2ρ

∂x2
. (10)

These so-called slaving relations are functionals of the macroscopic slow (den-
sity) variable only. The equivalent PDE (1) is obtained by summing (10) over all

velocities, where
∑

i f
[2]
i = 0 (sum up (8) and use (6)). Because of the discrete LBE

propagation, the continuous spatial derivatives in (9)–(10) can be seen as a short-
hand notation for the appropriate central finite difference scheme corresponding to
the LBM (D1Q3) stencil and must be discretized accordingly (see also [21, 36]).

3 Constrained Runs Scheme

Given only the density values on the domain, the full state of the LBM is described
up to second order by the slaving relations (9)–(10). When such relations are
unavailable or difficult to obtain analytically due to e.g. complex local interaction
force terms, the constrained runs (CR) scheme [19, 18] can be used to approximate
these relations numerically. Algorithm 1 describes the CR scheme for the LBM

from Sect. 2.2. For a given density profile ρ(0), an initial guess for f
(0)
i would be e.g.

the BGK equilibrium distribution (5). The LBM is then repeatedly used to evolve
the state for a short time δt. After each such simulation, the lowest moment of the
distribution functions is reset to the initial density profile.

The CR scheme can be defined as a map

̺
(k+1) = Cδt(̺

(k)) ; k = 0, 1, 2, . . . ,K

on the state vector ̺
(k) = [ρ(0) φ(k) ξ(k)]′; with k the iteration number. Since

ρ(k+1) is reset to ρ(0) after each step, the map effectively iterates on the higher
order moments φ and ξ to obtain the fixed point.

In [36] we analyzed the use of the CR scheme for the initialization of the LBM
for one-dimensional reaction-diffusion problems from Sect. 2.2. We proved that the
scheme is unconditionally stable and convergent with asymptotic convergence factor
|1 − ω|. The fixed point in moment space {(ρ(0)), φ̃, ξ̃} can be written in terms of
distribution functions as {f̃−1, f̃0, f̃1} using (7) and is given by [36, 37]

f̃i =
1

3
ρ(0) −

ci∆x

3ω

∂ρ(0)

∂x
−

∆t

6ω
(3c2

i − 2)

(

F (ρ(0)) − 3
(ρ̃ − ρ(0))

∆t

)

, (11)

with ρ̃ the internal simulated-upon density corresponding to {φ̃, ξ̃} (before the final
reset to ρ(0)). When comparing to (9)–(10), we see that (11) is a first order correct
approximation of the slaved state. The difference ρ̃−ρ(0) is a measure for the error.
To keep this error as small as possible, we choose δt = ∆t (one LBM time step).
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PDE LBM

✲
f⋆
1 (xpde)

✟✟
✟✟
✟✟
✟✟
✟✟

t t t t t t t t

❍❍
❍❍
❍❍
❍❍
❍❍

xpde − ∆x xpde xlbe xlbe + ∆x

L1
✛ ✲ L2 = L − L1

✛ ✲

Figure 1: Spatial coupling of the PDE (left) and LBM (right) on a one-dimensional domain.
The interface lies in between two lattice sites.

4 Hybrid Spatial Coupling

In this section, we describe how to couple the PDE and LBM from Sect. 2. In
our setup shown in Fig. 1, the one-dimensional domain with length L is split into
two non-overlapping sublattices. An alternative using one overlapping lattice site
is presented in [2, 3] and will be briefly discussed in Sect. 6. The PDE is applied to
the left sublattice and the LBM to the right sublattice. The coordinate of the first
LBM lattice point is defined as xlbe = L1, such that the interface lies in between
xpde and xlbe at L1 −∆x/2. For analysis purposes, we use the same lattice spacing
∆x and time step ∆t for the PDE and LBM, i.e. the simplest coupled space-time
lattice.

Since the PDE and LBM use a different set of variables, namely ρ versus f =
[f−1 f0 f1]

′, information should be exchanged carefully at the interface during time
simulation. To evolve the PDE in xpde, the value ρ(xlbe, t) = ρ(xpde + ∆x, t) is
needed in (2). This value is computed from the LBM variables fi(xlbe, t) using (6).
The inverse problem is more difficult. We need to map a single density value onto
three corresponding distributions, i.e. ρ(xpde, t) 7→ fi(xpde, t) for i ∈ {−1, 0, 1}.
Since (6) should hold, this leaves two degrees of freedom. In fact, we need only
the value of f1(xpde, t) that propagates into the LBM subdomain (see Fig. 1) to
evolve the LBE (4) in xlbe from t to t + ∆t. We will use the analytical slaving
relations (9)–(10) or the numerical approximation (11) by the CR scheme to derive
the distributions at the interface. In the next sections we discuss both strategies.

4.1 Implementation using Chapman-Enskog Relations

The key observation is that the PDE (2) simulates “directly” from t to t+∆t, while
the LBE (4) executes in two phases: first, collisions and reactions to go from t to
t⋆ and secondly, propagation of the post-collision distributions f ⋆

i to get from t⋆ to
t + ∆t. Thus we actually need the post-collision value f ⋆

1 (xpde, t
⋆) rather than the

value f1(xpde, t).
We first reconstruct f1(xpde, t) from the PDE density using the Chapman-Enskog

relations up to first order (9) as in [2, 3]

f1(xpde, t) = f
[0]
1 (xpde, t) + f

[1]
1 (xpde, t)

=
1

3
ρ(xpde, t) −

∆x

3ω

ρ(xlbe, t) − ρ(xpde − ∆x, t)

2∆x
,

(12)

where the continuous derivative ∂ρ(xpde, t)/∂x is discretized with central differences
(cf. Sect. 2.3). The value ρ(xlbe, t) is obtained from the LBM domain using (6).

Afterwards, the corresponding post-collision value f ⋆
1 (xpde, t

⋆) is computed from
(12) using the LBE:

f⋆
1 (xpde, t

⋆) = (1 − ω)f1(xpde, t) +
ω

3
ρ(xpde, t) +

∆t

3
F (ρ(xpde, t)) . (13)
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Finally, it is this value that is propagated to xlbe, i.e.

f1(xlbe, t + ∆t) = f⋆
1 (xpde, t

⋆) . (14)

From now on, we refer to (12)–(14) as the CE-1 coupling scheme. Note that the
outgoing post-collision value f⋆

−1(xlbe, t
⋆) that enters the PDE domain is never used.

Below, we define variants of the above coupling scheme using additional or fewer

terms in the Chapman-Enskog expansion. By adding the term f
[2]
1 (xpde, t) (10)

(after appropriate discretization with central finite differences), i.e.

f
[2]
1 (xpde, t) = −

(ω − 2)

18ω2

(

ρ(xlbe, t) − 2ρ(xpde, t) + ρ(xpde − ∆x, t)
)

, (15)

to (12), we have a second order local coupling scheme (denoted by CE-2). For
reasons of comparison only, we also construct a locally zeroth order coupling scheme
(CE-0) by replacing (12) with

f1(xpde, t) = f
[0]
1 (xpde, t) =

1

3
ρ(xpde, t) . (16)

In both cases, we proceed afterwards with (13) and (14) as above.

For the above reconstruction schemes, the local error at the interface is defined
as the dominant term left out in the Chapman-Enskog expansion. For example, the

CE-1 scheme produces a second order interface error related to f
[2]
1 (xpde, t) (10) in

each time step. In Sect. 5, we study the propagation of this error throughout the
spatial domain.

4.2 Implementation using Constrained Runs

As stated in Sect. 3, the CR scheme produces a first order accurate approximation
of the distribution functions. As an alternative to the procedure from Sect. 4.1, we
can thus replace (12) with Algorithm 1 and apply (13) and (14) to the result.

Since information in the (explicit) LBE (4) propagates over only one lattice site
in each iteration, Algorithm 1 requires initial density values on a sublattice with at
least 2K + 1 lattice sites, symmetrically distributed around xpde, where K is the
number of iterations needed for convergence of the algorithm. Arbitrary boundary
conditions can be used on this sublattice because the boundary information will not
have reached xpde within K iterations.

Alternatively, one can drop the outer lattice sites (and distribution functions)
during propagation in each iteration to obtain a funneled scheme. Here we keep
only the information streaming towards xpde. Again it is important that there are
at least 2K + 1 initial sites, symmetrically positioned around xpde. Note that this
funneled scheme decreases the amount of work with a factor two. On the other
hand, this implementation requires changes to the propagation step of the LBM in
Algorithm 1, which may not be desirable.

The number of constrained runs K can be obtained a-priori by a preliminary
simulation on (part of) the domain with Algorithm 1 to observe its convergence
(see also [36]). The amount of work needed by the CR scheme is on the order of K2

lattice site updates. This can be an expensive overhead since the scheme has to be
used in between each time step ∆t. Of course, for situations where the analytical
slaving relations (12) are unknown or difficult to obtain analytically, it is the only
alternative.
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5 Error Analysis at Steady State

In this section, we derive closed expressions for the global spatial discretization error
E(x) of the hybrid steady state solution ρ(x) defined by

ρ(x) = ρc(x) + E(x) , (17)

with ρc(x) the exact steady state solution of (1). In Sect. 5.1 and Sect. 5.2 we study
CE-0 respectively CE-1 coupling. As the coupling with CR is also first order correct
at the interface, the expressions in Sect. 5.2 will hold approximately. We use an
appropriate example for each section. For CE-0 coupling, we consider pure diffusion.
For CE-1 coupling, we use a reaction-diffusion system with constant reaction term.
Both systems are provided with Dirichlet boundary conditions. Since the exact
steady state solution of these model problems has zero second (respectively third)
and higher order spatial derivatives, we expect that the global error is only related to
the first (respectively second) derivative. The local error made in (16) respectively
(12) concerns the same order of spatial derivatives. We discuss the practical use
and generalization of these error expressions in Sect. 5.3. Finally, in Sect. 5.4, we
study how the CE-1 results can be extended to a non-linear system.

5.1 Error using CE-0 Coupling for Pure Diffusion

Consider the purely diffusive system defined by (1) with F (ρ(x, t)) = 0 and Dirichlet
boundary conditions. The evolution of density over one time step in the point xlbe

closest to the interface in the LBM domain (see Fig. 1) is obtained by summing (4)
over all distributions

ρ(xlbe, t + ∆t) = (1 − ω)
(

f1(xpde, t) + f0(xlbe, t) + f−1(xlbe + ∆x, t)
)

+
ω

3

(

ρ(xpde, t) + ρ(xlbe, t) + ρ(xlbe + ∆x, t)
)

.
(18)

Here, f1(xpde, t) has the value (16).
The steady state solution ρc(x) of (1) is a straight line connecting the boundary

values. Second and higher order spatial derivatives of the solution (both exact and
hybrid) are zero. As a consequence, the distributions on the LBM domain can be
written as functionals up to first order in ρ (8)–(9). Substitution in (18) leads to

ρ(xlbe, t+∆t) =
1

3

(

ρ(xpde, t)+ρ(xlbe, t)+ρ(xlbe+∆x, t)
)

+(1−ω)
∆x

3ω

∂ρ(xlbe + ∆x, t)

∂x
.

(19)
At steady state, we have ∂ρ(x, t)/∂t = 0 and ρ(xlbe, t + ∆t) = ρ(xlbe, t). Equation
(19) reduces to

0 = ρ(xpde) − 2ρ(xlbe) + ρ(xlbe + ∆x) + (1 − ω)
∆x

ω

dρ(xlbe + ∆x)

dx
. (20)

For this model problem, (2) holds exactly for (discretized) ρc(x) because the FD
spatial discretization error is zero (see Sect. 2.1). We subtract (2) at steady state
with F (ρc(x)) = 0 from (20) to obtain

0 = E(xpde) − 2E(xlbe) + E(xlbe + ∆x) + (1 − ω)
∆x

ω

dρ(xlbe + ∆x)

dx
. (21)

To obtain derivatives of the exact instead of the hybrid solution, we substitute (17)
into (21) and get

0 = 2ωE(xpde) − (1 + 3ω)E(xlbe) + 2ωE(xlbe + ∆x)

+ (1 − ω)E(xlbe + 2∆x) + (1 − ω)2∆x
dρc(xlbe + ∆x)

dx
,

(22)
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where we discretized dE(xlbe + ∆x)/dx with central differences around xlbe + ∆x.
Away from the interface inside the LBM domain, i.e. away from the instan-

taneous local error source at xpde induced by (16), the incoming f1(x − ∆x) is
described by (8)–(9). Using the same reasoning that brought us from (18) to (20),
we obtain the following equation for ρ(x)

0 = ρ(x−∆x)−2ρ(x)+ρ(x+∆x)+(1−ω)
∆x

ω

(

dρ(x + ∆x)

dx
−

dρ(x − ∆x)

dx

)

. (23)

Since the exact ρc(x) is analytic on the whole domain and since E(x) is analytic
away from xlbe, we use central differences for their derivatives on the LBM domain
as follows

d{ρc, E}(x + ∆x)

dx
−

d{ρc, E}(x − ∆x)

dx
= 2∆x

d2{ρc, E}(x)

dx2
. (24)

Subtracting (2) at steady state from (23) and substituting (17) and (24), we obtain

0 = E(x − ∆x) − 2E(x) + E(x + ∆x) + (1 − ω)
2∆x2

ω

d2E(x)

dx2
, (25)

where the term proportional to d2ρc(x)/dx2 = 0 cancels because (1) holds for ρc.
From (25) it follows that the global error on the LBM domain is a solution of

0 = E(x − ∆x) − 2E(x) + E(x + ∆x) , (26)

which means the discrete error points lie on a straight line. Using (2) and (17), it
can be checked easily that the same holds on the PDE domain. Call s1 and s2 the
slopes of the lines on the PDE respectively LBM domain. We then have

E(xpde) = E(xlbe) − s1∆x , E(xlbe + ∆x) = E(xlbe) + s2∆x . (27)

Since (2) is used up to xpde, the top of this tent-like function lies at xlbe. Further-
more, with Dirichlet boundary conditions, we have E(0) = 0 and E(L) = 0. The
slopes s1 and s2 are then related by s1L1 = −s2L2 with L1 = xlbe and L2 = L−L1.
By substituting (27) into (22), an expression for s1 can be found.

Putting all of this together, we can conclude that the maximal error is attained
at L1 = xlbe and has the value E0 = E(xlbe) = s1L1, i.e.

E0 =
L1L2

L1 + L2ω
(1 − ω)

dρc(xlbe + ∆x)

dx
. (28)

5.2 Error using CE-1 Coupling for Constant Reaction Term

Here, we consider a reaction-diffusion system (1) with constant reaction term and
Dirichlet boundary conditions. The density in xlbe evolves in each time step as

ρ(xlbe, t + ∆t) = (1 − ω)
(

f1(xpde, t) + f0(xlbe, t) + f−1(xlbe + ∆x, t)
)

+
ω

3

(

ρ(xpde, t) + ρ(xlbe, t) + ρ(xlbe + ∆x, t)
)

+ ∆tF (ρ(xlbe, t))

+
∆t

3

(

F (ρ(xpde, t)) − 2F (ρ(xlbe, t)) + F (ρ(xlbe + ∆x, t))
)

,

(29)

where f1(xpde, t) is computed with (12). The last line in (29) equates to zero when
F (ρ) is constant and can be dropped.

The exact steady state solution ρc(x) now has a parabolic shape. Third and
higher order spatial derivatives of the solution are zero. The distributions on the
LBM domain can thus be written as functionals up to second order in ρ (8)–(10). It
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can be checked that substitution of (12) for f1(xpde) and (8)–(10) for f0(xlbe) and
f−1(xlbe + ∆x) in (29) at steady state results in

0 =
1

3

(

ρ(xpde) − 2ρ(xlbe) + ρ(xlbe + ∆x)
)

+ (1 − ω)
∆x

3ω

(

dρ(xlbe + ∆x)

dx
−

dρ(xpde)

dx

)

+ ∆tF (ρ(xlbe)) + (1 − ω)
∆x2

18ω2
(ω − 2)

(

2
d2

+ρ(xlbe)

dx2
−

d2ρ(xlbe + ∆x)

dx2

)

.

(30)

Note that d2
+ρ(xlbe)/dx2 is defined on the LBM domain only (the hybrid ρ(x) is non-

differentiable at xlbe and right hand differences should be used when discretizing).
As in Sect. 5.1, the FD spatial discretization error of (2) is zero because all

higher-than-second derivatives are zero. Consequently, (2) holds exactly for ρc(x).
Multiplying this expression by 1/3 and subtracting the result from (30), we obtain
the following for the error at steady state

0 =
1

3

(

E(xpde) − 2E(xlbe) + E(xlbe + ∆x)
)

+ ∆tF (ρ(xlbe))

−
∆x2

3D
F (ρc(xlbe)) + (1 − ω)

∆x

3ω

(

dρ(xlbe + ∆x)

dx
−

dρ(xpde)

dx

)

+ (1 − ω)
∆x2

18ω2
(ω − 2)

(

2
d2

+ρ(xlbe)

dx2
−

d2ρ(xlbe + ∆x)

dx2

)

.

(31)

We now substitute (17) into (31). Since ρc(x) is analytic on the whole domain, we
can use (24) around xlbe for its derivatives. As the reaction terms are independent of
ρ for our model problem, they both cancel with (24) in (31) because (1) holds for ρc.
By contrast, we can not use (24) around xlbe for the derivatives of E(x) because we
expect E(x) to be non-differentiable at xlbe. Instead, we discretize dE(xlbe+∆x)/dx
and dE(xpde)/dx separately with central differences around xlbe +∆x and xpde. We
then obtain a relation in terms of derivatives of the exact solution

0 = (1 − ω)E(xpde − ∆x) + 2ωE(xpde) − 2(1 + ω)E(xlbe) + 2ωE(xlbe + ∆x)

+ (1 − ω)E(xlbe + 2∆x) + (1 − ω)
∆x2

3ω
(ω − 2)

(

2
d2ρc(xlbe)

dx2
−

d2ρc(xlbe + ∆x)

dx2

)

+ (1 − ω)
∆x2

3ω
(ω − 2)

(

2
d2

+E(xlbe)

dx2
−

d2E(xlbe + ∆x)

dx2

)

.

(32)

Away from the interface, there is no instantaneous local error contribution (12)
and the incoming f1(x − ∆x) can be written as (8)–(10). Inside the LBM domain,
we have an equation for ρ(x) very similar to (30), except that it has a contribution

−(1 − ω)
∆x2

18ω2
(ω − 2)

(

d2ρ(x − ∆x)

dx2
− 2

d2ρ(x)

dx2
+

d2ρ(x + ∆x)

dx2

)

, (33)

instead of just the last two terms in (30). In (33), the terms between brackets can be
replaced by the shorthand ∆x2d4ρ(x)/dx4. When substituting (17) into (33), we get
a term proportional to d4ρc(x)/dx4 = 0 and one proportional to d4E(x)/dx4. The
latter is explicitly presumed to be negligible here. Skipping a few steps elaborated
on previously, we find that, except for xlbe, the global error E(x) on both the LBM
and PDE domain is a solution of (26). Again, we obtain a tent-shaped error function
with top at xlbe and the relation s1L1 = −s2L2 between the slopes s1 and s2. By
substituting (27) into (32), an expression for s1 can be found. Because E(x) is
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piecewise linear, its second derivatives are zero and the last term in (32) cancels.
The maximal error is attained at L1 = xlbe and has the value E1 = E(xlbe) = s1L1

E1 =
L1L2

L
(1 − ω)

∆x

6ω
(ω − 2)

(

2
d2ρc(xlbe)

dx2
−

d2ρc(xlbe + ∆x)

dx2

)

. (34)

5.3 Discussion

When ω is kept constant, the global steady state error (28) of the CE-0 scheme
remains constant as ∆x decreases; i.e. it is of zeroth order in ∆x. This is opposed
to the instantaneous local error made in each time step which is of first order (cf.
Sect. 4.1). Similarly, the global error (34) of the CE-1 scheme is of first order in ∆x
for constant ω, while the local error is of second order. In this paper, we will not
derive a closed expression for the error of the CE-2 coupling scheme, but we verify
numerically in Fig. 5 (left) that using the CE-2 coupling scheme (with a third order
local error) also leads to an accuracy loss of one order, i.e. we obtain a second order
global error. We also show in Sect. 6 that the results with the CE-1 scheme are
sufficiently accurate for practical computations.

By substituting (27) into (21) instead of (22) we can obtain an alternate expres-
sion for E0 in terms of the derivative of the hybrid solution

E0 =
L1L2

L
(1 − ω)

1

ω

dρ(xlbe + ∆x)

dx
. (35)

For CE-1 coupling, the derivatives in (34) can be replaced by those of the hybrid
density also because E(x) is piecewise linear (compare (31) and (32)). Such ex-
pressions are more practical than (28) and (34) to compute the a-posteriori error of
the hybrid system. As ρc(x) = ρ(x) − E(x), the E(x) values could even be used to
correct the hybrid solution.

In the above accuracy analysis, we studied the propagation of a highly localized
error in space and its influence on the global error on the full domain. We focused
on LB/FD hybrid models, but the problem is more general. Loosely stated, we solve
the following continuous point source equation for the global steady state error E(x)

d2E(x)

dx2
+ F̃ (E(x)) = A∆xpδ(x − xlbe) , (36)

where F̃ (E(x)) is a problem-specific force term; the power p is determined by the
coupling scheme and the Dirac delta function δ(x − xlbe) represents the localized
error source at the interface xlbe. The amplitude A is also problem-specific and
contains derivatives of the solution around xlbe. Equation (36) can be retrieved
from the combination of (21) and (26) for CE-0 coupling and (32)–(26) for CE-1
coupling.

5.4 Error using CE-1 Coupling for Non-Linear Reaction Term

In this section, we study how the results from Sect. 5.2 extend to reaction-diffusion
systems with a reaction term which is non-linear in ρ. The Fisher equation (1) with
reaction term F (ρ) = αρ(1− ρ), α ∈ R and Dirichlet boundary conditions serves as
our model problem.

Again, we focus on the interface first. The evolution of ρ(xlbe, t) in one time
step is still described by (29) with f1(xpde, t) given by (12). However, the last line
in (29) can not be dropped.

Because of the non-linearity, higher order spatial derivatives of the solution will
be non-zero. This leads to two main approximations. First, substitution of the
Chapman-Enskog slaving relations (8)–(10) up to second order in (29) at steady
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state still leads to (30) (including the last line of (29)) but (30) is now only an
approximation. Second, (2) will no longer hold exactly for ρc(x) because of the now
non-zero FD discretization error. Therefore, we redefine E(x) as

ρ(x) = ρFD(x) + E(x) , (37)

with ρFD(x) the FD solution of (2). We then subtract (2) from (30) to obtain
equation (31) for E(x) defined by (37).

We proceed further from (31) by substituting (37). For the Fisher equation, the
dominant force terms in (31) result in a contribution

(

∆t −
∆x2

3D

)

F (ρFD(xlbe)) + ∆tα
(

1 − 2ρFD(xlbe)
)

E(xlbe) − ∆tαE2(xlbe) . (38)

As in Sect. 5.2, the first term in (38) cancels with (24). For practical computations,
(37) can be substituted in the remainder of (38) to obtain an expression which is
independent of ρFD(xlbe). The approximate equation for E(xlbe) is then given by

0 = (1 − ω)E(xpde − ∆x) + 2ωE(xpde) − 2(1 + ω)E(xlbe) + 2ωE(xlbe + ∆x)

+ (1 − ω)E(xlbe + 2∆x) + 6ω∆tα
(

1 − 2ρ(xlbe)
)

E(xlbe) + 6ω∆tαE2(xlbe)

+ 2ω∆t
(

F (ρ(xpde)) − 2F (ρ(xlbe)) + F (ρ(xlbe + ∆x))
)

+ (1 − ω)
∆x2

3ω
(ω − 2)

(

2
d2

+ρ(xlbe)

dx2
−

d2ρ(xlbe + ∆x)

dx2

)

,

(39)

where we kept the last line in terms of hybrid derivatives for computational purpose
(we want to compute the a-posteriori error).

Away from the interface inside the LBM domain, E(x) is an approximate so-
lution of (39) without the last line. Alternatively, we can use (24) for the first
derivatives of E(x) and find that E(x) is the solution of

0 = (2 − ω)
(

E(x − ∆x) − 2E(x) + E(x + ∆x)
)

+ 3ω∆tα
(

1 − 2ρ(x)
)

E(x)

+ 3ω∆tαE2(x) + ω∆t
(

F (ρ(x − ∆x)) − 2F (ρ(x)) + F (ρ(x + ∆x))
)

.
(40)

On the PDE domain, the hybrid ρ(x) and ρFD(x) are approximate solutions of
(2) at steady state (up to the FD discretization error). Subtracting these expressions
from each other (and using relation (5) between D and ω), we obtain an equation
similar to (40)

0 =
2 − ω

3ω

(

E(x−∆x)−2E(x)+E(x+∆x)
)

+∆tα
(

1−2ρ(x)
)

E(x)+∆tαE2(x) . (41)

The system, consisting of (41) on the PDE subdomain, (39) at xlbe and (40) on
the remainder of the LBM domain, can be solved for E(x) with boundary conditions
E(0) = E(L) = 0. As a further approximation, the non-linear term ∆tαE2(x) can
be dropped. Otherwise, Newton’s method can be used. In our tests for Example
6.3, the latter had a negligible impact on the result.

6 Numerical Results

In this section, we construct the hybrid LB/FD models from Sect. 4 for several
reaction-diffusion examples with appropriate Dirichlet boundary conditions. For
the LBM, the boundary condition is implemented as in [36]. We also compute the
spatial discretization error to illustrate the theoretical results from Sect. 5.
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Figure 2: Hybrid density (left) and corresponding error (right) with respect to the exact
solution at time t = T = 0.3 and at steady state for Example 6.1. Results for CE-0, CE-1
and CR coupling are shown. The square marks the theoretical |E0| value (28). Notice the
scale difference in the right figures. The dotted line denotes the interface.

Example 6.1 (Pure diffusion) Consider the purely diffusive problem (1) with
F (ρ(x, t)) = 0 on the one-dimensional domain [0, L] with Dirichlet boundary con-
ditions ρ(0, t) = 0, ρ(L, t) = 1 and initial condition ρ(x, 0) = 0. The exact time-
dependent solution can be computed as

ρc(x, t) =

∞
∑

n=1

(−1)n 2

nπ
exp

(

−
Dn2π2 t

L2

)

sin
(nπ x

L

)

+
x

L
. (42)

The steady state solution equals ρc(x) = x/L. The same example was used in [2, 3].

In Fig. 2, we plot the hybrid density ρ(x, T ) (left) and the corresponding error
|ρ(x, T )− ρc(x, T )| in absolute value (right) for Example 6.1. Results are shown for
t = T = 0.3 and for t = T = 10, where the latter approximates the steady state.
Parameters are D = 1, L = 1, L1 = 0.5 and K = 10. The number of lattice points
N = 81 (∆x = 1/80) while ∆t = 3.125e-5 such that ω = 1.25 (5). As the steady
state in a purely diffusive problem only has a non-zero first derivative, the errors of
CE-1 and CR coupling die out as time increases (the latter because (11) is proven
first order accurate). The fact that CR coupling is a little less accurate than CE-1
coupling can be attributed to the crude approximation of the time derivative in the
local error made in (11) compared to (10).

Observe that coupling with the CE-0 scheme (16) results in a tent-shaped error
at steady state as predicted in Sect. 5.1. This steady state behavior can also be
observed in [2, 3]. Its maximal value is attained at xlbe = L1 and can be computed
as max |ρ(x)− ρc(x)| = 0.0555, which corresponds up to 13 digits to the theoretical
value |E0| from (28) and (35). It can be checked that this error remains constant
as ∆x is decreased for constant ω.

Next, we compute the discretization error of the CE-1 coupling scheme for Ex-
ample 6.1. For an increasing number of discretization points N = 21, 41, 81, 161,
321, i.e. for decreasing values of ∆x, we compute the hybrid solution at time T = 0.3
(away from the steady state) and compare to the exact solution (42).

Because ∆x and ∆t are interdependent through ω (5), we alter ∆t when de-
creasing ∆x along a refinement path of constant ω. We kept ∆t/∆x2 = 1/5 such
that ω = 1.25. This way, the hybrid solution relaxes in the same way for each
refinement. This is different from the approach taken in [3]. There, the authors fix
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Figure 3: Log-log plot of the discretization error at time T = 0.3 as a function of N for
the hybrid model from Example 6.1 with CE-1 coupling. The hybrid coupling scheme for
our setting (constant ω) is only first order accurate in space (right). Results for variable
ω, both for the implementation with one overlapping site from Albuquerque et al. [2, 3]
(labeled ω var overlap) and our implementation from Sect. 4 (labeled ω var), are shown
to the left, together with the second order behavior of the FD PDE and LBM on the full
domain. Dotted lines with slopes −1 and −2 are added for convenience.

a very small value of ∆t by adjusting the value of ω. In our opinion, this is done to
keep only the error contribution in terms of ∆x dominant. Note that for small ∆t,
ω approximates 2, which is not a very interesting simulation regime.

Figure 3 (right) shows the maximum (infinity) norm of the discretization error
at T = 0.3 using CE-1 coupling for our setting (constant ω). Although we have a
second order error locally in (12), we observe only first order behavior globally as
predicted by (34). To the left, the error obtained with varying ω (and ∆t = 1e-7) is
shown, both for our implementation and for the implementation from [2, 3] (using
one overlapping site and also first order slaving relations (9)). The discretization
error appears to be second order for the first few refinements, as reported in [2, 3],
but for smaller ∆x — the case of interest when looking at discretization errors — this
is clearly no longer the case. In Fig. 5 we will come back to this. For completeness,
we also show the (second order) error of both the LBM (with constant ω) and PDE
simulated independently on the full domain. As a guide to the eye, dotted lines
with slope −2 (left) and −1 (right) are drawn. We observe in the left figure that
the use of an overlapping site hardly changes the results. Note that the result with
an overlapping site and constant ω is also first order accurate (not shown).

As the steady state for pure diffusion only has a non-zero first derivative, we
now turn our attention to an example with a non-zero second derivative to study
the steady state error of the CE-1 coupling scheme.

Example 6.2 (Constant reaction term) Consider a reaction-diffusion system
(1) with constant reaction term F (ρ(x, t)) = 2D. We impose Dirichlet boundary
conditions ρ(0, t) = ρ(L, t) = 0 and initial condition ρ(x, 0) = 0. The exact solution
can be derived as

ρc(x, t) =

∞
∑

n=0

−8L2

(2n + 1)3π3
exp

(

−
D(2n + 1)2π2 t

L2

)

sin

(

(2n + 1)π x

L

)

+ x(L − x).

(43)
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Figure 4: Error of the hybrid density w.r.t. the exact solution (43) at time t = T = 0.3
(left) and at steady state (right) for Example 6.2. The square marks the theoretical |E1|
value (34). The dotted line denotes the interface.

The steady state solution is ρc(x) = x(L − x) with second spatial derivative −2.

Figure 4 shows the error of the hybrid solution from Example 6.2 at time t =
T = 0.3 (left) and at steady state (T = 10) (right). Parameters are D = 1, L = 1,
L1 = 0.25, K = 13, ∆x = 1/80 and ∆t = 3.125e-5. In addition to the local
coupling with CE-1 and CR, we also implemented the second order CE-2 coupling
scheme (15). A few observations can be made. First, the steady state error for
CE-1 coupling behaves as predicted in Sect. 5.2, with |E1| = 1.172e-4. Second,
CR coupling is more accurate than CE-1 coupling for this example (compare to
Fig. 2, where we observed the opposite). This can be explained by comparing
(11) to (9)–(10). We see that the CR scheme correctly computes the force term in

the second order contribution f
[2]
1 (xpde, t), which CE-1 coupling obviously does not

do. Finally, because the steady state solution for this model problem has non-zero
spatial derivatives up to second order only and ∂ρ/∂t = 0 in (10) and ρ̃ − ρ(0) = 0
in (11), the error for both the CE-2 as well as the CR coupling scheme approaches
zero as time increases.

In Fig. 5, we plot the infinity norm of the discretization error using CE-1 coupling
as a function of the number of discretization points N . Again, we choose ∆t such
that ω = 1.25 for all ∆x. Shown left is the steady state discretization error (at
T = 10) for our setting compared to the expression for the maximum defined by (34).
These values correspond up to at least 13 digits. The global error behavior is again
first order in space. Figure 5 also shows numerically that the global discretization
error for CE-2 coupling is of second order when ω is kept constant, which confirms
our statement in Sect. 5.3. It follows that the global error of the CR scheme at
steady state is second order also.

The right panel of Fig. 5 shows the discretization error of the CE-1 hybrid model
with variable ω and constant but small ∆t = 1e-7 (for our implementation without
overlap). As the simulation time is increased from T = 0.04 over T = 0.3 and 0.6 to
T = 10 (the steady state), we see that the apparent second order behavior breaks
down and is merely an artefact of the choice for a constant ∆t. At steady state the
error is proportional to N = 1/∆x. In this case also, the theoretical E1 value (34)
is in excellent accordance with the numerical steady state error.

Example 6.3 (Non-linear system) Consider the Fisher equation defined by (1)
with F (ρ(x, t)) = 50ρ(x, t)(1 − ρ(x, t)). We apply Dirichlet boundary conditions
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Figure 5: Log-log plot of the discretization error of the hybrid model with CE-1 coupling
for Example 6.2 w.r.t. N . Left: the steady state error computed with our CE-1 hybrid
model as well as the error at T = 0.3 for CE-2 coupling. Right: The error for the CE-1
hybrid model with variable ω (and no overlap) at respective times T = 0.04, 0.3, 0.6 and
10 (the latter at steady state). It is clear that the initially apparent second order is an
artefact. In both figures, expression (34) for the maximal CE-1 error is also plotted.
Dotted lines with slopes −1, −2 (left) and −2, +1 (right) are added as a guide to the eye.

ρ(0, t) = ρ(L, t) = 0 and use ρ(x, 0) = x(L − x) as initial condition. The exact
steady state solution is approximated by the PDE (or the LBM) solution on the full
domain for fine ∆x = 1/2560.

We choose L1 = 0.6 and use the same values as in the previous two examples
for the other system parameters. In Fig. 6, we plot the steady state error E(x) of
the CE-1 hybrid model for Example 6.3, computed numerically from the equations
described in Sect. 5.4. To the left, we compare E(x) to the density difference of
a) the hybrid and “exact” solution and b) the hybrid and PDE solution on the
full domain for ∆x = 1/80. To the right, we compare E(x) to a measure for
the modeling error, being the difference between the solution of a LBM and PDE
simulation on the full domain for ∆x = 1/80.

While the hybrid error is again non-differentiable at xlbe = L1, its maximum is
now clearly attained elsewhere due to the non-linearity of the system. Because we
had to redefine E(x) to (37) in Sect. 5.4, the E(x) curve is a better approximation
of the error w.r.t. the FD solution for ∆x = 1/80 than w.r.t. the exact solution. If
we compare E(x) to the modeling error between LBM and PDE (Fig. 6 right), we
see that the accuracy of CE-1 coupling is sufficient for practical computations.

Finally, we plot ||ρ(x) − ρc(x)||∞ for the CE-1 hybrid model at T = 10 (the
steady state) in Fig. 7. On the bottom axis, we increased the spatial resolution to
N = 1281. We compare these values to the measure for the modeling error defined
before and to |ρ(xlbe) − ρc(xlbe)|. Clearly, the second order modeling error is the
dominant contribution to the error for values of ∆x up to 1/160. The maxima of
the hybrid and modeling error agree reasonably well and are attained at the same
positions (see Fig. 6). For values of ∆x = 1/320 and smaller (i.e. N > 161), the
first order contribution (due to the spatial coupling) in the global error becomes
predominant and its maximum is attained at the interface xlbe as Fig. 7 indicates.
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Figure 6: Steady state error E(x) of the CE-1 hybrid model for the Fisher Example 6.3
computed as described in Sect. 5.4. Also shown to the left: the difference ρ(x) − ρc(x),
with ρc(x) approximated by the FD PDE solution on a very fine lattice (labeled HYB -
FINE) and the difference of the hybrid w.r.t. the FD density for ∆x = 1/80 (labeled HYB
- FD). To the right, E(x) is compared to the modeling error, i.e. the density difference
between the LBM and FD PDE on the full domain for ∆x = 1/80 (labeled LBM - FD).
The dotted line denotes the interface.

More numerical results for a growth-diffusion problem and a reaction-diffusion
problem with two interacting species can be found in [37].

7 Conclusions

In this paper, we studied the hybrid models obtained by spatially coupling a lattice
Boltzmann model (LBM) and a finite difference discretization (FD) of a partial
differential equation (PDE), each defined on separate regions of the spatial domain.
We focused on the analysis of the spatial discretization error of the hybrid models
for reaction-diffusion systems on a one-dimensional domain.

At the interface between the two models, we have to map the PDE density to
more LBM distribution functions. This mapping problem can be solved analytically
with relations derived from the Chapman-Enskog expansion that express the dis-
tribution functions as a functional of the density and its derivatives — an idea first
introduced in [2, 3] — or numerically with the iterative constrained runs scheme
[19, 18] that approximates these relations numerically up to first order (and up to
second order at steady state) [36]. The second method is useful when the Chapman-
Enskog based relations are unavailable or difficult to obtain analytically, but is com-
putationally much more expensive. At the interface, we used the Chapman-Enskog
relations up to zeroth (labeled CE-0), first (CE-1) and second (CE-2) order. The
local error at the interface is then defined as the dominant term left out in this
expansion.

Most importantly, we have shown that the global spatial discretization error of
the hybrid model is one order less accurate than the local error made at the interface.
We derived closed expressions for the global steady state discretization error of the
hybrid model for the CE-0 and CE-1 coupling scheme. Furthermore, we have shown
how these results can be extended when the reaction term is non-linear by deriving
approximate equations from which the steady state error can be computed. The
results were verified numerically for several model problems. We also showed that
the accuracy of the CE-1 scheme is sufficient for most practical computations by
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Figure 7: Log-log plot of the steady state error of the hybrid model with CE-1 coupling
for Example 6.3 w.r.t. N . The labels denote the same as in Fig. 6. In addition, the values
|ρ(xlbe) − ρc(xlbe)| are plotted. The dotted lines with slopes −2 and −1 guide the eye.

factoring in the modeling error between the LBM and PDE. On the other hand,
only the use of the CE-2 scheme assures a second order error behavior globally.

For analysis purposes, we used the same space and time step ∆x and ∆t on
both sublattices. The focus was on the details of the coupling and how information
is exchanged. The use of different ∆x and ∆t values in both regions optimized to
local stability properties would be a further development, see [5, 9, 15, 16, 23, 26,
31, 33, 38] and [6, 7, 27, 32, 34, 39] for guidelines. Also, we used LBM and PDE
models which are equivalent in the macroscopic limit. However, we expect that the
results can be carried over to LB/FD hybrid models where the submodels describe
distinct dynamical behavior. It is important that the interface is situated in an
intermediate region where the evolution is described well by both the LBM and
PDE such that the relations from the Chapman-Enskog expansion are valid there.
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