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ABSTRACT
The properties of the population of merging binary black holes encode some of the uncertain
physics underlying the evolution of massive stars in binaries. The binary black hole merger rate
and chirp-mass distribution are being measured by ground-based gravitational-wave detectors.
We consider isolated binary evolution, and explore how accurately the physical model can be
constrained with such observations by applying the Fisher information matrix to the merging
black hole population simulated with the rapid binary-population synthesis code COMPAS.
We investigate variations in four COMPAS parameters: common-envelope efficiency, kick-
velocity dispersion and mass-loss rates during the luminous blue variable, and Wolf–Rayet
stellar-evolutionary phases. We find that ∼1000 observations would constrain these model
parameters to a fractional accuracy of a few per cent. Given the empirically determined binary
black hole merger rate, we can expect gravitational-wave observations alone to place strong
constraints on the physics of stellar and binary evolution within a few years. Our approach
can be extended to use other observational data sets; combining observations at different
evolutionary stages will lead to a better understanding of stellar and binary physics.
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1 IN T RO D U C T I O N

Gravitational waves from binary black hole coalescences (Abbott
et al. 2016a, 2017a,b,c) have recently been observed by the ground-
based gravitational-wave detectors of the Advanced Laser Interfer-
ometer Gravitational-Wave Observatory (aLIGO; Aasi et al. 2015)
and Advanced Virgo (Acernese et al. 2015). These observations pro-
vide a revolutionary insight into the properties of the population of
binary black holes. The catalogue of detections will grow rapidly as
the instruments continue to improve their sensitivity (Abbott et al.
2018). In this paper, we analyse how such a catalogue will make
it possible to infer the physics of binary evolution by performing
inference on parametrized population synthesis models.

A number of channels for the formation of binary black holes have
been proposed (see e.g. Abbott et al. 2016c; Miller 2016; Mandel
& Farmer 2017, for reviews). In this study, we assume that all
merging binary black holes form through classical isolated binary
evolution via a common-envelope phase (Postnov & Yungelson
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2014; Belczynski et al. 2016). While all events observed to date are
consistent with having formed through this channel (Eldridge et al.
2017; Stevenson et al. 2017a; Giacobbo, Mapelli & Spera 2018), a
future analysis would need to hierarchically include the possibility
of contributions from multiple channels (e.g. Stevenson, Berry &
Mandel 2017b; Talbot & Thrane 2017; Zevin et al. 2017).

Previous efforts to explore how stellar and binary population
synthesis models could be constrained with gravitational-wave ob-
servations (e.g. Bulik & Belczyński 2003; Bulik, Belczyński &
Rudak 2004; Mandel & O’Shaughnessy 2010; Gerosa et al. 2014;
Stevenson, Ohme & Fairhurst 2015) have typically focused on a
discrete set of models, usually obtained by varying one evolution-
ary parameter at a time (e.g. Voss & Tauris 2003; Dominik et al.
2012; Mennekens & Vanbeveren 2014). In this paper, we consider
the realistic scenario in which the astrophysical model is described
by a multidimensional set of continuous parameters which may
be strongly correlated. We ask how well we could constrain these
parameters with a large observational data set.

The main tool we use to tackle this problem is the Fisher (informa-
tion) matrix. Fundamentally, if we make an observation of a process,
and we have a model for that process that depends on some parame-
ters, then the Fisher matrix quantifies how much we can learn about
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the parameters in our model from the observation we made. We de-
rive an expression for the Fisher matrix for binary-population syn-
thesis. We use this to quantify how much we can learn about the pop-
ulation parameters from observations of binary black holes using
the current generation of ground-based gravitational-wave detec-
tors. While we concentrate on gravitational-wave observations here,
the method is applicable to other data sets, and the best constraints
may come from combining multiple complementary observations.

We use Fisher matrices to demonstrate that it may be possible to
precisely measure the population parameters in binary-population
synthesis models with ∼1000 observations of binary black hole
mergers. At the expected rate of gravitational-wave detections (Ab-
bott et al. 2017a), this could be within a few years of the detectors
reaching design sensitivity (∼2–3 yr at design sensitivity for our
fiducial model); the observing schedule for gravitational-wave ob-
servatories is given in Abbott et al. (2018).

We first give an introduction to our binary population synthesis
model in Section 2, together with a description of the model pa-
rameters we wish to infer using gravitational-wave observations.
In Section 3, we demonstrate how we transform the raw outputs
of our binary population synthesis model by considering observa-
tional selection effects and redshift- and metallicity-dependent star
formation rates. In Section 4, we introduce the statistical tools used
in this paper: (i) the likelihood function representing the probabil-
ity of an observation given our model; (ii) a method for including
measurement uncertainties in observations; and (iii) the Fisher ma-
trix, which quantifies the sensitivity of our model to changes in its
underlying parameters. The results of applying this methodology to
binary population synthesis models are presented and discussed in
Section 5, and we discuss our conclusions in Section 6.

2 POP U LATION SYNTHESIS O F MASSIVE
STELLAR BINARIES

Many of the details of binary evolution are currently uncertain
(Postnov & Yungelson 2014; De Marco & Izzard 2017). Popula-
tion synthesis models efficiently, albeit approximately, simulate the
interactions of a large number of binaries in order to capture pop-
ulation wide behaviour and thoroughly explore the space of initial
conditions. Uncertainties in the physics underlying isolated binary
evolution are captured within population synthesis models through
tunable parameters, which we call population parameters. In this pa-
per we focus on four population parameters which have an impact
on binary black hole formation. We use the rapid population syn-
thesis code COMPAS.1 This uses the stellar evolutionary models of
Hurley, Pols & Tout (2000). Final black hole masses are calculated
using the delayed model of Fryer et al. (2012). With the exception
of the variations to the four population parameters we describe in
Section 2.1, we employ the Stevenson et al. (2017a) fiducial model
throughout this paper.

2.1 Population parameters

2.1.1 Supernova kick velocity

The asymmetric ejection of matter (Janka & Mueller 1994; Bur-
rows & Hayes 1996; Janka 2013) or emission of neutrinos (Woosley
1987; Bisnovatyi-Kogan 1993; Socrates et al. 2005) during a super-
nova can provide a kick to the stellar remnant. This birth kick is

1Further details and sample COMPAS simulations are available at www.sr
.bham.ac.uk/compas/.

on the order of hundreds of km s−1 for neutron stars (Hobbs et al.
2005a). The typical strength of supernova kicks imparted to black
holes is not well constrained observationally (Wong et al. 2014;
Mandel 2016; Repetto, Igoshev & Nelemans 2017), although they
may be reduced relative to neutron star through the accretion of
material falling back on to the stellar remnant (Fryer et al. 2012).

In COMPAS, the strength of supernova kicks is parametrized
using the dispersion parameter for a three-dimensional Maxwell–
Boltzmann distribution σ kick. A kick velocity vkick is drawn from
the distribution

P (vkick) =
√

2

π

v2
kick

σ 3
kick

exp

(−v2
kick

2σ 2
kick

)
. (1)

Alternative parametrizations for the supernova kick have been con-
sidered by Bray & Eldridge (2016), who did not find sufficient evi-
dence to prefer them; here, we consider only continuous variations
to model parameters, including the kick velocity in the Maxwell–
Boltzmann distribution.

The kick is modified to account for mass fallback, so that the
final kick imparted to the black hole is

v∗
kick = (1 − ffb)vkick, (2)

where ffb is the fraction of matter that falls back on to the black hole,
calculated according to the delayed model of Fryer et al. (2012).
For carbon–oxygen core masses greater than 11 M�, ffb = 1 and
so many heavy black holes receive no natal kick in this model
(Belczynski et al. 2016; Stevenson et al. 2017a). Whilst observations
of the proper motions of isolated Galactic pulsars (Hobbs et al.
2005b) suggest a value of σ kick = 265 km s−1, we choose a fiducial
σ kick = 250 km s−1 to match Stevenson et al. (2017a).

2.1.2 Common-envelope efficiency

When mass transfer is dynamically unstable and initially proceeds
on the very short dynamical time-scale of the donor, a shared,
non-corotating common envelope is formed around the donor core
and the companion (Paczynski 1976). The details of the common-
envelope phase are amongst the least well understood across all
phases of isolated binary evolution (for a review, see Ivanova et al.
2013).

In COMPAS, the classical energy formalism (Webbink 1984) is
employed to parametrize uncertainty in the physics of the common
envelope. When a binary begins a common-envelope phase, each
envelope is bound to its core, with a total binding energy approxi-
mated by

Ebind = −G

[
M1(M1 − Mcore,1)

λCE,1R1
+ M2(M2 − Mcore,2)

λCE,2R2

]
, (3)

where G is Newton’s constant, Mcore, (1,2) are the core masses of
the two stars, M(1,2) and R(1,2) are the stellar masses and radii, re-
spectively, and λCE (1,2) are the corresponding stellar-structure pa-
rameters introduced by de Kool (1990) and are functions of star’s
evolutionary state (e.g. Dewi & Tauris 2000; Kruckow et al. 2016).

The loss of co-rotation between the orbit of the cores and the
common envelope leads to energy dissipation which causes the
cores to spiral in. Some of this lost orbital energy may be eventually
used to eject the common envelope. The efficiency with which this
transfer of energy occurs is uncertain, and is characterized by the
free parameter αCE. In order to determine the separation after the
common-envelope phase, the classical energy formalism compares
the binding energy of the envelope to the energy transferred from
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the orbit �Eorbit so that

Ebind = αCE�Eorbit . (4)

If the binary has sufficient orbital energy to completely expel the
envelope, we consider this a successful common-envelope event.
Unsuccessful ejections lead to a merger before a binary black hole
system is formed. We follow Stevenson et al. (2017a) in assum-
ing that common-envelope phases initiated by main sequence of
Hertzsprung gap donors always lead to mergers (cf. the pessimistic
model of Dominik et al. 2012).

The fiducial choices of the parameters in COMPAS are λCE = 0.1
and αCE = 1.0. We explicitly leave λCE fixed whilst making small
perturbations to αCE; however, this is an issue of labelling, since it
is the product of these two free parameters which is ultimately of
importance to the common-envelope physics (Dominik et al. 2012).

2.1.3 Mass-loss multipliers

Throughout their lives, stars lose mass through stellar winds. The
wind mass-loss rate depends strongly on the star’s luminosity and is
generally highest for high-mass, high-metallicity stars. The dearth
of observations of low-metallicity environments means that wind
mass-loss rates are poorly constrained at low metallicities, and at
high masses where stars are intrinsically rare. These are precisely
the regimes where the progenitors of gravitational-wave sources are
likely to form (Belczynski et al. 2016; Eldridge & Stanway 2016;
Lamberts et al. 2016; Stevenson et al. 2017a; Giacobbo et al. 2018).

COMPAS employs the approximate wind mass-loss prescriptions
detailed in Belczynski et al. (2010). For hot O/B-stars, we employ
the wind mass-loss prescription of Vink, de Koter & Lamers (2001).
Our Wolf–Rayet wind mass-loss rates come from Hamann &
Koesterke (1998). For other phases the mass-loss prescriptions from
Hurley et al. (2000) are used. Uncertainty in mass-loss rates can have
a significant impact on stellar evolution; for example, Renzo et al.
(2017) find that there is an ∼50 per cent uncertainty in the mapping
between initial and final masses when considering different mass-
loss prescriptions when modelling solar-metallicity, non-rotating,
single stars, with initial masses between 15 and 35 M�. There are
particular phases of stellar evolution where the mass-loss rates lack
strong constraints by observations. We parametrize the mass-loss
rates in two of these phases with tunable population parameters.

During the luminous blue variable (LBV) phase (Humphreys &
Davidson 1994), extremely massive stars undergo a relatively short
episode of rapid mass-loss which strongly impacts the binary’s fu-
ture evolutionary trajectory (e.g. Mennekens & Vanbeveren 2014);
observational constraints on the physics of LBV stars are currently
uncertain (Smith 2017).2 Following Belczynski et al. (2010), we
parametrize this rate in terms of a multiplicative factor fLBV used to
modify the basic prescription, so that the rate becomes

ṀLBV = fLBV × 10−4 M� yr−1; (5)

our fiducial value for this factor is fLBV = 1.5 (Belczynski et al.
2010).

During the Wolf–Rayet phase, stars have lost their hydrogen
envelopes and have high but relatively poorly constrained mass-
loss rates (Crowther 2007). We use a multiplicative constant fWR to

2As in Hurley et al. (2000), we assume stars are in an LBV-like phase if their
luminosity and radius satisfy L > 6 × 105 L� and (R/R�)(L/L�)1/2 > 105.

modify the base rate:

ṀWR = fWR

(
L

L�

)1.5 (
Z

Z�

)m

× 10−13 M� yr−1, (6)

where L is the stellar luminosity, Z is the metallicity, Z� = 0.02
is approximately the bulk metallicity of our Sun, and m = 0.86 is
an empirically determined scaling factor (Vink & de Koter 2005;
Belczynski et al. 2010). The fiducial choice for this population
parameter is fWR = 1.0. We use the same mass-loss prescription
for all Wolf–Rayet subtypes (Belczynski et al. 2010), as the Hurley
et al. (2000) evolutionary tracks do not distinguish between them.
Recent investigations of mass-loss for Wolf–Rayet stars of varying
composition include McClelland & Eldridge (2016), Tramper, Sana
& de Koter (2016), and Yoon (2017).

3 MO D E L P R E D I C T I O N S

In this paper we evaluate the impact of the tunable parameters
described above on the rate of detections and the measured chirp-
mass distribution of binary black holes. The chirp mass M is a
particular combination of the component masses M1, M2 which
is measured well from the gravitational-wave frequency evolution
during the binary inspiral (Cutler & Flanagan 1994; Abbott et al.
2016b),

M = (M1M2)3/5

(M1 + M2)1/5
. (7)

The chirp mass is just one of the parameters measurable through
gravitational waves, other observables such as component masses,
spins, and the distance to the source can also be inferred (Abbott
et al. 2016b). For simplicity, we have chosen to focus on chirp mass
since it is the best measured. This is a conservative approach, as
we have neglected information about other parameters; however,
the methods presented here are easily extendible to include other
observables.

In order to represent the distribution of chirp masses produced
by the population synthesis model, we chose to bin our systems by
chirp mass. Throughout this paper, we use 30 bins of equal width,
ranging from the lowest to the highest chirp masses present in our
data set. The number of bins is determined by the scale length of
variability in the chirp-mass distribution and the chirp-mass mea-
surement uncertainty discussed below; the results are insensitive to
halving the number of bins.

The raw output of a population synthesis model is a list of the
initial conditions and final outcomes of all the binaries simulated.
In order to compare this output to astronomical observations, it
is necessary to process the data further, in order to account for
the history of star formation in the Universe and the observational
selection effects. We describe this processing below.

3.1 Cosmic history

In order to focus our computation on black hole progeni-
tors, we only simulate systems with primary masses between
7 M� < M1 < 100 M�. We assume that all stars are in binaries
with primary masses ranging between 0.01 and 150 M� following
the initial mass function of Kroupa (2001) with a flat mass-ratio
distribution (Sana et al. 2012). At formation, binaries are assumed
to have a uniform-in-the-logarithm distribution of orbital separa-
tions (Öpik 1924; Abt 1983) and zero orbital eccentricity; for more
detailed studies of mass-ratio and orbital distributions, see Duchêne
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Figure 1. The metallicity-specific star formation rate as a function of metal-
licity at three different redshifts, using the star-formation-rate distribution
of Madau & Dickinson (2014) and the metallicity distribution of Langer &
Norman (2006). The vertical dashed lines indicate the metallicities at which
we undertook simulations for this study. Metallicities above Z� = 0.02
contribute negligibly to the binary black hole merger rate.

& Kraus (2013) and Moe & Di Stefano (2017). COMPAS simu-
lations produce a rate of binary black hole formation per unit star
formation mass Mform,

RCOMPAS = d3Nform

dMform dτdelay dM , (8)

where τ delay is the delay time, defined as the time from the birth of
a binary to its coalescence (Peters 1964). To compute the total rate
of binary black hole mergers per unit comoving volume per unit
time, we need to convolve the COMPAS formation rate with the
amount of metallicity-specific star formation per unit volume per
unit time at the birth of the binaries. Delay times can range from
a few Myr to Gyr, and observations show that both the metallicity
and star formation rates in galaxies evolve significantly over these
time-scales (Madau & Dickinson 2014). We use the star formation
rate distribution of Madau & Dickinson (2014) and the metallicity
distribution of Langer & Norman (2006). Other distributions have
been suggested (e.g. Savaglio et al. 2005; Vangioni et al. 2015;
Ma et al. 2016), and the cosmic history of metallicity evolution
adds an additional source of uncertainty to our model predictions.
Future studies could consider how metallicity evolution could be
included with the other model parameters and inferred from binary
observations. In Fig. 1 we provide an illustration of the metallicity-
specific star formation rate at redshifts z = 0.5, 1, and 1.5, and
also indicate metallicities at which we performed simulations for
this study. We use these to translate the star formation rate into the
merger rate at redshift z

d3Nmerge

dtsdVcdM (z) =
∫

dZ

∫
dτdelay

[
d3Nform

dMform dτdelay dM (Z)

× d3Mform

dts dVc dZ
(Z, tform = tmerge(z) − τdelay)

]
, (9)

where ts is the time measured in the frame of reference of the
merger, Vc is the comoving volume and we use cosmological pa-
rameters from Planck Collaboration XIII (2016). Fig. 2 shows the
local merger rate at three different redshifts after accounting for
changes in star formation rate and cosmology.

Figure 2. The binary black hole merger rate predicted by the COMPAS
fiducial model at three different redshifts, taking into account the cosmic
evolution of the metallicity-specific star formation rate. For comparison, the
total inferred merger rate density from gravitational-wave observations is
12–213 Gpc−3 yr−1 (Abbott et al. 2017a).

3.2 Selection effects

Gravitational-wave detectors are not equally sensitive to every
source. The distance to the source, its orientation and position rel-
ative to the detectors, as well as the physical characteristics of the
source all affect how likely it is that the system would be detectable.
The detectability of a signal depends upon its signal-to-noise ratio
(SNR). The SNR in a single detector is defined as (Finn 1992)

SNR2 = 〈h|h〉 = 4�
∫ fmax

fmin

df
h∗(f )h(f )

S(f )
, (10)

where h(f) is the waveform measured by the detector, S(f) is the
one-sided noise power spectral density, and fmin and fmax are the
limits of the frequency range considered.

For simplicity, we assume that signals are detected if their single-
detector SNR exceeds a threshold value of 8 (Abbott et al. 2018). To
model the waveforms, we use the IMRPhenomPv2 (Hannam et al.
2014; Husa et al. 2016; Khan et al. 2016) and SEOBNRv3 (Pan et al.
2014; Babak, Taracchini & Buonanno 2017) approximants;3 these
include the inspiral, merger, and ringdown phases of a binary black
hole coalescence, and allow for precession of the black hole spins.
We incorporate the effects of cosmological redshift, which mani-
fest as an apparent increase in the system masses, Mobs = (1 + z)Ms

(Krolak & Schutz 1987; Holz & Hughes 2005). We assume a de-
tector sensitivity equal to aLIGO in its design configuration (Aasi
et al. 2015; Abbott et al. 2018).

We optimize our computations, reducing the number of waveform
calculations required, by exploiting the fact that the parameters
extrinsic to the gravitational-wave source, such as its position and
orientation, only couple into the overall amplitude of the wave via

A ∝ 1

DL

√
F 2+(1 + cos2 i)2 + 4F 2× cos2 i, (11)

F+ ≡ 1

2
cos(2ψ)[1 + cos2(θ )] cos(2φ)

− sin(2ψ) cos(θ ) sin(2φ), (12)

3We use the implementations publicly available in the LAL suite software
package wiki.ligo.org/DASWG/LALSuite.
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Figure 3. The rate and chirp-mass distribution of the binary black hole
coalescences we expect aLIGO to observe at design sensitivity, taking into
account cosmic history and selection effects, for the COMPAS fiducial
model as described in Stevenson et al. (2017a). The detection rate is per unit
observing time.

F× ≡ 1

2
sin(2ψ)[1 + cos2(θ )] cos(2φ)

+2 cos(2ψ) cos(θ ) sin(2φ), (13)

where A, DL, i, ψ , θ , and ϕ are the gravitational-wave ampli-
tude, luminosity distance, inclination, polarization, and polar and
azimuthal angles of the source location in the detector frame, respec-
tively (Krolak & Schutz 1987; Cutler & Flanagan 1994). Therefore,
we need only compute the phase evolution for a given combina-
tion of intrinsic binary parameters, such as masses, once, and then
marginalize over the extrinsic parameters (with the exception of DL)
as described in Finn & Chernoff (1993).

For a system with a given (M1, M2, DL), we determine the fraction
of extrinsic parameter realizations for which the observed SNR
passes our threshold, and label this as our detection probability Pdet.

We can use this detection probability to transform the merge rate
given in equation (9) into a rate of detections. Integrating over the
merger redshift gives the total detection rate

dNobs

dtobs dM =
∫

dz

[
d3Nmerge

dts dVc dM
dVc

dz

dts

dtobs
Pdet

]
, (14)

where ts is time in the source frame and tobs = (1 + z)ts is time in
the observer’s frame.

Fig. 3 shows the rate and chirp-mass distribution of binary black
hole mergers detected at aLIGO design sensitivity. The mass distri-
bution is shifted to higher masses relative to the intrinsic merger rate
plotted in Fig. 2 because selection effects favour heavier systems
which emit louder gravitational-wave signals. Some of the sharp
features in this plot are the consequence of simulating systems on a
discrete grid of metallicities (cf. Dominik et al. 2013). LBV winds
tend to reduce high-mass stars to a narrow, metallicity-dependent
range of black hole masses. We discuss the impact of these features
in Section 6.

4 TH E C OVA R I A N C E M AT R I X F O R
POP U LATION PARAMETERS

4.1 The Fisher information matrix

The Fisher matrix quantifies the amount of information that a set
of observable random variables (in our case, the merger rate and

chirp-mass distributions) carries about the parameters (in our case,
the four tunable parameters described in Section 2) of a distribution
that models these observables.

Specifically, the Fisher matrix F for a set of random variables D
(the data) which are dependent on a set of parameters {λ} is defined
element-wise as

Fij = −
〈
∂2 log [L (D|{λ})]

∂λi ∂λj

〉
, (15)

where L is the likelihood function, defined as the probability of
acquiring the observed data D given the model parameters, and the
angle brackets indicate an expectation over the data realization. We
introduce the likelihood for our problem in the section below.

Under certain conditions, the inverse of the Fisher matrix gives a
lower bound (the Crámer–Rao bound) on the covariance matrix for
those dependent parameters (Vallisneri 2008); we discuss the regime
of validity of the Fisher matrix inverse as an approximation to the
covariance matrix in Section 5.2. The covariance matrix tells us
how sensitive our data are to a change in the model parameters. We
can also examine which combinations of dependent parameters are
degenerate and which combinations yield the greatest information
gain.4

The Fisher matrix quantifies the sensitivity of predicted observa-
tions to model parameters, and provides a bound on the accuracy
of parameter inference. This approach assumes that the model is
correct. The correctness of the model can be evaluated through
other means. For example, model selection can be used to compare
distinct models, whether these are different formation channels or
different prescriptions for describing the physical processes of bi-
nary evolution (e.g. Mandel & O’Shaughnessy 2010; Stevenson
et al. 2017b; Talbot & Thrane 2017; Vitale et al. 2017a; Zevin
et al. 2017), or model-independent clustering can be used without
reference to particular models (e.g. Mandel et al. 2015, 2017).

4.2 The COMPAS likelihood function

For this study we assume that we have a gravitational-wave cata-
logue of merging binary black holes, formed via the isolated binary
evolution channel, and we focus on two observable characteristics
of such a data set: the rate of detections and the distribution of chirp
masses for the observed systems.

The likelihood function contains a term for each observational
characteristic:

logL (D|{λ}) = logL (Nobs|{λ}, tobs) + logL ({M}|{λ}). (16)

The first term is the likelihood of observing binary black holes at a
given rate. We assume that observable binary black holes coalesce
in the Universe as a Poisson process with rate parameter μ, which is
predicted by our population synthesis model, and the total number of
observations Nobs, accumulated in a time tobs. The Poisson likelihood
is

logL (Nobs|{λ}, tobs) = Nobs log(μtobs) − μtobs − log(Nobs!). (17)

The second term is the likelihood of observing a given chirp-mass
distribution. As described in Section 3, we have chosen to represent
our chirp-mass distribution in bins. In this case the correct likelihood

4This is analogous to identifying the chirp mass as being the best measured
combination of masses from gravitational-wave observations.
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is a multinomial distribution (Stevenson et al. 2015)

logL ({M}|{λ}) = log(Nobs!) +
K∑
k

[
ck log(pk) − log(ck!)

]
, (18)

where K is the number of chirp-mass bins, ck is the number of
observed systems falling into the k-th bin with

∑
kck = Nobs, and pk

is the probability predicted by the model that a system falls into the k-
th bin. Thus, μ and pk are functions of the tunable model parameters
λ, while ck and Nobs are observables. Given the likelihood, we can
now calculate the Fisher matrix.

4.3 Computing the Fisher matrix

In order to compute the Fisher matrix, we need to find the second
derivatives of the likelihood with respect to the population parame-
ters and average over the possible observations drawn according to
the same likelihood distribution. First differentiating the total-rate
log likelihood,

∂2 logL (Nobs|{λ})
∂λi ∂λj

= ∂

∂λj

[(
Nobs

μ
− tobs

)
∂μ

∂λi

]

= −Nobs

μ2

∂μ

∂λi

∂μ

∂λj

+
(

Nobs

μ
− tobs

)
∂2μ

∂λi ∂λj

. (19)

Meanwhile, differentiating the chirp-mass portion of the log likeli-
hood yields

∂2 logL ({M}|{λ})
∂λi ∂λj

= ∂

∂λj

(
K∑
k

ck

pk

∂pk

∂λi

)

=
K∑
k

(
− ck

p2
k

∂pk

∂λi

∂pk

∂λj

+ ck

pk

∂2pk

∂λi ∂λj

)
. (20)

The expectation value of Nobs over this Poisson likelihood with
rate parameter μtobs is just 〈Nobs〉 = μtobs; similarly, 〈ck〉 = μtobspk.
Therefore, the Fisher matrix is

Fij = μtobs

[
1

μ2

∂μ

∂λi

∂μ

∂λj

+
K∑
k

1

pk

∂pk

∂λi

∂pk

∂λj

]
, (21)

where we used
∑

kpk = 1 to eliminate the second term from equation
(20). Crucially, this expression contains only first-order derivatives
of the observables with respect to the population parameters. These
derivatives can be readily and reliably estimated using population
synthesis models, as described below.

4.4 Evaluating the first derivatives

We have shown in equation (21) that the Fisher matrix can be com-
puted using just the first derivatives of the binned rates with respect
to the population parameters. To compute derivatives, we simulated
binary populations using a suite of variations to the population pa-
rameters discussed in Section 2.1. We used the same set of random
seeds to the random number generator in COMPAS, so that for
each variation the initial conditions (i.e. masses and separation) and
random effects (i.e. kick directions) remain fixed. This allows us
to accurately measure the derivatives by estimating the differential
rather than absolute rates, reducing the uncertainty associated with
a limited number of simulations.

We made six perturbations to the fiducial model for each popula-
tion parameter (three negative and three positive). The perturbations

Table 1. The 25 population-parameter variations used in this paper. The
population parameters are described in Section 2.1: σ kick is the dispersion
parameter for a Maxwellian used to draw the magniutde of natal kicks
from equation (1); αCE is the efficiency of common-envelope ejection from
equation (4); fWR is the multiplier for Wolf–Rayet wind mass-loss from
equation (6), and fLBV is the multiplier for LBV mass-loss described in
equation (5). Our fiducial model appears in the top row. For each of these
population parameter combinations we also varied metallicity. We used
12 different metallicities, which were evenly spaced in the log between
0.005 Z� and Z�, where we use a solar metallicity Z�= 0.02. We therefore
had a total of 300 model variations. We simulated 1 197 989 binaries for
each of these variations.

σ kick (km s−1) αCE fWR fLBV

250.0 1.00 1.00 1.50
240.0 1.00 1.00 1.50
244.0 1.00 1.00 1.50
247.0 1.00 1.00 1.50
253.0 1.00 1.00 1.50
256.0 1.00 1.00 1.50
260.0 1.00 1.00 1.50
250.0 0.95 1.00 1.50
250.0 0.97 1.00 1.50
250.0 0.99 1.00 1.50
250.0 1.01 1.00 1.50
250.0 1.03 1.00 1.50
250.0 1.05 1.00 1.50
250.0 1.00 0.90 1.50
250.0 1.00 0.94 1.50
250.0 1.00 0.97 1.50
250.0 1.00 1.03 1.50
250.0 1.00 1.06 1.50
250.0 1.00 1.10 1.50
250.0 1.00 1.00 1.45
250.0 1.00 1.00 1.47
250.0 1.00 1.00 1.49
250.0 1.00 1.00 1.51
250.0 1.00 1.00 1.53
250.0 1.00 1.00 1.55

were chosen to be sufficiently small that we could reliably estimate
first derivatives numerically. A full list of the variations we used
can be found in Table 1. For each of the quantities we are differ-
entiating, we have a set of overconstrained simultaneous equations
for the first and second derivatives according to the leading terms
in the Taylor series, which we can write in a matrix form

⎛
⎜⎝

f (λ + �1) − f (λ)
...

f (λ + �6) − f (λ)

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎝

�1
1

2
�2

1

...
...

�6
1

2
�2

6

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

∂f (λ)

∂λ

∂2f (λ)

∂λ2

⎞
⎟⎟⎟⎠ . (22)

If we label the three terms in equation (22) as y, X, and β, respec-
tively, then the maximum-likelihood solution for the derivatives β̂

can be computed directly as (Anton & Rorres 2000, section 9.3)

β̂ = (XT X)−1XT y. (23)

We use this approach to compute all of the derivatives in equation
(21) and combine them into an estimate of the Fisher matrix. The
Fisher matrix can then be inverted to provide the Crámer–Rao lower
bound on the covariance matrix of the astrophysical parameters
evaluated at the COMPAS fiducial model.
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Figure 4. An illustration of how we include measurement errors in our
analysis. A Gaussian is centred on each bin, with a standard deviation
proportional to the value at the centre of that bin. That bin’s counts are then
distributed to other bins according to the fraction of that Gaussian falling in
each bin.

4.5 Measurement uncertainty

The measurements of chirp masses will be subject to a certain
amount of measurement uncertainty. We use a simplified treatment
of this measurement uncertainty based on the methodology of Gair,
Tang & Volonteri (2010, see their appendix A). We assume that the
probability of finding a system in an incorrect bin is given by a
Gaussian distribution about the centre of the correct bin into which
the system was placed in the simulation.

Let fi be the fraction of system predicted by the simulation to
lie in the i-th bin, which is centred on chirp mass μi and has left
and right edges at chirp masses μ−

i and μ+
i , respectively. Then the

probability pi of observing a system in the i-th bin is

pi =
K∑

j=1

fj√
2πσ 2

j

∫ μ+
i

μ−
i

dx exp

[
−(x − μj )2

2σ 2
j

]
, (24)

where σ i is the standard deviation of the measurement in the i-th
bin. In the limit of σ i tending to zero, we recover perfect mea-
surement accuracy, pi = fi. An illustration of this treatment of the
measurement errors is presented in Fig. 4.

The chirp-mass measurement uncertainty depends strongly on the
total mass of the source, with the most massive sources spending the
fewest inspiral cycles in band, leading to the largest measurement
uncertainty (e.g. Abbott et al. 2016a). It also scales inversely with the
source SNR. Here, we crudely approximate this as a fixed fractional
uncertainty on the chirp mass of 3 per cent (cf. Mandel et al. 2017;
Vitale et al. 2017b). We therefore modify the binned rates according
to equation (24), using a standard deviation σ i = 0.03μi.

This method of incorporating measurement errors is a simplifica-
tion. The formally correct approach would be to incorporate them on
a per-system basis, which would involve a modification of the likeli-
hood function. Performing the analysis in this way would correctly
account for correlations between bins, whereas in the simplified
approach bins are modified independently, losing information, and
slightly swelling the uncertainty.

4.6 Uncertainty quantification

The rate derivatives used to compute the Fisher matrix at the COM-
PAS fiducial model depend on the particular population realization

used in the calculation. We quantify the impact of simulation real-
ization noise, due to the finite number of simulated binaries, with
bootstrapping. We recompute the Fisher matrix by re-creating data
sets of the same size as the original simulated data set by drawing
samples from it with replacement.

By repeating this process many times and observing the spread
in the results, we can observe how much the point estimates change
under different population realisations (different sets of binary ini-
tial conditions). Our full data set consists of 359 396 700 binary
simulations, which consists of the same set of 1 197 989 ZAMS
binaries evolved under each of 300 different model variations (the
25 population parameter combinations listed in Table 1, each sim-
ulated at the 12 different metallicities shown in Fig. 1). To generate
one bootstrap sample Fisher matrix:

(i) We randomly choose 1 197 989 initial conditions, with re-
placement, from our original set of initial conditions.

(ii) For each of the 25 population parameter combinations in
Table 1, we find the systems from the bootstrap initial conditions
which become merging binary black holes, and calculate their total
rate and chirp-mass distribution (taking into account cosmic history,
selection effects, and measurement uncertainty).

(iii) We use equations (22) and (23) to compute the derivatives of
the total rate and chirp-mass distribution bin heights, with respect
to each population parameter.

(iv) We use these derivatives to compute the Fisher matrix, using
equation (21).

We repeat the above steps 1500 times in order to express the un-
certainty coming from the realization of the initial conditions, i.e.
from the simulation statistical fluctuations. In principle, this model
uncertainty could be overcome with more simulations, unlike the
more fundamental uncertainties stemming from a finite number of
observations and chirp-mass measurement uncertainty. We discuss
the relative contributions of these sources of uncertainty in Sec-
tion 6.

5 R ESULTS AND D I SCUSSI ON

Using the method described in Section 4 we computed the elements
of the Crámer–Rao lower bound on the covariance matrix for the
population parameters σ kick, αCE, fLBV, and fWR. We computed sim-
ulation uncertainties on these elements by taking 1500 bootstrap
samples from the 1 197 989 sets of initial conditions simulated for
the binaries, specifically varying the metallicities, initial masses, and
separations. Using these results, we are able to explore what can
be learned about these population parameters using gravitational-
wave observations of binary black holes. Results are presented for
Nobs = 1000 observations, a sufficiently large number to ensure the
validity of our results; we discuss the effect of changing the number
of observations in Section 5.2.

Fig. 5 shows the distribution of standard deviations of each of the
population parameters. We see that it will be possible to measure
αCE, fLBV, and fWR with fractional accuracies of ∼2 per cent after
1000 observations. We will be less sensitive to the value of σ kick.
This is an expected result, since the natal kicks of black holes are
reduced according to equation (2), and many of the more massive
ones do not get a kick at all.

The fractional uncertainties on all of the parameters are quantities
of order N

−1/2
obs ≈ 0.03 for Nobs = 1000. Varying the parameters by

their full dynamic range would change the rate by O(Nobs). For
example, reducing αCE from 1 to 0 would make binary black hole
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Figure 5. The inferred measurement accuracy for each of the four popu-
lation parameters after observing 1000 systems, as estimated by taking the
square root of the diagonal elements of the estimated covariance matrices
for each of the 1500 bootstrapped sets. The histograms are normalised such
that they all have the same area.

Figure 6. 1500 bootstrap samples of the marginalized univariate distribu-
tions and bivariate 90 per cent confidence intervals from the Crámer–Rao
lower bound on the covariance matrix for the COMPAS population parame-
ters. The univariate distributions are the Gaussian distributions correspond-
ing to the standard deviations of Fig. 5, and have been normalized to have
the same area.

formation through a common-envelope phase impossible, reducing
the expected number of detections from Nobs to ∼0.

The measurement accuracy with which the tunable population
parameters can be inferred using 1000 gravitational-wave observa-
tions can be alternatively interpreted from the perspective of model
selection. For example, the median of the distribution for the stan-
dard deviation of αCE is ∼0.02. Therefore, if αCE different from the
fiducial value by 6 per cent, the fiducial model could be ruled out
with a confidence of ∼3σ ≈ 99.7 per cent.

We can examine the full multivariate normal behaviour of the
population parameters. Fig. 6 shows marginalized univariate dis-
tributions and bivariate projections of the 90 per cent confidence

Figure 7. Distribution of correlations between αCE and each of fLBV and
fWR. The histograms have been normalized to have the same area.

interval for each of the bootstrap samples. This plot shows that
most pairwise correlations between most population parameters are
negligible. Fig. 7 shows the correlations between αCE and fWR, and
between αCE and fLBV. Bootstrapping indicates an 88 per cent confi-
dence that αCE and fWR are anticorrelated. Increasing αCE increases
the efficiency with which orbital energy is transferred into the com-
mon envelope. An increased efficiency means that there will be less
tightening of the binary, so fewer systems will come sufficiently
close together to merge within a Hubble time. Losing mass through
winds widens the orbit, meaning that increasing the Wolf–Rayet
wind mass-loss rate creates more systems which are too wide to
merge within a Hubble time. Increased mass loss also results in the
black holes being less massive, therefore increasing the time re-
quired for them to merge through gravitational-wave emission from
a given initial separation (Peters 1964). These correlations mean
that increasing (or decreasing) both αCE and fWR would compound
the effect on the rates, so their bivariate distribution (in Fig. 6) is
narrower in this direction. Conversely, the effects of increasing one
whilst decreasing the other would partially cancel out, and thus the
bivariate distribution is wider in that direction. The confidence in the
anticorrelation between αCE and fLBV is only 76 per cent, and there is
insufficient evidence for correlation between other parameter pairs.

5.1 Information from the total detection rate

To gain further insight into the correlations between the inferred
parameters, we now consider what we could learn about the popu-
lation parameters by considering only the total rate at which grav-
itational waves are observed. It is impossible to constrain the four-
dimensional population parameter vector considered in this paper
with a single observable, the binary black hole detection rate. In
this case, all that can be learned about the population parameters is
the value of some linear combination of them.

We construct a detection rate Fisher matrix, using only the total
rate log likelihood of equation (17),

F RO
ij = tobs

μ

∂μ

∂λi

∂μ

∂λj

, (25)

and perform an eigendecomposition. We expect to see that there is
only one eigenvector whose eigenvalue is non-zero. We verified that
this is true for all 1500 of our bootstrap samples, which provided a
useful sanity check of our results.
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Figure 8. Violin plot showing components of the normalized principal
eigenvector of the Fisher matrices calculated using only the total detection
rate. The coloured regions give the bootstrapped distribution of the principle
eigenvector direction, with medians marked in black.

Figure 9. Distribution of the standard deviation of the particular linear
combination of population parameters corresponding to the principal eigen-
vector of the total detection rate Fisher matrix. The measurement accuracy is
computed using only information from the total rate (blue) and after includ-
ing information from the chirp-mass distribution (green). The distributions
come from considering all 1500 bootstrapped sets.

Next, by examining the eigenvector whose eigenvalue is non-
zero, we can find the linear combination of population parameters
to which we are sensitive. Fig. 8 shows a univariate representation of
this direction (with its distribution from bootstrapping over simula-
tions). The components of the vector parallel to fLBV and σ kick axes
are broadly consistent with zero. Most of the information learned
solely from the total detection rate is in the αCE–fWR plane. The
fact that both values are simultaneously positive implies that they
are correlated; this is the same correlation as was discussed at the
beginning of this section.

Whilst we can only measure this specific combination of popula-
tion parameters using only the total detection rate, we can constrain
parameter combinations in the ∼αCE + fWR direction to within a
few per cent from the total rate. Fig. 9 shows the standard deviation
along the line defined by this combination of population parameters
a−1/2, where a is the principal eigenvalue. This can be interpreted
in the same way as the standard deviations in Fig. 5, and matches

the expected value of O(N−1/2
obs ). We see that if this combination

of population parameters differed from our fiducial values by more
than a few per cent, we would be able to confidently rule our model
out after 1000 observations. However, we also see from Fig. 9 that
including the chirp-mass distribution would significantly improve
measurements of this parameter combination.

5.2 Number of observations

The expected number of observations only appears as a multiplica-
tive term in equation (21), so that the standard deviations in Fig. 5
simply scale as N

−1/2
obs . However, the results presented here are pred-

icated on the assumption that the inverse of the Fisher information
matrix is a good approximation to the covariance, and not just a
lower bound. This in turn requires the likelihood to be approxi-
mately Gaussian, i.e. the linear single approximation (LSA; Vallis-
neri 2008) should hold. Only if the predicted parameter uncertainties
are smaller than the neighbourhood in which the LSA is valid does
the Fisher matrix provide a self-consistent estimate of the accuracy
of parameter inference. This effectively sets a minimal threshold
on the number of observations required for self-consistency in our
estimates.

When computing the derivatives, as described in Section 4.4, we
measure the terms in a Taylor expansion of an observable (binned)
rate f as a function of the population parameter λ,

f (λ + �) − f (λ) ≈ �f ′(λ) + �2

2
f ′′(λ). (26)

In order to verify the validity of the LSA, we need to check that
each f is indeed linear when � is of the same order as the computed
standard deviations for the population parameters. We require that
the linear term is dominant in the Taylor series, so that

f ′(λ) 
 �

2
f ′′(λ). (27)

We find Nobs = 1000 to be a sufficient lower limit on the num-
ber of observations necessary to ensure the LSA is valid. At 1000
observations, the best measured combination of parameters is con-
strained at the per cent level, and this will continue to improve as
we expand the catalogue of observations.

For smaller numbers of observations, the LSA will break down.
The probability distribution for the model parameters may no longer
be a multidimensional Gaussian so the Fisher matrix is likely to
underestimate the inference uncertainty.

6 C O N C L U S I O N S

We have, for the first time, quantitatively analysed how accurately
gravitational-wave observations of binary black hole mergers will
constrain binary population synthesis models described by a mul-
tidimensional parametrization. When ground-based detectors have
accumulated 1000 observations of merging binary black holes, we
have shown that we will measure binary population synthesis model
parameters with an accuracy of a few per cent. Equivalently, we will
be able to distinguish models for which the population parameters
differ only by a few per cent.

Our analysis accounts for three distinct sources of uncertainty in
the inference of population parameters using gravitational-wave ob-
servations. The first is due to the finite number of observations. We
show when the linear signal approximation holds (Section 5.2), the
accuracy with which population parameters can be inferred scales
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with the inverse square root of the number of observations. The
second is the chirp-mass measurement uncertainty in individual
observations. We only model this approximately (Section 4.5) but
find that it is unlikely to be limiting factor in inference. The third
source of uncertainty is simulation uncertainty: the accuracy in pre-
dicted detection rate and chirp-mass distribution is limited by the
finite number of COMPAS simulations. This uncertainty, which we
quantify with bootstrapping (Section 4.6), is only limited by com-
putational cost, and be reduced indefinitely with more simulations
or more efficient sampling (e.g. Andrews, Zezas & Fragos 2017).

There is, of course, potential systematic uncertainty in the binary
evolution models themselves: for example, it is probable that the
αCE parameter is not universal, as assumed here, but depends on the
binary properties during the common-envelope phase. Model infer-
ence techniques such as those described here should be combined
with model verification and with weakly modelled inference (e.g.
Mandel et al. 2017).

We show the expected detection rate and chirp-mass distribution
of merging binary black holes in Fig. 3. The sharp features in the
chirp-mass distribution are due to only simulating systems at a small
number (12) of metallicities, replacing the integral over metallicity
in equation (9) with a discrete sum. Mass loss, particularly during
the LBV phase, leads to a pile-up of black hole masses from the most
massive stars at particular metallicity-dependent values. The subse-
quent discrete sum over metallicities overpopulates some bins in the
chirp-mass distribution relative to neighbouring bins (cf. Dominik
et al. 2013). This can impact our results, causing us to overstate
the accuracy with which we will be able to measure population
parameters. This issue can be addressed in the future by interpolat-
ing model predictions over metallicity (e.g. using Gaussian process
emulators as described by Barrett et al. 2017), producing a smooth
set of predictions.

Our primary intention with this paper was to introduce a method-
ology for evaluating the accuracy with which astrophysical model
parameters can be estimated based on the rates and properties of
observed transients. We considered a four-dimensional parameter
space, but the number of dimensions is limited only by computa-
tional cost. It is also straightforward to add more terms than just
the chirp-mass distribution to equation (16) in order to investigate
other observable characteristics of binary populations such as mass
ratios and spins (e.g. Stevenson et al. 2017b; Talbot & Thrane
2017; Zevin et al. 2017). Furthermore, this analysis can be used for
other populations than observations of binary black hole mergers
via gravitational-waves in this paper. Other observed populations,
such as Galactic binary pulsars, X-ray binaries, Wolf–Rayet stars,
short gamma-ray bursts, or luminous red novae (for a review, see De
Marco & Izzard 2017), can provide orthogonal constraints on the
parameters governing binary evolution (cf. Fig. 9). Over the coming
decade, such measurements will help us to accurately determine the
physics of massive binary evolution.
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