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ABSTRACT: The aim of this study was to assess 

the accuracy of genomic predictions for 19 traits 

including feed efficiency, growth, and carcass and 
meat quality traits in beef cattle. The 10,181 cattle in 

our study had real or imputed genotypes for 729,068 

SNP although not all cattle were measured for all traits. 

Animals included Bos taurus, Brahman, composite, 

and crossbred animals. Genomic EBV (GEBV) were 

calculated using 2 methods of genomic prediction 

[BayesR and genomic BLUP (GBLUP)] either using 

a common training dataset for all breeds or using a 

training dataset comprising only animals of the same 

breed. Accuracies of GEBV were assessed using 5-fold 

cross-validation. The accuracy of genomic prediction 

varied by trait and by method. Traits with a large 

number of recorded and genotyped animals and with 

high heritability gave the greatest accuracy of GEBV. 

Using GBLUP, the average accuracy was 0.27 across 

traits and breeds, but the accuracies between breeds 

and between traits varied widely. When the training 

population was restricted to animals from the same 

breed as the validation population, GBLUP accuracies 

declined by an average of 0.04. The greatest decline in 

accuracy was found for the 4 composite breeds. The 

BayesR accuracies were greater by an average of 0.03 

than GBLUP accuracies, particularly for traits with 

known genes of moderate to large effect mutations 

segregating. The accuracies of 0.43 to 0.48 for IGF-I 

traits were among the greatest in the study. Although 

accuracies are low compared with those observed in 

dairy cattle, genomic selection would still be beneficial 
for traits that are hard to improve by conventional 

selection, such as tenderness and residual feed intake. 

BayesR identified many of the same quantitative trait 
loci as a genomewide association study but appeared 

to map them more precisely. All traits appear to be 

highly polygenic with thousands of SNP independently 

associated with each trait.

Key words: accuracy of genomic estimated breeding value, BayesR, genomic best linear unbiased 
prediction, genomewide association study, multibreed, single breed
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INTRODUCTION

Genomic selection refers to selection decisions 

that are based on breeding values predicted using 

genomewide marker data such as SNP (Meuwissen 

et al., 2001). In beef cattle genomic predictions are 

attractive because many traits that affect profitability 
of beef production, such as feed conversion efficiency, 
have been hard to select for because they are expensive 

to measure or are measured only on relatives of 

breeding bulls (e.g., carcass and meat quality traits). 

Accurate genomic EBV (GEBV) would lead to greater 

genetic gain for these traits.

The calculation of GEBV depends on a reference 

population that has been measured for the trait and 
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genotyped for the markers. The accuracy of GEBV on 

selection candidates depends on the size of this reference 

population and the extent of the linkage disequilibrium 

(LD) between SNP and QTL (Hayes et al., 2009; 

VanRaden et al., 2009). Assembling large enough 

reference populations for accurate GEBV prediction 

is a major challenge, especially where the phenotype 

is difficult or expensive to measure. A key question in 
calculating GEBV in beef cattle is whether a breed-

specific reference population should be used for each 
breed requiring GEBV or whether a common reference 

population should be used for all breeds. Combining 

breeds into a common reference population increases 

its size, but LD exists only over shorter distances in 

a multibreed population and this tends to reduce the 

accuracy of GEBV and may counter the benefits of a 
larger reference population. In principle, the accuracy 

could decline as a result of merging breeds.

A multibreed reference population should be 

advantageous if the phase of LD between a SNP and 

a causal mutation or QTL is same in all breeds. This is 

only to be expected if chromosome segments containing 

the SNP and the QTL in different breeds have descended 

from a common ancestor without recombination. This 

situation will occur if the SNP and the QTL are very 

closely linked. Linkage disequilibrium phase is poorly 

conserved between Bos taurus breeds at distances typical 

of the inter-SNP distance in the 50K SNP chip (De Roos 

et al., 2008) but is well conserved at distances typical of 

the Illumina high density (HD) 800K SNP chip (www.

illumina.com/applications/agriculture.ilmn). Therefore 

in this paper we use the Illumina HD SNP chip.

The statistical methods for genomic selection, or 

prediction, were introduced by Meuwissen et al. (2001). 

The term “BLUP” assumes that all SNP effects are 

drawn from the same normal distribution and hence all 

have small effects. The term “BayesB” assumes that 

some SNP have no effect on the trait whereas the effects 

of other SNP are assumed to follow a t-distribution. 

This allows some SNP to have a large effect. Here we 

compare BLUP with a new method, called BayesR (Erbe 

et al. 2012), which has similar properties to BayesB but 

is faster to compute than BayesB.

Mapping QTL using a genomewide association 

study (GWAS) can be done with the same data that are 

used as a reference population for genomic prediction. 

In fact, genomic prediction and GWAS are very similar; 

both estimate the effect of each SNP on the trait but the 

typical procedure for GWAS estimates the effect of 1 

SNP at a time whereas genomic prediction estimates all 

SNP effects simultaneously.

In this paper we report GWAS and genomic 

prediction for 19 growth, feed efficiency [measured 
as residual feed intake (RFI)], and carcass and meat 

quality traits of beef cattle; we compare the accuracy 

of genomic prediction using BLUP and BayesR using 

either a common reference population or breed-specific 
reference populations.

MATERIALS AND METHODS

Animal Care and Use Committee approval was not 

obtained for this study because no new animals were 

handled in this experiment. The experiment was per-

formed on trait records and DNA samples that had been 

collected previously.

Cattle Populations

The cattle were sourced from 9 different populations 

of 3 breed types; they include 4 different Bos taurus 

(Bt) breeds [1,743 Angus (AN), 223 Murray Grey 

(MG), 717 Shorthorn (SS), and 613 Hereford (HH)], 1 

Bos indicus (Bi) breed [3,384 Brahman (BB) cattle], 3 

composite (Bt×Bi) breeds [550 Belmont Red (BR), 598 

Santa Gertrudis (SG), and 1,826 Tropical Composites 

(TC)], and 1 recent Brahman cross (BX) population 

(527 F1 crosses of BB with Limousin, Charolais, AN, 

SS, and HH; Johnston et al., 2003; Barwick et al., 2009; 

Bolormaa et al., 2011).

Genotype Data

The SNP marker data used in this study was obtained 

from 5 different SNP panels: the Illumina HD Bovine 

SNP chip, comprising 777,963 (800K) SNP markers, 

the BovineSNP50K version 1 and version 2 BeadChip 

(Illumina, San Diego, CA), comprising 54,001 and 54,609 

(50K) SNP, respectively, the IlluminaSNP7K panel, 

comprising 6,909 (7K) SNP, and the ParalleleSNP10K 

chip (Affymetrix, Santa Clara, CA), comprising 11,932 

(10K) SNP. All SNP were mapped to the UMD 3.1 build 

of the bovine genome sequence assembled by the Center 

for Bioinformatics and Computational Biology at 

University of Maryland (www.cbcb.umd.edu/research/

bos_taurus_assembly.shtml).

Stringent quality control procedures were applied to 

the SNP data of each platform. The SNP were excluded 

if the call rate per SNP [this is the proportion of SNP 

genotypes that have a GC (Illumina GenCall) score 

above 0.6] was less than 90% and they had duplicate 

map positions (2 SNP with the same position but 

with different names) or an extreme departure from 

Hardy-Weinberg equilibrium (e.g., SNP in autosomal 

chromosomes with both homozygous genotypes 

observed but no heterozygotes). Furthermore, if the call 

rate per individual was less than 90%, those animals 

were removed from the SNP data. The SNP data were 
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edited within breed group and within each platform and 

were subsequently combined.

After all the tests were applied, 729,068 SNP of 

the HD SNP chip were retained on 1,698 animals and 

the missing genotypes were filled using the BEAGLE 
program (Browning and Browning, 2011). The genotypes 

for each SNP were encoded in the top/top Illumina A/B 

format and then genotypes were reduced to 0, 1, and 2 

copies of the B allele. The imputations of the 7K, 10K, and 

50K SNP genotype data to 729,068 SNP were performed 

in 2 sequential stages: from 7K or 10K or 50K data to a 

common 50K data and then from the common 50K data 

to 800K data. Imputation was done within breed and using 

30 iterations of BEAGLE. The HD genotypes of each 

breed type (212 Bt and 302 Bi) were used as a reference 

set to impute the 50K genotypes of each pure breed within 

the corresponding breed type. For the 4 composite breeds, 

all the HD genotypes were used as a reference set to 

impute the 50K genotypes of each breed. The number of 

genotypes for each platform is given in Table 1 and the 

mean R2 values for the accuracy of imputation provided by 

BEAGLE are in Table 2. After imputation, an additional 

quality control step was applied based on comparing 

allele frequencies between SNP platforms to detect SNP 

with very different allele frequencies indicating incorrect 

conversion between platforms. In total, 10,181 animals 

that have a record for at least 1 trait and also had SNP 

genotypes were used in this study.

Population Structure

The relationships between the breeds used in this 

study were investigated in 4 different ways. This was 

done to ensure that the genomic relationship matrix 

(GRM), subsequently used for the genomic BLUP 

(GBLUP) analysis, was representative of the expected 

relationships within and across breeds. The GRM was 

constructed using genotypes of all 10,181 animals from 

different breeds by the method of Yang et al. (2010). 

This method standardizes the genotype calls (xij) that 

have mean = 0 and variance = 1 by the transformation

z = (xij – 2pi)/[2pi(1 – pi)]
1/2, 

in which xij are genotypes of ith SNP of the jth 

individual scored as 0 or 2 for homozygotes and 1 for 

heterozygotes and pi is allele frequency of ith SNP. The 

first method uses the GRM directly, in which the GRM 
estimates the relationship between animals relative 

to a base in which the allele frequency is the average 

allele frequency over the whole dataset. Thus, the 

average relationship between animals within a breed 

is twice the inbreeding (F) value of the breed since 

this base and the average relationship between animals 

from 2 different breeds is twice the inbreeding since 

the 2 breeds diverged relative to this base. The second 

method uses the first 2 principal components from the 
GRM to show the degree of differentiations between 

the 10,181 genotypes of the 9 breeds. The third method 

calculates pairwise FST coefficients, which are a 
measure of the genetic differentiation between breeds, 

using the 729,068 SNP markers by the formula of 

Hedrick (2005).  These pairwise FST values estimate 

the average inbreeding in the two breeds relative to a 

base consisting of an F2 cross. The FST values were 

converted to estimates of inbreeding (F) since the two 

breeds diverged from an ancestral population using this 

formula: F = 2FST/(1 + FST). These inbreeding values 

were used to draw a tree representing the divergence 

of the breeds since they shared a common ancestor. 

Finally, the inbreeding F from the GRM for each breed 

Table 1. The number of genotypes used in this study by 

each breed within each platform1

Breed  

ID2

Breed 

type3

 

HD

 

50K

 

7K

 

10K

Breed  

definition
AN Bt 133 1,016 282 312 Angus

BB Bi 302 2,702 380 Brahman

BR Bt×Bi 265 258 Belmont Red

BX Bt×Bi 455 72 recent Brahman crosses

HH Bt 30 437 146 Hereford

MG Bt 19 97 107 Murray Gray

SG Bt×Bi 45 213 340 Santa Gertrudis

SS Bt 30 594 93 Shorthorn

TC Bt×Bi 320 1,073 460 Tropical Composites

1HD = high density; 50K, 7K, and 10 K = approximately 50,000, 7,000, 

and 10,000 SNP markers (respectively) from commercial SNP chips 

2ID = abbreviation used for breeds. 

3Bt = Bos taurus; Bi = Bos indicus; Bt×Bi = composites.

Table 2. The accuracy of imputation (R2) obtained from 

Beagle of the genotyped data1

 

Imputation/

breed2

7K data 50K data 10K data

7K to 

50K

50K to 

800K

50K to 

50K

50K to 

800K

3K to 

50K

50K to 

800K

ANMG3 0.89 0.94 0.98 0.95 0.88 0.96

BB 0.78 0.90 0.96 0.90  

BR 0.80 0.92 0.98 0.93  

BX 0.95 0.85

HH 0.75 0.92 0.97 0.90

SG 0.75 0.93 0.94 0.93

SS 0.87 0.92 0.96 0.91  

TC 0.76 0.93 0.96 0.95  

Mean 0.80 0.92 0.97 0.90 0.88 0.96

150K, 7K, 3K and 800K = approximately 50,000, 7,000, 3,000, and 

800,000 SNP markers (, respectively) from commercial SNP chips 

2Angus (AN), Brahman (BB), Belmont Red (BR), Hereford (HH), recent 

Brahman crosses (BX), Murray Grey (MG), Santa Gertrudis (SG), Shorthorn 

(SS), and Tropical Composites (TC).

3ANMG = genotypes of AN and MG animals were imputed together.
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were compared with the SNP heterozygosity. The 

mean observed heterozygosity (HEo) per breed was 

calculated as the average number of heterozygous SNP 

for each animal from a breed and also by comparing this 

value to the heterozygosity assuming Hardy-Weinberg 

equilibrium [HEoHW; i.e., the average of 2pi(1 – pi) 

across all SNP, in which pi is an allele frequency 

of SNP i in a breed]. The heterozygosity predicted 

from the GRM (HEpr) is 0.38(1 – F), in which F is 

the inbreeding within each breed relative to the base 

population and 0.38 is the heterozygosity in the base 

population as calculated by

( )2 1 /j j

j

p p N
é ù
ê ú-ê ú
ë û
å

,

in which pj is the allele frequency of jth SNP across all 

breeds and N is number of total SNP.

Phenotype Data

Phenotypes for 19 different traits were collated from 

5 different sources. The trait definitions and number of 

Table 3. Number of records, mean, SD, and heritability estimate (h2) of each trait for the genotyped animals and their 

5-generation ancestors

 

Trait2

No. records for the genotyped animals1 Animals with full records

AN BB BR BX HH MG SG SS TC All All h2 Mean SD Trait definition3

RFI 1,091 675 260 245 181 75 219 547 733 4,026 4,837 0.36 –1.5 2.1 Residual feed intake, kg

DFI4 639 675 260 245 181 75 219 89 733 3,116 3,732 0.47 12.1 2.2 Daily feed intake  

over RFI test period, kg

ADG5 639 122 260 245 181 75 219 89 106 1,936 2,245 0.38 1.4 0.4 ADG over RFI test period, 

kg

MMIDWT6 639 122 260 181 75 219 89 1,585 1,851 0.56 89.9 14.5 Metabolic midtest weight in 

the RFI test period, kg0.73

LLPF 870 1,187 514 508 560 212 558 235 714 5,358 10,327 0.25 4.6 1.0 Peak force measured  

in longissimus  

lumborum muscle, kg

SP8 1,617 693 542 548 188 563 628 4,779 8,465 0.44 11.3 4.8  Exit scanned  

P8 fat depth, mm

SRIB 1,617 693 542 548 188 563 628 4,779 8,468 0.42 7.7 3.7 Exit scanned rib fat, mm

SEMA 1,507 668 521 537 188 528 590 4,539 8,112 0.17 66.9 11.0 Exit scanned  

eye muscle area, cm2

CRBY 681 344 308 93 292 197 419 305 45 2,684 3,639 0.47 67.0 3.4 Carcass retail beef yield, %

CIMF 929 1,159 545 526 608 223 595 517 722 5,824 11,200 0.4 3.4 1.9 Percent intramuscular fat 

measured in Longissimus 

lumborum muscle, %

CMARB 463 1,187 446 329 459 105 431 109 699 4,228 9,018 0.23 0.7 0.8 Ausmeat marble  

score as assessed  

by MSA grader, score

CWT 968 1,281 550 527 613 223 598 518 732 6,010 11,819 0.52 278.0 56.3 Carcass weight, kg

PW_lwt 1,650 3,346 549 527 568 192 592 641 1,819 9,884 16,079 0.45 230.9 53.4 BW measured  

postweaning, kg

SF_lwt 1,698 1,248 549 525 569 205 592 704 733 6,823 12,739 0.43 354.6 72.3 BW measured  

at feedlot entry, kg

PW_hip 676 2,532 478 474 170 380 208 1,441 6,359 10,515 0.53 119.0 7.9 Hip height measured 

postweaning, cm

SF_hip 236 616 140 204 25 136 53 444 1,854 4,494 0.46 130.0 8.0 Hip height measured  

at feedlot entry, cm

HUMP 508 624 1,132 2,099 0.29 140.2 37.0 Hump height as assessed  

by MSA grader, mm

PWIGF 152 337 137 292 918 1,678 0.25 262.2 147.4 IGF-I concentration measured 

post weaning, ng/mL

EIGF 537 566 1,103 2,058 0.24 507.1 178.8 IGF-I concentration measured 

at feedlot entry, ng/mL

1AN = Angus; BB = Brahman; BR = Belmont Red; BX = recent Brahman crosses; HH = Hereford; MG = Murray Grey; SG = Santa Gertrudis; SS = Shorthorn; 

TC = Tropical Composites.

2Abbreviation used for traits.

3P8 = a point located at the intersection of a line drawn anterior to the Tuber ischii and another drawn ventrally from the spinus process of the third sacral 

vertebra; MSA = Meat standards Australia.

4,5,6Based on number of records that was received from different research groups.
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records for each trait (and per breed) are given in Table 3. 

The data sources included the Beef Co-operative Research 

Centre Phase I (CRCI), Phase II (CRCII), and Phase III 

(CRCIII), the Trangie selection lines, and the Durham 

Shorthorn group. Not all cattle were measured for all 

traits. For instance, cows that were recorded for lifetime 

reproduction were not measured for meat quality. The 

CRCI dataset contained 4,526 cattle that were measured 

for all the traits listed in Table 3 excluding hump height 

(HUMP) and IGF-I traits, using standard procedures 

described by Upton et al. (2001), Johnston et al. (2003), 

Reverter et al. (2003), and Robinson and Oddy (2004). 

The CRCII dataset consisted of 2,084 cows with BW and 

height data and 1,180 steers that were measured for the 

majority of traits listed on Table 3. A complete description 

of the design, methods, and analyses of carcass and meat 

quality assessments is given by Wolcott et al. (2009). The 

CRCIII dataset contained 1,111 bulls that were measured 

for BW and height data. Two BW were analyzed: one 

(PW_lwt) was taken shortly after weaning and the other 

(SF_lwt) was taken at feedlot entry for steers or at the 

end of their first wet season for heifers (full details of 
the protocols used for weighing the animals are given by 

Barwick et al., 2009).

The fourth data source was AN cattle (355 selection 

line cattle and 452 of their progeny) that were from 

the divergent RFI selection lines based at the Trangie 

Agricultural Research Centre, New South Wales, 

Australia (Arthur et al., 2001; Bolormaa et al., 2011). 

The fifth source was 473 Durham Shorthorn steers 
from the progeny test program conducted by Shorthorn 

Beef between 2000 and 2010 (for complete detail see 

www.durhamresearch.com.au/; Wolcott et al., 2010). 

Performance data for the Durham Shorthorns was 

recorded on all groups of calves from birth to slaughter 

including carcass traits and meat quality, and for some 

groups of animals feed intake and ADG was recorded at 

the Beef CRC Tullimba research feedlot in New South 

Wales, Australia (Johnston and Graser, 2010).

Statistical Analysis

Mixed models fitting fixed and random effects 
simultaneously were used for estimating heritabilities, 

associations with SNP, and genomic prediction using 

the GBLUP method. Variances of random effects were 

estimated in each case by REML. All the models used 

to analyze the traits consistently included dataset, breed, 

cohort, and sex as fixed effects (Table 3). Other fixed 
effects fitted to the traits varied by trait. The fixed effects 
were fitted as nested within a dataset. For carcass weight 
(CWT), postweaning weight (PW_lwt), feedlot entry IGF-I 

(EIGF) and HUMP, a maternal permanent environmental 

effect was fitted, as preliminary analyses (conducted at 

Animal Genetics and Breeding Unit, Armidale) revealed 

that it accounted for part of the variation. For the other 

traits, maternal effect did not account for a large proportion 

of the variation and was therefore not included. Further 

details of the models used in the analysis are reported by 

Johnston (2001), Johnston et al. (2003), Reverter et al. 

(2003), Robinson and Oddy (2004), Barwick et al. (2009), 

Wolcott et al. (2009), and Bolormaa et al. (2011).

The estimates of heritability were calculated based on 

all animals with phenotype data (even if they lacked SNP 

genotypes) and their 5-generation ancestors using mixed 

model: trait = mean + fixed effects + animal + error, with 
animal and error fitted as random effects, and additionally, 
dam effect was fitted as random effect for traits including 
CWT, PW_lwt, EIGF, and HUMP (Table 3). Raw means, 

SD, and heritability estimates are given in Table 3.

Genomewide Association Studies

The association between each SNP and each of the 

traits was assessed by a regression analysis using the 

ASReml software (Gilmour et al., 2009). The model used 

was the same as for estimating heritability, but SNP (SNP 

at ith chromosomal position) was additionally fitted as 
a covariate (Bolormaa et al., 2011). The GWAS were 

conducted 4 times for each trait, first using all available 
data and then within only Bt, Bi, or Bt×Bi animals. 

Using Bolormaa et al. (2011), the false discovery rate 

was calculated as

P(1- A/T)/[(A/T)(1-P)],

in which P is the P-value tested (e.g., 0.0001), A is the 

number of SNP that were significant at the P-value tested, 

and T is the total number of SNP tested (i.e. 729,068).

Genomic Prediction Methods

Genomic BLUP. Genomic EBV were calculated 

based on

y = µ + Xb + g + e

in which y is the vector of observed phenotypic values 

of the animals, µ is the overall mean, b is vector of fixed 
effects, X is design matrix relating observations to the 

corresponding fixed effects, e is the vector of random 

errors, and g is a vector of breeding value with var(g) = 

Gσg
2, in which σg

2 is genetic variance and G is the GRM. 

The criterion for a SNP to be included in the GRM was that 

the minor allele frequency had to be greater than 0.005. In 

the analysis of each trait, only the elements of the GRM 

corresponding to animals with phenotypes were used 

to reduce the computing time. For all GBLUP analyses, 
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the validation animals were included in the GRM but 

had unknown phenotypes in the calculation of GEBV. 

The estimates of GEBV were performed using ASReml 

software (Gilmour et al., 2009). In a second analysis of 

GBLUP within breed, the elements of the GRM between 

animals from different breeds were set to 0. This means 

that only animals of the same breed contributed to the 

predictions of GEBV of the validation animals.

BayesR. Another possible assumption about SNP 

effects is that many SNP have no effect on the trait 

because they are not in LD with any of the mutations 

that explain the variation in the traits. BayesR (Erbe et 

al., 2012) is an extension of BayesCπ (Habier et al. 2011), 
with the difference that SNP effects are assumed to come 

from a mixture of normal distributions. BayesCπ assumes 
that a proportion of SNP (π) have no effect while the rest 
(1 – π) have effects drawn from a normal distribution. The 
variance of each component of the mixture was fixed (0 or 
0.01 or 0.1 or 1% of the genetic variance) but the number 

of SNP belonging to each component of the mixture was 

assumed to come from a multinomial distribution with 

proportions pi (i = 1, 2, 3 or 4) in which the pi are drawn 

from a Dirichlet distribution (a multivariate generalization 

of a beta distribution) with pseudo-counts of 1 for each 

component of the mixture. Thus, the prior assumed that 

the 4 components of the mixture are equally probable 

but with minimal prior knowledge of these probabilities. 

Gibbs sampling was used to sample from the posterior 

distributions of the parameters including SNP effects with 

5,000 iterations of burn-in followed by 100,000 iterations. 

As the BayesR software used in this study does not allow 

a full model to be fitted, residuals were calculated by 
adjusting the phenotypes for the fixed effects (residuals = 
raw phenotype – mean – fixed effects) using ASReml 
(Gilmour et al., 2009). These residuals were then used as 

phenotypes in the analysis. The BayesR analysis fits the 
effect of the SNP and a residual polygenic effect. Using the 

estimated SNP effects, a vector of GEBV was calculated 

for the animals in the validation set ˆGEBV= Zs , in which 

Z is a matrix of the standardized genotypes of the animals, 

and ŝ  is the vector of SNP effects predicted by BayesR. 

The SNP effects from each genomic prediction method 

were used to calculate GEBV for animals that were not 

part of the reference dataset (i.e., that were in validation 

populations; see below).

Validation Populations

For BayesR and GBLUP, the validation populations 

were same. Five-fold cross-validation was used by 

dividing the population (for each trait) into 5 parts of 

equal size such that each had a mixture of breeds and 

all of the progeny from randomly selected sires. Thus, 

the analysis was performed 5 times using each division 

of the data in turn as a validation group and the other 

4 divisions as the reference population. The data were 

split into 5 sets by allocating all of the offspring of 

randomly selected sires to 1 of the 5 datasets. In this 

way no animal used for validation had paternal half sibs 

in the reference population.

The main aim of the study was to determine how 

well the GEBV predict the true breeding values (TBV) 

of individual animals. If the TBV of individuals were 

known, the accuracy of the GEBV would be the 

correlation between the GEBV and the TBV. In practice, 

the TBV are unknown, and the only data available are 

phenotypes, which are made up of the effect of the TBV 

and the environmental effect. Given this limitation, the 

accuracy of the GEBV was derived as follows.

For each validation population, the accuracy of 

genomic prediction was calculated as a correlation 

between GEBV and corrected phenotype within each 

breed. The correlation between the GEBV and the 

corrected phenotypes was divided by the square root of 

h2, estimated by using the pedigree of the all animals 

recorded and their 5-generation ancestors. Thus, we 

report accuracy as the estimated correlation between 

the GEBV and the TBV. Accuracies are reported only 

when the number of records per breed is more than 

200. When combining accuracies across breeds, the 

overall accuracy was the mean accuracy within breeds 

weighted by number of the records in each breed.

Comparisons of SNP Effects among Three Methods

The effects of each SNP on each trait were 

estimated by the GWAS and by the BayesR analysis 

and are implicit in the GBLUP analysis. The SNP 

effects of GBLUP were estimated using this formula: 

( )1 2 2
ˆ ˆ /s gG g

−′= σ σs Z , in which G is the GRM, ĝ  is 

the GEBV for each animal from the entire population, 
2 2
/s gσ σ  is the ratio of the additive genetic variance 

explained by each SNP ( 2

a
σ ) to the genetic variance 

explained by all SNP ( 2

g
σ ), and Z is the matrix of 

standardized genotypes. It is assumed that all SNP 

contribute equally to the genetic variance so 2 2
/s gσ σ  

was approximated as 1/N in which N is number of total 

SNP (i.e., 729,068).

RESULTS

Population Structure

Figure 1 shows the first 2 principal components of 
the GRM. The first principal component, represented on 
the horizontal axis, captures 87.8% of the total variation, 

clearly distinguishing the taurine and indicine breeds as 

well as their crossbreeds. The BB and taurine groups are 
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at opposite extremes of this component and the crossbreed 

groups (BR and SG) appear in the middle. The second 

component explains 3.7% of the total variation and 

clearly distinguishes the taurine breeds (HH, SS, and AN). 

The MG overlaps the AN group as expected. Tropical 

composites and BR are separated from the taurine breeds 

in this dimension; perhaps because they have African Bt 

breeds in their ancestry (e.g., Africander).

The FST values between the breeds are shown in 

Table 4. They have been converted to estimates of the 

inbreeding because a common ancestor and used to draw 

a tree representing the divergence of the breeds (Fig. 2). 

Thus, the SNP estimate the inbreeding in BB because 

they shared a common ancestor with the taurine breeds 

to be 0.32. The composite breeds are not part of the 

tree because they have not evolved independently but 

resulted from crosses of BB and Bt breeds.

The GRM can also be used to estimate the inbreeding 

within breeds and the relationships among breeds. However 

the GRM uses a different base to that used to draw Fig. 2. The 

base for the GRM is a population with the allele frequency 

equal to the allele frequency over the 10,181 animals in the 

dataset. The average relationship between animals within 

a breed estimates twice the F of the breed since the base. 

These average F values are shown in Table 4. Similarly, the 

average relationship between animals of 2 different breeds 

estimates twice the inbreeding of an F1 cross between the 

breeds relative to the base (Table 4). These values can be 

negative; for instance, the average relationship between 

AN and BB is –0.18 (Table 4). This indicates that a BB×AA 

F1 is less inbred than a population with the average allele 

frequency over the whole dataset. The inbreeding of an 

F1 cross is an estimate of the inbreeding in the ancestral 

population from which the 2 breeds diverged. Therefore, 

the average relationships between breeds given by the 

GRM (Table 4) can be compared with the FST values also 

given in Table 4. For instance, the average inbreeding of 

AN and BB relative to their common ancestor is estimated 

to be (0.22 + 0.21)/2 – –0.18 = 0.395 from the GRM 

relationships and 0.32 [= 2 × 0.19/(1 + 0.19)] from the 

FST values in Table 4. All other breed pairs show a similar 

good agreement between these 2 estimates of inbreeding 

because a common ancestor.

Observed heterozygosity for each breed is shown in 

Table 5. There is good agreement between the observed 

heterozygosity and that expected under Hardy-Weinberg 

equilibrium except for the BX. This result is expected for the 

BX population because they are F1 crosses and therefore their 

genotype frequencies are not always in Hardy-Weinberg 

equilibrium. Also, Table 5 shows predicted heterozygosity 

based on the inbreeding values implied by the GRM and 

the heterozygosity in the base population (0.38). Table 

5 shows a good agreement of predicted and observed 

heterozygosity. This implies that the base population used 

for the GRM does not distort the relationships among the 

breeds too badly. However, there are some anomalies such 

as the high observed heterozygosity in HH. This may be 

due to the use of HH sequence data to discover the SNP 

on the SNP chip. Similarly the heterozygosity of BB 

would be greater than that of the taurine breeds if unbiased 

postweaning were used but the SNP on the chip were 

predominantly discovered in Bt data.

Genomewide Association Studies

Genomewide association studies, in which each 

SNP is tested separately for an association with the 

trait, were performed for all animals and in the 3 breed 

Figure 1. Principal component (PC) decompositions of genomic 

relationship matrix constructed from genotypes at 729,068 SNP markers for 

9 different breeds. The first principal component (PC1) lies on the horizontal 
axis and the second principal component (PC2) on the vertical axis. See 

online version for figure in color.

 Table 4. Pairwise FST (a measure of the genetic 

differentiation between breeds; upper off-diagonal elements) 

and inbreeding (F; lower off-diagonal and diagonal 

elements) estimated from the genomic relationship matrix1

Breed AN BB BR BX HH MG SG SS TC

AN  0.22 0.19 0.07 0.08 0.07 0.03 0.08 0.06 0.07

BB –0.18  0.21 0.10 0.05 0.21 0.20 0.09 0.20 0.07

BR 0.01 –0.06  0.08 0.03 0.07 0.08 0.04 0.07 0.01

BX –0.03 0.02 –0.01  0.03 0.09 0.09 0.03 0.09 0.01

HH 0.12 –0.19 0.05 –0.01  0.34 0.08 0.09 0.08 0.08

MG 0.19 –0.17 0.02 –0.02 0.13  0.27 0.09 0.07 0.08

SG 0.00 –0.03 0.00 –0.01 0.01 0.00  0.09 0.07 0.02

SS 0.12 –0.18 0.03 –0.02 0.12 0.12 0.05  0.26 0.07

TC –0.01 –0.02 0.03 0.00 0.01 0.00 0.00 0.02  0.02

1AN = Angus; BB = Brahman; BR = Belmont Red; BX = recent Brahman 

crosses; HH = Hereford; MG = Murray Grey; SG = Santa Gertrudis; SS = 

Shorthorn; TC = Tropical Composites.
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groups (Bt, Bi, and Bt×Bi; Table 6). For instance, 

489 SNP were significant (P < 0.0001) for RFI in 

the joint analysis of all breed types. Because 729,068 

SNP were tested, this corresponds to a false discovery 

rate (FDR) of 14% (Table 6). Table 7 shows the most 

highly significant (P < 10–8) SNP. More than 1 SNP 

was found within narrow regions on chromosomes 5, 

7, 14, and 29. In a number of cases those SNP have 

associations with more than 1 trait.

An alternative presentation of the results to the 

calculation of FDR is a quantile-quantile (Q-Q) plot shown 

for RFI in Fig. 3. The Q-Q line when all breed types are 

combined deviates most from expectations indicating that 

the FDR is lowest in the combined analysis. In the case of 

RFI, the FDR is lower in the analysis of the Bt data than in 

the analysis of the composite cattle. For the majority of the 

traits, FDR were less when all data were analyzed jointly 

than when separate analyses were performed within Bt, 

BB, and composite animals (Table 6). However, there 

was no consistent pattern for FDR when comparing the 

analyses of Bt, BB, and composite cattle.

Estimates of FDR varied between traits. They were 

low for BW, peak force (LLPF), and IGF-I traits, ranging 

from 2 to 9% (Table 6). A moderate FDR (12 to 30%) was 

found for the remaining of traits excluding scanned eye 

muscle area (SEMA). In Fig. 4A the number of significant 
SNP for each trait is plotted against the number of records 

for that trait (T) multiplied by the h2 (Th2). On average, 

Table 5. Average inbreeding estimated from genomic 

relationships and observed and predicted heterozygosi-

ties for each breed

Breed1 No. Animals Diag2 Off-diag2 HEpr
3 HEo

4 HEoHW
5

AA 1,787 1.23 0.44 0.30 0.27 0.28

BB 3,471 1.24 0.43 0.30 0.26 0.27

BR 572 1.10 0.15 0.35 0.34 0.35

BX 527 0.94 0.05 0.37 0.41 0.37

HH 648 1.34 0.68 0.25 0.31 0.31

MG 223 1.28 0.55 0.28 0.26 0.26

SG 640 1.10 0.17 0.35 0.33 0.34

SS 742 1.28 0.52 0.28 0.25 0.26

TC 1,881 1.04 0.04 0.37 0.36 0.36

1AN = Angus; BB = Brahman; BR = Belmont Red; BX = recent Brahman 

crosses; HH = Hereford; MG = Murray Grey; SG = Santa Gertrudis; SS = 

Shorthorn; Tropical Composites

2Diag and Off-diag = average within breed diagonal and off-diagonal ele-

ments of genomic relationship matrix (GRM)

3HEpr = heterozygosity predicted from the GRM 

4HEo = observed heterozygosity

5HEoHW = heterozygosity when SNP are assumed to be in Hardy-Weinberg 

equilibrium.

Figure 2. Evolutionary tree showing relationships between breeds based 

on estimates of inbreeding because breeds shared a common ancestor derived 

from FST statistics. The numbers beside each branch represent the inbreeding 

(inbreeding F in percent) along that branch. BB = Brahman; HH = Hereford; 

SS = Shorthorn; MG = Murray Grey; AN = Angus. 

Table 6. Number of SNP and their false discovery rates 

(FDR; %) at P < 0.0001 for single SNP regressions using 

729,068 SNP regressed on phenotypes within each breed 

line and for all animals together1

 

Item2

Number of SNP FDR (%)

Bt Bi Bt×Bi All Bt Bi Bt×Bi All

RFI 508 148 276 489 13.6 46.8 25.1 14.2

DFI 368 118 178 303 18.8 58.7 38.9 22.8

ADG 72 286 324 311 96.2 24.2 21.4 22.3

MMIDWT 189 107 140 239 36.6 64.7 49.5 29.0

LLPF 254 149 692 2,012 27.3 46.5 10.0 3.4

SP8 281 232 304 664 24.6 29.8 22.8 10.4

SRIB 249 221 143 233 27.8 31.3 48.4 29.7

SEMA 154 193 165 122 45.0 35.9 42.0 56.8

CRBY 203 129 162 351 34.1 53.7 42.7 19.7

CIMF 213 396 434 1,189 32.5 17.5 15.9 5.8

CMARB 97 261 217 255 71.4 26.5 31.9 27.2

CWT 311 1,648 761 4,541 22.3 4.2 9.1 1.5

PW_lwt 206 1,028 1,348 1,822 33.6 6.7 5.1 3.8

SF_lwt 341 1,547 502 1,279 20.3 4.5 13.8 5.4

PW_hip 266 1,644 2,205 2,913 26.0 4.2 3.1 2.4

SF_hip 281 238 134 365 24.6 29.1 51.7 19.0

HUMP 171 271 328 40.5 25.5 21.1

PWIGF 79 1,064 124 609 87.7 6.5 55.8 11.4

EIGF 826 195 768 8.4 35.5 9.0

Mean 240 548 451 989 37.8 28.4 28.9 16.6

1Bt = Bos taurus; Bi = Bos indicus; Bt×Bi = composites.

2RFI = residual feed intake; DFI = daily feed intake; MMIDWT = metabolic 

mid-weight; LLPF = peak force; SP8 = scanned P8 fat depth; SRIB = scanned 

rib fat; SEMA = scanned eye muscle area; CRBY = retail beef yield; CIMF = 

intramuscular fat; CMARB = marble score; CWT = carcass weight; PW_lwt = 

postweaning BW; SF_lwt = feedlot entry BW; PW_hip = postweaning hip 

height; SF_hip = feedlot entry hip height; HUMP = hump height; PWIGF = 

postweaning IGF-I; EIGF = feedlot entry IGF-I. 
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Table 7. Highly significant SNP (P < 10–8) across 19 traits studied1

SNP name BTA Position (bp) Traits2 No. SNP3

BovineHD0100014190 1 50,495,850 CWT 1

BovineHD0500035405 5 42,641,456–51,093,247 PW_hip 10

BovineHD0500013789 5 47,731,856 PW_lwt, SF_lwt 1

BovineHD0500013895 5 48,069,099 PW_lwt 1

BovineHD0500014025 5 48,623,407 HUMP 1

BovineHD0500030518 5 106,417,996–110,712,255 PW_hip 3

BovineHD0600010840 6 39,431,268 PW_lwt 1

BovineHD0600010868 6 39,591,153 PW_hip 1

BovineHD0600010976 6 40,093,712 PW_lwt, PW_hip, SF_hip 1

BovineHD0600011539 6 42,411,772 PW_hip 1

BovineHD0600012396 6 4,5564,507 PW_hip, PW_lwt 1

BovineHD0600034321 6 62,735,880–6,8101,121 LLPF 2

ARS-BFGL-NGS-107035 7 93,007,435–9,3287,387 CRBY 2

BovineHD0700027195 7 93,079,409 CWT 1

BovineHD0700028765 7 98,540,675–107,723,475 LLPF 5

BTB-01182680 9 81,368,713 CIMF 1

BovineHD1000025368 10 89,027,305–94,456,158 LLPF 2

BovineHD1000027795 10 96,286,865 CIMF 1

BovineHD1300014692 13 51,444,238 CWT 1

BovineHD1400006275 14 21,784,075 CWT 1

BovineHD1400006558 14 22,751,455 CWT, PW_hip 1

BovineHD1400006612 14 22,913,491 SF_lwt 1

BovineHD1400006916 14 23,831,754 PWIGF, EIGF 1

BovineHD1400006992 14 24,114,365 PW_lwt 1

BovineHD1400007050 14 24,312,107 CWT, SF_lwt, PW_hip 1

BovineHD1400007153 14 24,621,142 RFI 1

BovineHD1400007259 14 25,015,640 PW_hip, PW_lwt, SF_lwt, CWT, EIGF 1

BovineHD1400007323 14 25,276,491 PWIGF 1

BovineHD1400007333 14 25,329,035 PW_hip, PW_lwt 1

BovineHD1400007333 14 25,329,035 CWT 1

BovineHD1400007333 14 25,329,035 SF_lwt 1

BovineHD1400007343 14 25,376,827 PWIGF, EIGF 1

BovineHD1400007584 14 26,326,039 PW_hip 1

BovineHD1400007658 14 26,587,761 EIGF 1

BovineHD1400007683 14 26,664,554 PW_lwt 1

BovineHD1400007684 14 26,666,557–35,583,587 CWT 7

BovineHD4100011372 14 27,208,716–27,337,201 SF_lwt 2

BovineHD1400007858 14 27,521,068–31,099,513 PW_hip 3

BovineHD1400008064 14 28,068,938–29,411,154 PW_lwt 2

BovineHD1400008387 14 28,957,602 PW_lwt, CWT 1

ARS-BFGL-NGS-30322 14 49,289,017 CIMF 1

BovineHD2000001543 20 4,873,556 SF_lwt 1

BovineHD2900011261 29 37,272,045– 38,728,128 LLPF 3

BovineHD2900011409 29 41,027,630–49,493,765 LLPF 9

1For regions where several highly significant SNP were observed, the most significant SNP is presented. 
2Traits that were associated with significant SNP (P < 10–8);  CWT = carcass weight; PW_hip = postweaning hip height; PW_lwt = postweaning BW; 

SF_lwt = feedlot entry BW; HUMP = hump height; SF_hip = feedlot entry hip height; LLPF = peak force; CRBY = retail beef yield; CIMF = intramuscular fat; 

PWIGF =postweaning IGF-I; EIGF = feedlot entry IGF-I; RFI = residual feed intake. 
3Number of SNP that were significant at P < 10–8 within the specified region.
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traits with high values of (Th2) have more significant SNP 
(R2 = 0.43). However, there were some exceptions. For 

example, postweaning IGF-I (PWIGF) and EIGF, which 

were only recorded on 918 and 1,103 animals, respectively, 

have a large number of significant SNP. This is due in 
part to the large number of significant SNP surrounding 
the gene PLAG1 (chromosome 14:25001906..25052394; 

– strand), which has a large effect on IGF concentration. 

On the other hand, scanned rib fat (SRIB) and scanned P8 

fat depth (SP8), which are highly heritable and recorded 

for close to 5,000 animals, have a relatively low number 

of significant SNP (Fig. 4A).
False discovery rate also varied between breed type and 

trait combinations. For instance, FDR was less for growth 

traits in BB and Bt×Bi cross animals compared with Bt 

animals (Table 6). Such results might reflect mutations of 
larger effect segregating in particular breed types such as 

PLAG1 segregating in BB and composite animals.

Genomic Predictions

Using GBLUP, the average correlation between 

the TBV and GEBV was 0.27 across traits and breeds 

(Table 8). The weighted (by numbers within breed) 

Figure 3. Quantile–quantile plot of P-values from single SNP 

genomewide association study of residual feed intake in Bos taurus (red), Bos 

indicus (navy blue), crossbreds (pink), and all breeds and crosses together 

(dark green). Observed and expected P-values would fall on the light blue 

line if there were no association. The top horizontal line is P < 0.0001, middle 

horizontal line is P < 0.001, and the bottom horizontal line is P < 0.05. See 

online version for figure in color.

Figure 4. A) Relationship between number of significant SNP (P < 0.0001) and the number of records for particular trait (T) times heritability (h2; Th2). B) 

Relationship between the weighted genomic BLUP accuracy and the number of records (T) for particular trait times heritability (h2; Th2). CIMF = intramuscular fat; 

CMARB = marble score; CRBY = retail beef yield; CWT = carcass weight; DFI = daily feed intake; EIGF = feedlot entry IGF-I; HUMP = hump height; LLPF = 

peak force; MMIDWT = metabolic mid-weight; PWIGF = postweaning IGF-I; PW_hip = postweaning hip height; PW_lwt = postweaning BW; RFI = residual feed 

intake; SEMA = scanned eye muscle area; SF_hip = feedlot entry hip height; SF_lwt = feedlot entry BW; SP8 = scanned P8 fat depth; SRIB = scanned rib fat.  See 

online version for figure in color.
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accuracies for GBLUP were 0.36 for RFI, between 

0.21 and 0.37 for growth traits [PW_lwt, SF_lwt, 

postweaning hip height (PW_hip), feedlot entry hip 

height (SF_hip), and HUMP] and between 0.17 and 

0.33 for carcass and meat quality traits [SP8, SRIB, 

retail beef yield (CRBY), intramuscular fat (CIMF), 

SEMA, CWT and marble score (CMARB)]. The 

lowest accuracies were estimated for metabolic mid-

weight (MMIDWT), CRBY, and SEMA, which had the 

greatest FDR among the traits studied in the single SNP 

regression analysis. There was a tendency (R2 = 0.30) 

for accuracy to increase as the number of phenotypes 

in the reference set multiplied by the heritability (Th2) 

increased (Fig. 4B) in the same way as the number of 

significant SNP increased with Th2 (Fig. 4A).

Comparing breeds, the greatest average accuracy 

of GEBV was found in TC followed by BR, BB, and 

AN ignoring MG (Table 8). Two Bt breeds (HH and SS) 

tended to have lower average accuracy than other breeds. 

The relationship between the average accuracy and mean 

number of records across traits are shown in Fig. 5. 

As seen in Fig. 5, TC and BB breeds had the greatest 

average accuracy as well as the largest mean number 

of records. The SS breed had the smallest number of 

records after the MG breed and the lowest accuracy of 

GEBV. The MG breed that is closely related to the AN 

breed had the greatest average accuracy, but the accuracy 

was averaged across only 4 traits (Table 8). On average, 

BayesR accuracies (Table 9) were greater than GBLUP 

accuracies by 0.03 (Table 8). The increase in accuracy 

from GBLUP to BayesR was greatest in the composite 

and BB breeds (Table 9 vs. Table 8) and for traits that had 

the most significant SNP in the GWAS (Fig. 6).
In Table 10 the posterior means for the number of SNP 

in each component of the mixture distribution of BayesR 

are presented (e.g., the number of SNP with effects drawn 

from normal distributions with variances of either 0, 0.01, 

0.1, and 1% of the genetic variance). On average, 19 SNP, 

271 SNP, and 4,029 SNP had an effect that explained 1, 0.1, 

and 0.01% of genetic variance, respectively (Table 10). 

The traits EIGF, PWIGF, and LLPF had the largest 

number of SNP explaining 1% of the genetic variance 

Table 8. Average weighted accuracies of genomic EBV across breeds of the 5-fold cross-validation populations using 

genomic BLUP (GBLUP) method1

Trait2 AN BB BR BX HH MG SG SS TC ALL (SD)

RFI 0.58 0.31 0.40 0.19 0.37 0.18 0.36 0.36 (0.14)

DFI –0.02 0.32 0.37 0.24 0.36 0.32 0.28( 0.15)

ADG 0.24 0.24 0.13 0.21 0.21 (0.05)

MMIDWT 0.25 0.04 0.10 0.13 (0.11)

LLPF 0.05 0.40 0.34 0.25 0.11 0.71 0.22 0.11 0.26 0.25 (0.20)

SP8 0.50 0.19 0.31 0.14 0.33 0.25 0.32 (0.13)

SRIB 0.42 0.22 0.27 0.07 0.25 0.09 0.25 (0.13)

SEMA 0.15 0.23 0.35 0.20 0.11 0.16 0.19 (0.08)

CRBY 0.26 0.23 –0.03 –0.04 0.21 0.22 0.17 (0.14)

CIMF 0.31 0.27 0.43 0.37 0.20 0.32 0.40 0.27 0.42 0.33 (0.08)

CMARB 0.21 0.19 0.56 0.12 0.14 0.16 0.45 0.27 (0.17)

CWT 0.16 0.28 0.33 0.19 0.32 0.39 0.29 0.19 0.38 0.27 (0.08)

PW_lwt 0.27 0.38 0.29 0.26 0.20 0.24 0.11 0.42 0.32 (0.10)

SF_lwt 0.42 0.31 0.30 0.21 0.26 0.39 0.27 0.19 0.41 0.32 (0.08)

PW_hip 0.20 0.44 0.32 0.23 0.24 0.17 0.47 0.37 (0.12)

SF_hip 0.23 0.28 0.32 0.26 0.27 (0.04)

HUMP 0.25 0.18 0.21 (0.05)

PWIGF 0.31 0.07 0.20 (0.17)

EIGF 0.43 0.24 0.33 (0.13)

Average across breed

GBLUP (SD)

0.26

(0.15)

0.30

(0.08)

0.30

(0.14)

0.22

(0.08)

0.18

(0.10)

0.45

(0.17)

0.25

(0.09)

0.18

(0.06)

0.33

(0.12)

0.27

(0.07)

Average within breed

GBLUP (SD)

0.26

(0.16)

0.27

(0.10)

0.20

(0.14)

0.13

(0.09)

0.17

(0.11)

0.36

(0.20)

0.16

(0.15)

0.18

(0.08)

0.24

(0.10)

0.23

(0.07)

% compared with

within breed GBLUP

101 109 152 168 103 126 157 100 134 117

1Empty cells = not estimable or removed if the number of records fewer than 200 for the particular trait; SD = SD of accuracies across breeds and traits. AN 

= Angus; BB = Brahman; BR = Belmont Red; BX = recent Brahman crosses; HH = Hereford; MG = Murray Grey; SG = Santa Gertrudis; SS = Shorthorn; TC 

= Tropical Composites.

2RFI = residual feed intake; DFI = daily feed intake; MMIDWT = metabolic mid-weight; LLPF = peak force; SP8 = scanned P8 fat depth; SRIB = scanned 

rib fat; SEMA = scanned eye muscle area; CRBY = retail beef yield; CIMF = intramuscular fat; CMARB = marble score; CWT = carcass weight; PW_lwt = 

postweaning BW; SF_lwt = feedlot entry BW; PW_hip = postweaning hip height; SF_hip = feedlot entry hip height; HUMP = hump height; PWIGF = 

postweaning IGF-I; EIGF = feedlot entry IGF-I.
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Genomic prediction in multibreed beef cattle 3099

(Table 10). The polygenic variance that is explained by 

the pedigree but not by the SNP varied from 6 to 70% 

of the total genetic variance (Table 10) and was largest 

for traits such as HUMP, ADG, CRBY, MMIDWT, and 

SRIB where few SNP were significant in the GWAS. We 
repeated the GBLUP analysis adding a polygenic effect to 

the model and estimated its variance, which varied widely 

from 0.01 to 0.55 (Table 10). Generally, the amount of 

variance explained by the polygenic effect for each trait 

was similar between BayesR and GBLUP except for 

some traits such as RFI and IGF-I traits. The accuracy 

of GBLUP GEBV was hardly changed by fitting the 
polygenic effect and so this model was not used for the 

main GBLUP analysis.

Breed Specific Compared with  
All Breed Training Populations

When the training population was restricted to 

animals from the same breed as the validation population 

(e.g., only BB animals used to predict Brahman GEBV) 

GBLUP accuracies dropped by an average of 0.04 

(Table 8). The greatest drop in accuracy was found for 

the 4 composite breeds (e.g., the difference in accuracies 

for BR was 0.10). This shows that the composite breeds 

Figure 5. Relationship between the average genomic BLUP accuracy 

across traits and mean records across traits. See online version for figure in 
color.

Table 9. Average weighted accuracies of genomic EBV of the 5-fold cross-validation populations using BayesR 

method by breed and across breeds1

Trait2 AN BB BR BX HH MG SG SS TC ALL (SD)

RFI 0.59 0.33 0.38 0.16   0.38 0.16 0.36 0.36 (0.15)

DFI 0.00 0.25 0.34 0.22   0.31  0.35 0.26 (0.13)

ADG 0.24  0.18 0.27   0.23   0.23 (0.04)

MMIDWT 0.27  0.07    0.15   0.17 (0.10)

LLPF 0.41 0.38 0.55 0.31 0.30 0.61 0.53 0.15 0.43 0.41 (0.14)

SP8 0.48 0.15 0.30  0.06  0.30 0.21  0.28 (0.15)

SRIB 0.38 0.22 0.31  0.00  0.27 0.06  0.23 (0.15)

SEMA 0.10 0.20 0.38  0.18  0.04 0.11  0.16 (0.12)

CRBY 0.35 0.17 0.04  0.01  0.21 0.24  0.20 (0.13)

CIMF 0.29 0.23 0.41 0.32 0.13 0.26 0.33 0.24 0.43 0.29 (0.09)

CMARB 0.10 0.21 0.53 0.08 0.17  0.15  0.43 0.25 (0.17)

CWT 0.18 0.31 0.42 0.26 0.32 0.42 0.35 0.17 0.42 0.30 (0.10)

PW_lwt 0.29 0.41 0.38 0.35 0.20  0.31 0.06 0.46 0.36 (0.13)

SF_lwt 0.42 0.37 0.39 0.27 0.32 0.39 0.33 0.24 0.44 0.36 (0.07)

PW_hip 0.25 0.48 0.40  0.26  0.25 0.15 0.51 0.41 (0.14)

SF_hip 0.24 0.29   0.31    0.30 0.29 (0.03)

HUMP  0.30       0.26 0.28 (0.03)

PWIGF  0.60       0.23 0.43 (0.26)

EIGF  0.56       0.40 0.48 (0.11)

Average (SD) 0.29

(0.15)

0.32

(0.13)

0.34

(0.14)

0.25

(0.08)

0.19

(0.12)

0.42

(0.14)

0.28

(0.11)

0.16

(0.07)

0.39

(0.08)

0.30

(0.09)

1Empty cells = not estimable or removed if the number of records fewer than 200 for the particular trait; SD = standard deviation of accuracies across breeds 

and traits. AN = Angus; BB = Brahman; BR = Belmont Red; BX = recent Brahman crosses; HH = Hereford; MG = Murray Grey; SG = Santa Gertrudis; SS = 

Shorthorn; TC = Tropical Composites.

2RFI = residual feed intake; DFI = daily feed intake; MMIDWT = metabolic mid-weight; LLPF = peak force; SP8 = scanned P8 fat depth; SRIB = scanned 

rib fat; SEMA = scanned eye muscle area; CRBY = retail beef yield; CIMF = intramuscular fat; CMARB = marble score; CWT = carcass weight; PW_lwt = 

postweaning BW; SF_lwt = feedlot entry BW; PW_hip = postweaning hip height; SF_hip = feedlot entry hip height; HUMP = hump height; PWIGF = 

postweaning IGF-I; EIGF = feedlot entry IGF-I.
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gained more advantage than Bi and Bt breeds from using 

a training population that includes all breeds instead of a 

breed-specific training population.

Comparisons of Genomewide Association Studies, 

BLUP, and BayesR for Mapping QTL

The estimates of SNP effects were compared 

for BayesR and GBLUP (in which all SNP are fitted 
simultaneously) to those from the GWAS where SNP 

were fitted individually. The 729 SNP with the largest 
effects from the BayesR and GBLUP were frequently 

significant in the GWAS analysis (Table 11). For 
example, for RFI and LLPF, out of the 729 SNP with 

largest BayesR effects there were 590 (81%) and 394 

(54%) SNP, respectively, that were also significant (P < 

0.001) in the single SNP regression analysis. Similarly, 

for the same 2 traits, out of the 729 SNP with largest 

GBLUP effects there were 540 (74%) and 671 (92%) 

SNP, respectively, that were also significant (P < 0.001) 

in the single SNP regression analysis.

To judge to what extent the 2 genomic selection 

methods (BayesR and GBLUP) agree with each other, SNP 

were ranked according to their absolute effect on each trait. 

The proportion of the 729 largest BayesR effects that were 

also found among the largest 729 GBLUP SNP was then 

calculated. The greatest common proportion (0.54 to 0.63) 

of large SNP effects was for RFI, daily feed intake (DFI), 

SEMA, and CMARB. The lowest agreement was found 

for SF_hip and LLPF (0.39 and 0.33, respectively) where 

the largest BayesR effects were found near or within the 

regions of genes, such as PLAG1, Calpain (chromosome 

29:44064420..44089990; + strand), and Calpastatin 

(chromosome 7:98524257..98581260; + strand), with 

known large effect mutations affecting the trait (Fig. 4B). 

When we used up to 7,290 (1% out of total SNP tested) 

the agreement between the 2 genomic methods gradually 

increased for all traits indicating that many SNP with small 

effects were captured by both genomic prediction methods.

Figure 7 shows examples of the typical difference 

between GWAS, BayesR, and BLUP estimates of SNP 

effects. The scale for BayesR or BLUP SNP effects 

presented on Fig. 7 is an arbitrary scale chosen so that 

we could display the results of all 3 methods on the same 

graph. In general, peaks occur at approximately the 

same chromosomal location. However, BLUP generates 

SNP solutions that do not vary widely between SNP. 

Genomewide association studies find many significant 
SNP in a region of the chromosome presumably because 

Figure 6. Relationship between number of significant SNP (P < 0.0001) 

and the difference in accuracy between BayesR and genomic BLUP. CIMF = 

intramuscular fat; CMARB = marble score; CRBY = retail beef yield; CWT = 

carcass weight; DFI = daily feed intake; EIGF = feedlot entry IGF-I; HUMP = 

hump height; LDPF = peak force; MIDWT = metabolic mid-weight; PWIGF = 

postweaning IGF-I; PW_hip = postweaning hip height; PW_lwt = postweaning 

BW; RFI = residual feed intake; SEMA = scanned eye muscle area; SF_hip = 

feedlot entry hip height; SF_lwt = feedlot entry BW; SP8 = scanned P8 fat 

depth; SRIB = scanned rib fat. See online version for figure in color.

Table 10. Posterior probabilities of SNP effect 

distributions in BayesR1

 

Trait3

Number of SNP in each component Polygenic variance2

0 0.01% 0.1% 1% BayesR GBLUP4

RFI 721,264 7,498 296 6 0.11 0.01

DFI 723,619 5,224 214 8 0.19 0.16

ADG 726,876 1,876 293 15 0.47 0.35

MMIDWT 724,115 4,678 240 11 0.36 0.45

LLPF 727,358 1,419 254 36 0.27 0.26

SP8 723,095 5,384 578 6 0.12 0.26

SRIB 723,762 5,068 229 3 0.32 0.42

SEMA 724,762 3,972 319 8 0.22 0.05

CRBY 726,268 2,570 215 13 0.37 0.35

CIMF 727,127 1,506 428 5 0.24 0.18

CMARB 724,119 4,519 415 11 0.06 0.14

CWT 723,076 5,921 64 5 0.27 0.18

PW_lwt 723,765 5,214 76 11 0.24 0.29

SF_lwt 722,627 6,319 107 14 0.22 0.21

PW_hip 724,212 4,636 203 14 0.13 0.10

SF_hip 725,187 3,597 261 21 0.22 0.07

HUMP 728,106 771 80 17 0.70 0.55

PWIGF 724,729 3,774 416 72 0.17 0.02

EIGF 725,821 2,598 459 81 0.15 0.00

Mean 724,731 4,029 271 19 0.25 0.21

10 or 0.01 or 0.1 or 1% of the total genetic variance.

2Polygenic variance as a proportion of the genetic variance for each trait 

using BayesR and GBLUP methods.

3RFI = residual feed intake; DFI = daily feed intake; MMIDWT = metabolic 

mid-weight; LLPF = peak force; SP8 = scanned P8 fat depth; SRIB = scanned 

rib fat; SEMA = scanned eye muscle area; CRBY = retail beef yield; CIMF = 

intramuscular fat; CMARB = marble score; CWT = carcass weight; PW_lwt = 

postweaning BW; SF_lwt = feedlot entry BW; PW_hip = postweaning hip 

height; SF_hip = feedlot entry hip height; HUMP = hump height; PWIGF = 

postweaning IGF-I; EIGF = feedlot entry IGF-I.

4GBLUP = genomic BLUP.
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all these SNP are in LD with the same QTL. BayesR tends 

to find small numbers of SNP very close together with 
much larger estimated effects than the surrounding SNP. 

Therefore, it is possible that BayesR maps QTL more 

precisely than the other methods. This is supported by 

the small (0.03) increase in GEBV accuracies for BayesR 

compared with the GBLUP.

DISCUSSION

The GRM is a good representation of the relationships 

between and within breeds for the animals included in 

our study. This is shown by the agreement with F values 

and the observed heterozygosities. In our analyses 

breed differences were always fitted as a fixed effect so 
the relationships between breeds were not used in the 

GWAS or calculation of GEBV. Therefore, the important 

consideration in using the GRM for genomic prediction 

is that it correctly reflects the amount of genetic variation 
within each breed. Erbe et al. (2012) calculated a GRM 

based on a large sample of Holsteins and a small sample of 

Jerseys and concluded that this distorted the within-breed 

genetic variance because the Jersey breed was further 

from the base (allele frequency for the whole dataset) than 

the Holstein breed. Therefore Jerseys appeared to have 

less genetic variance. Consequently Erbe et al. (2012) 

corrected the GRM to a better base. We tested for such 

a distortion by comparing the observed heterozygosity 

of SNP with that predicted from the GRM and found 

no major distortion. The largest anomalies, such as the 

high observed heterozygosity in Herefords and the less 

than expected heterozygosity in Brahman animals, are 

intrinsic to the SNP data used and so cannot be eliminated 

by a change to the GRM. Therefore we used the GRM as 

estimated for genomic prediction.

The accuracy of GEBV was affected by trait, size of 

the training population, and breed and, to a lesser extent, by 

the type of training population (within or across breed) and 

statistical method (GBLUP vs. BayesR). Traits that had a 

large training population and a high heritability and breeds 

with a large training population tended to give greater 

accuracies than average. This is expected from theory 

(Goddard, 2009) in which Th2 is a critical parameter.

The use of a single multibreed reference population 

for all breeds either increased or did not decrease the 

accuracy of GEBV. There are also practical advantages 

of using a common reference population or, equivalently, 

a common prediction equation based on SNP genotypes 

for all breeds. Using a common training population 

leads to greater accuracy than breed-specific training 
populations especially for the Bi×Bt composite breeds. 

This is not surprising given that these breeds should 

share chromosome segments with both the Bt and 

Brahman cattle and hence benefit from their inclusion 
in the training population. Similarly, the reduced FDR in 

the combined analyses does not indicate that the same 

Table 11. The percentage of the 729 SNP with largest genomic BLUP (GBLUP) and BayesR effects that were also 

significant at different thresholds of P-values in the single SNP regression analyses

 

Trait1

GBLUP BayesR

P < 0.0001 P < 0.001 P < 0.01 P < 0.05 P < 0.0001 P < 0.001 P < 0.01 P < 0.05

RFI 29 74 98 100 34 81 99 100

DFI 24 70 99 100 23 73 99 100

ADG 19 57 96 100 28 75 99 100

MMIDWT 18 55 94 100 25 76 99 100

LLPF 74 92 98 98 37 54 80 96

SP8 14 53 94 99 35 75 98 100

SRIB 16 58 98 100 21 71 99 100

SEMA 15 61 99 100 16 73 100 100

CRBY 25 68 99 100 27 67 95 100

CIMF 31 71 99 100 27 69 95 99

CMARB 27 83 100 100 25 79 99 100

CWT 45 72 95 100 32 61 86 98

PW_lwt 53 85 100 100 44 80 99 100

SF_lwt 40 77 99 100 25 70 97 100

PW_hip 57 83 99 100 38 71 97 99

SF_hip 18 64 97 100 23 61 96 99

HUMP 17 67 98 100 27 64 98 100

PWIGF 57 90 99 100 25 70 99 100

EIGF 65 90 100 100 30 73 99 100

1RFI = residual feed intake; DFI = daily feed intake; MMIDWT = metabolic mid-weight; LLPF = peak force; SP8 = scanned P8 fat depth; SRIB = scanned 

rib fat; SEMA = scanned eye muscle area; CRBY = retail beef yield; CIMF = intramuscular fat; CMARB = marble score; CWT = carcass weight; PW_lwt = 

postweaning BW; SF_lwt = feedlot entry BW; PW_hip = postweaning hip height; SF_hip = feedlot entry hip height; HUMP = hump height; PWIGF = 

postweaning IGF-I; EIGF = feedlot entry IGF-I.
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QTL segregate in all breed types; it might be that some 

QTL segregate in both Bt and composite animals and 

other QTL segregate in Brahman and composite animals.

BayesR gave greater accuracy of GEBV than 

GBLUP and the advantage was greatest (up to 0.23) for 

traits with mutations of moderate effect segregating and 

a high number of significant SNP. For instance, LLPF 
is known to be affected by polymorphisms in Calpain 

1 and Calpastatin (Barendse, 2002, 2007; Page et al., 

2002; White et al., 2005; Johnston and Graser, 2010). 

Highly significant SNP in these genes were indeed found 
in the GWAS. Similarly, a large number of significant 
SNP was found associated with IGF concentration in 

Brahman animals and the accuracy of GEBV increased 

from 0.25 with GBLUP to 0.41 with BayesR. PLAG1 

is 1 gene with a known large effect mutation for IGF 

concentration that is segregating in Australian Brahman 

cattle (Hawken et al., 2011). Precorrection for fixed 
effects (e.g., breed) could cause some bias in the 

estimation of SNP effects with BayesR. However, we do 

not believe that this bias is serious and despite any bias 

BayesR slightly outperforms GBLUP.

The accuracy of GEBV reported here are less 

than those typically found in dairy cattle (Hayes et 

al., 2009; VanRaden et al., 2009; Erbe et al., 2012). 

This is probably because the value of Th2 is much 

greater within Holstein than within any of the breeds 

represented here. For instance, we have 1,650 Angus 

measured for PW_lwt with a heritability of 0.45 (Th2 = 

742) whereas VanRaden et al. (2009) had 10,000 

Holsteins with daughter averages for milk yield (h2 = 

0.8; Th2 = 8,000). Hence, it is not surprising that the 

accuracy in Holstein is 0.7 compared with 0.27 for our 

Angus. Interestingly, the accuracy of 0.42 reported by 

Pryce et al. (2012) for the accuracy of RFI in growing 

Holstein heifer calves is very similar to what we report 

here, perhaps because as the reference set in Pryce et al. 

(2012) consisted of heifers with their own phenotypes 

rather than bulls with daughter averages. The low 

accuracies of GEBV limit the benefit from genomic 
selection of beef cattle. However, the GEBV are still 

of value for some traits that are difficult to improve 
by traditional selection such as RFI (accuracy = 0.36) 

and LLFP (accuracy = 0.41). The results and theory 

strongly suggest that the accuracies of all traits will 

increase if the training population is increased in size.

There are few other reports on accuracy of genomic 

predictions in beef cattle (e.g., Kizilkaya et al., 2010; 

Toosi et al., 2010; Garrick, 2011; Weber et al., 2012). 

The simulation study of Toosi et al. (2010) found that 

a multibreed training population was poor at predicting 

breeding values in a breed that is not included in the 

Figure 7. The –log10(P-values) of single SNP regressions (blue) and SNP effect predicted from genomic BLUP (GBLUP; green) and BayesR (red) on 

chromosome 7 for peak force (7A) and on chromosome 14 for postweaning IGF-I (7B). The absolute value effects for BayesR or GBLUP were scaled arbitrarily 

to fit genomewide association study (GWAS). See online version for figure in color.
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training data. However, if the validation breed was a 

part of the multibreed training set, then the accuracies 

were similar to within-breed prediction (Toosi et al., 

2010). In our findings, multibreed prediction generally 
gave more accurate genomic prediction than single-

breed prediction. This may be due to use of high density 

markers and more data per breed for the cross-validation. 

Our findings are supported by a more recent report by 
Weber et al. (2012) in which the prediction equations 

trained in multibreed populations were more accurate 

(especially for Angus and Hereford subpopulations) than 

the prediction equations trained in a single breed. Using 

the 50K SNP data, Weber et al. (2012) derived genomic 

predictions by training and cross-validating using 2 

U.S. beef populations of diverse breed composition 

for selected growth and carcass traits. The authors 

also reported that the accuracies of GEBV between 

populations were variable, ranging between 0.11 to 

0.50 for growth traits and –0.02 to 0.40 for carcass traits 

when the prediction equations were trained in multibreed 

populations, whereas for prediction equations trained in 

a single breed the accuracies were between 0.05 to 0.53 

for growth traits and –0.01 to 0.28 for carcass traits. The 

within-Angus accuracy of GEBV using 384 SNP selected 

for their associations with traits reported by Garrick et al. 

(2009) and Garrick (2011) were 0.59 for marbling, 0.32 

for backfat, 0.58 for rib eye, 0.44 for carcass weight, and 

0.35 for yearling weight. These estimates were much 

greater than our accuracies for those traits.

The Q-Q plot deviates from expectation even at low 

values of –log10 (P-value). This is sometimes interpreted 

as a sign of uncontrolled population structure. However, 

this is not likely in this case as we fitted a breed and 
a polygenic effect in the model. This type of deviation 

from expectation is also the expected pattern for a 

trait with many loci causing genetic variation (Yang 

et al., 2010) and this is the likely interpretation in this 

case. This interpretation is supported by the thousands 

of SNP that the BayesR analysis fits, each accounting 
for approximately 0.0001 of the genetic variance, and 

by the finding that the accuracy of GEBV calculated 
with GBLUP is almost as high as those calculated with 

BayesR. Nevertheless some SNP show highly significant 
(P < 10–8) associations with 1 or more traits (Table 7).

The GWAS, BLUP, and BayesR tend to identify the 

same SNP as associated with a trait. The prior distribution 

of SNP effects assumed by BLUP forces all estimated 

SNP effects to be small. Consequently, we expect that 

the effect of a single QTL will be predicted by a linear 

combination of many SNP. The observed results are in 

agreement with this expectation in that many SNP have 

small effects and no SNP have large effects. Despite this 

the largest SNP effects often correspond with the most 

significant SNP from the GWAS. For traits with some 

mutations of larger effect (e.g., explaining >1% of the 

genetic variance), it seems likely that BayesR places 

more weight on SNP close to the causal mutation than 

does GBLUP and consequently makes more accurate 

predictions of breeding values.

Conclusion

Traits with a large number of recorded and genotyped 

animals and with high heritability gave the greatest 

accuracy of GEBV. Using a common training population 

gave greater accuracy than using breed-specific training 
populations (on average 0.04) especially for composites 

between Bos indicus and Bos taurus breeds. BayesR gave 

greater accuracy of GEBV (up to 0.23) than GBLUP for 

traits with a high number of significant SNP indicating 
some polymorphisms of moderate effect on the trait. 

The average accuracies across traits using BayesR and 

GBLUP were 0.30 and 0.27, respectively, but they 

varied widely between breeds and between traits. All 

traits appear to be highly polygenic with thousands of 

SNP independently associated with each trait.
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