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In the study of open quantum systems, the polaron transformation has recently attracted a renewed

interest as it offers the possibility to explore the strong system-bath coupling regime. Despite this

interest, a clear and unambiguous analysis of the regimes of validity of the polaron transformation

is still lacking. Here we provide such a benchmark, comparing second order perturbation theory

results in the original untransformed frame, the polaron frame, and the variational extension with

numerically exact path integral calculations of the equilibrium reduced density matrix. Equilibrium

quantities allow a direct comparison of the three methods without invoking any further approxima-

tions as is usually required in deriving master equations. It is found that the second order results in

the original frame are accurate for weak system-bath coupling; the results deteriorate when the bath

cut-off frequency decreases. The full polaron results are accurate for the entire range of coupling for

a fast bath but only in the strong coupling regime for a slow bath. The variational method is capable

of interpolating between these two methods and is valid over a much broader range of parameters.

© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4722336]

I. INTRODUCTION

In many open quantum systems, the coupling between

the system and the bath can be considered as a small param-

eter. In this case, the application of second order perturbation

leads to a master equation of Redfield or Lindblad type.1 Their

numerical implementation is straightforward and not compu-

tationally expensive. However, for many physical systems of

current interest it has been shown that the weak coupling ap-

proximation is not justified. One example is the energy trans-

fer process in photosynthetic complexes where the magnitude

of the system-bath coupling is comparable to the electronic

couplings.2–5 There are only a few non-perturbative tech-

niques to obtain the numerically exact dynamics; examples

include the hierarchy master equation,6, 7 the quasi-adiabatic

propagator path integral (QUAPI),8, 9 and the multiconfigu-

ration time-dependent Hartree approach.10–12 However, these

methods are computationally demanding and also not trivial

to implement.

Recently, a polaron transformed second order master

equation13–18 has been derived to study the dynamics of open

quantum systems at strong coupling. This approach trans-

forms the total Hamiltonian into the polaron frame such that

the system Hamiltonian is dressed by a polaron. The mas-

ter equation is then obtained by applying perturbation the-

ory to the transformed system-bath interaction term. This ap-

proach extends the regime of validity of the master equation

to stronger system-bath coupling, provided that the electronic

couplings (or tunneling matrix elements) are small compared

to the typical bath frequency. When this condition is not ful-

a)Electronic mail: cqtlck@nus.edu.sg.
b)Electronic mail: jianshu@mit.edu.

filled, the polaron is too sluggish to accurately follow the

system motion and the polaron transformation may perform

worse than the standard master equation approach.

In order to partially overcome this difficulty, the varia-

tional method has been developed as a generalization of the

polaron transformation.19–22 Instead of performing the full

transformation, the variational polaron approach seeks for an

optimal amount of transformation, depending on the proper-

ties of the bath. Thus it is able to interpolate between the

strong and weak coupling regimes and to capture the cor-

rect behavior over a much broader range of parameters. Both

the polaron and variational master equations have the attrac-

tive feature of being computationally economic (they have the

same computational complexity as the Redfield equation) and

are therefore suitable for studying large systems.

However, a thorough assessment of the accuracy of

second order perturbation theory (2nd-PT) in the polaron and

variational polaron frames is still lacking. It is not exactly

clear how the accuracy depends on the properties of the bath,

namely, the bath relaxation time and the coupling strength.

One of the main goals of this work is to provide such a

benchmark. Instead of studying the dynamics, here we focus

on the equilibrium density matrix. Focusing on this quantity

offers two key advantages. First, in the equilibrium case the

second order perturbation is the only approximation involved.

In the derivation of second order master equations, additional

approximations generally must be invoked, such as factorized

initial conditions and the Born-Markov approximation. These

additional restrictions prevent a clear assessment of the iso-

lated role of second order perturbation theory and the merits

of the polaron transformation (Refs. 13–15, and 21 avoided

the Born-Markov approximation though). Thus studying

the equilibrium density matrix offers a direct comparison

0021-9606/2012/136(20)/204120/7/$30.00 © 2012 American Institute of Physics136, 204120-1
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of the various perturbation methods. A second advantage

of studying the equilibrium state is that it is much easier to

obtain numerically exact results. Therefore, we are able to

systematically explore a large range of the parameter space

that is often not possible with other exact treatments of the

dynamics.

In Sec. II A, the details of the spin-boson model used in

the remainder of the text are outlined. Following this, the po-

laron transformation and its variational extension are applied

to the Hamiltonian in Sec. II B. In Sec. II C, the second-order

corrections to the equilibrium reduced density matrix are de-

rived in the original, polaron, and variational polaron frames.

In the ensuing section, results for the various perturbation the-

ories are compared with exact numerical results from path in-

tegral calculations over a broad range of the parameter space.

As expected, it is found that the second-order results in the

original frame are accurate for small system-bath coupling

and fast bath. The full polaron method is valid for the en-

tire range of coupling for a fast bath. But for a slow bath, it is

only accurate in the strong coupling regime. The variational

method is capable of interpolating between these two methods

and provides a much more accurate description.

II. THEORY

A. Spin-boson model

The spin-boson model is a paradigm for the study of

quantum dissipative systems. It has been used to inves-

tigate the energy transfer in light harvesting systems,23, 24

the problem of decoherence in quantum optics,25 tunnel-

ing phenomena in condensed media,26, 27 and quantum phase

transitions.28–30 The spin-boson model consists of a two-level

system coupled to a bath of harmonic oscillators. Its Hamilto-

nian can be written as (we set ¯ = 1)

Ĥ ′
tot =

ǫ

2
σ̂z +

�

2
σ̂x +

∑

k

ωk b̂
†
k b̂k + σ̂z

∑

k

gk

(

b̂
†
k + b̂k

)

, (1)

where σ i (i = x, y, z) are the usual Pauli matrices, ǫ is the

energy splitting between the two levels, and � is the tunnel-

ing matrix element. The bath is modeled as a set of harmonic

oscillators labeled by their frequencies, ωk, and couplings to

the two-level system denoted by gk.

The properties of the harmonic bath are completely de-

termined by the spectral density, J (ω) = π
∑

k g2
kδ(ω − ωk).

Throughout the paper, we use a super-ohmic spectral density

with an exponential cut-off,

J (ω) =
1

2
γ

ω3

ω3
c

e−ω/ωc , (2)

where γ is the system-bath coupling strength and has the di-

mension of frequency. The cut-off frequency is denoted by

ωc, and its reciprocal governs the relaxation time of the bath,

τ ∝ 1
ωc

.

B. Polaron and variational polaron transformations

The polaron transformation is generated by the unitary

operator

Û = exp

[

σ̂z

∑

k

fk

ωk

(

b̂
†
k − b̂k

)

]

, (3)

which displaces the bath oscillators in the positive or negative

direction depending on the state of the two-level system. The

parameter fk determines the magnitude of the displacement

for each mode. Setting fk = gk corresponds to the full polaron

transformation, whereas fk = 0 corresponds to no transforma-

tion. The variational method allows us to determine an opti-

mal value of fk that lies in between these two limits, 0 ≤ fk
≤ gk, making the transformation valid over a wider range of

parameters.

Applying the transformation to the total Hamiltonian, we

have

Ĥtot = ÛĤ ′
tot Û

† (4)

= Ĥ0 + ĤI ,

where the total free Hamiltonian is Ĥ0 = ĤS + ĤB . The

transformed system Hamiltonian is given by

ĤS =
ǫ

2
σ̂z +

�R

2
σ̂x +

∑

k

fk

ωk

(fk − 2gk),

and the bath Hamiltonian remains unaffected, ĤB

=
∑

k ωk b̂
†
k b̂k . The transformed interaction Hamiltonian

becomes

ĤI = σ̂x V̂x + σ̂y V̂y + σ̂zV̂z, (5)

where

V̂x =
�

4
(D̂2

+ + D̂2
− − 2B), (6)

V̂y =
�

4i
(D̂2

− − D̂2
+), (7)

V̂z =
∑

k

(gk − fk)
(

b̂
†
k + b̂k

)

, (8)

and D̂± is the product of displacement operators, D̂±

= e
±

∑

k

fk
ωk

(b̂
†
k−b̂k )

. The tunneling rate is renormalized by the

expectation value of the bath displacement operators, �R

= B�, where

B = 〈D̂2
±〉ĤB

=
trB[D̂2

±e−βĤB ]

trB[e−βĤB ]
(9)

= exp

[

−2
∑

k

f 2
k

ω2
k

coth(βωk/2)

]

. (10)

Note that the interaction term is constructed such that

〈ĤI 〉H0
= 0.

Following Silbey and Harris,19, 20 we use the Bogoliubov

variational theorem to determine the optimal values for the set
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{fk}. We first compute the Bogoliubov-Feynman upper bound

on the free energy, AB,

AB = −
1

β
ln trS+B [e−βĤ0 ] + 〈ĤI 〉Ĥ0

. (11)

Since 〈ĤI 〉Ĥ0
= 0 by construction, the upper bound is solely

determined by the free Hamiltonian. The variational theorem

states that AB ≥ A where A is the true free energy of Htot.

Therefore, we want to make this bound as small as possible

by minimizing AB with respect to {fk}, i.e., dAB

dfk
= 0. The min-

imization condition leads to

fk = gkF (ωk); (12)

F (ωk) =
[

1 +
�2

R

ωkη
coth(βωk/2) tanh(βη/2)

]−1

, (13)

where η =
√

ǫ2 + �2
R .

In the continuum limit, the renormalization constant can

be written as

B = exp

[

−2

∫ ∞

0

dω

π

J (ω)

ω2
F (ω)2 coth(βω/2)

]

. (14)

Since F(ω) is also a function of B, the above equation must be

solved self-consistently.

C. Second order perturbation theory

This section is dedicated to finding the second-order cor-

rection to the equilibrium state of the system. The exact equi-

librium reduced density matrix can be formally written as

ρ̂S =
trB[e−βĤtot ]

trS+B [e−βĤtot ]
. (15)

Expanding the operator e−βĤtot up to second order in ĤI , we

have

e−βĤtot ≈ e−βĤ0

[

1 −
∫ β

0

dβ ′eβ ′Ĥ0ĤI e−β ′Ĥ0

+
∫ β

0

dβ ′
∫ β ′

0

dβ ′′eβ ′Ĥ0ĤI e−(β ′−β ′′)Ĥ0ĤI e−β ′′Ĥ0

]

.

(16)

The above expansion is similar to the Dyson expansion, with

β treated as imaginary time.

Since 〈ĤI 〉Ĥ0
= 0, the leading order correction to ρ̂S is

of second order in ĤI . Inserting the above expression into

Eq. (15) and keeping terms up to the second order in ĤI , the

system equilibrium state can be approximated as31–33

ρ̂S ≈ ρ̂
(0)
S + ρ̂

(2)
S + . . . ,

ρ̂
(0)
S = e−βĤS /Z

(0)
S ,

ρ̂
(2)
S =

Â

Z
(0)
S

−
Z

(2)
S

(

Z
(0)
S

)2
e−βĤS , (17)

where

Â =
∑

n,m=x,y,z

∫ β

0

dβ ′
∫ β ′

0

dβ ′′Cnm(β ′ − β ′′)

× e(β ′−β)ĤS σ̂ne(β ′′−β ′)ĤS σ̂me−β ′′ĤS ,

Z
(0)
S = trS[e−βĤS ]; Z

(2)
S = trS[Â], (18)

and Cnm(τ ) is the bath correlation function in imaginary time,

Cnm(τ ) =
trB

[

eτĤB V̂ne−τĤB V̂me−βĤB
]

trB[e−βĤB ]
. (19)

The non-vanishing bath correlation functions are

Czy(τ ) = −Cyz(τ ) (20)

= i�R

∫ ∞

0

dω

π

J (ω)

ω
F (ω)[1 − F (ω)]

sinh
(

1
2
(β − 2τ )ω

)

sinh(βω/2)
,

(21)

Cxx(τ ) =
�2

R

8
(eφ(τ ) + e−φ(τ ) − 2), (22)

Cyy(τ ) =
�2

R

8
(eφ(τ ) − e−φ(τ )), (23)

Czz(τ ) =
∫ ∞

0

dω

π
J (ω)[1 − F (ω)]2

cosh
(

1
2
(β − 2τ )ω

)

sinh(βω/2)
,

(24)

where

φ(τ ) = 4

∫ ∞

0

dω

π

J (ω)

ω2
F (ω)2

cosh
(

1
2
(β − 2τ )ω

)

sinh(βω/2)
. (25)

It is useful at this point to analyze the behavior of the

perturbation theory at strong coupling in the polaron frame.

As seen from Eq. (14), when γ → ∞ then B → 0 and the

system becomes incoherent since the coherent tunneling ele-

ment vanishes. At the same time, F(ω) → 1 as B → 0 so that

all of the above correlation functions vanish, and hence also

the second-order correction to ρ̂S . Therefore in this limit, the

equilibrium density matrix is only determined by the energy

splitting of the two levels, ρ̂S ∝ exp(− ǫ
2
βσ̂z).

The full polaron result can be conveniently obtained by

setting F(ω) = 1; the only non-vanishing correlation functions

in this case are Cxx and Cyy. The opposite limit of F(ω) = 0

corresponds to performing no transformation and Czz is the

only non-zero correlation function. For comparison, below we

will also include the results from these two limiting cases.

III. RESULTS AND DISCUSSIONS

In this section, we compare the results from 2nd-PT in

the original [F(ω) = 0], the polaron [F(ω) = 1], and the

variational polaron [F(ω) as in Eq. (13)] frames with those

Downloaded 24 Oct 2012 to 18.74.6.138. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions
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FIG. 1. Fast bath, ωc > �. Comparison of the approximate methods with

the exact path integral results as a function of the dissipation, γ , for ωc

= 5ǫ and � = 3ǫ. Plotted are the values of 〈σ̂z〉 from the zeroth-order density

matrix in the polaron frame (light blue crosses) and the variational polaron

frame (dark blue diamonds), as well as from the density matrix in the original

frame with the second-order correction (red dashed line), the polaron frame

(purple empty circles), and the variational polaron frame (solid green line).

The exact path integral results are shown as filled (black) dots.

from numerically exact imaginary time path integral calcula-

tions. We compute the expectation value, 〈σ̂z〉, since it is not

affected by the transformation, 〈Û †σ̂zÛ〉 = 〈σ̂z〉. Therefore,

this quantity allows us to make a direct comparison between

the path integral results, which provide the density matrix

in the original frame, and the (variational) polaron results. Re-

sults from the transformed zeroth-order density matrix, ρ̂
(0)
S ,

which depends only on the renormalized system Hamiltonian

ĤS , are also included. In the original frame, corrections to the

off-diagonal elements of the equilibrium density matrix calcu-

lated within the polaron transformation appear already at first

order in perturbation theory. Their computation, however, is

substantially more involved and is a topic of ongoing work.

We first calculate 〈σ̂z〉 as a function of the dissipation

strength for fast, slow, and adiabatic baths, assessing the accu-

racy of 2nd-PT for different bath cut-off frequencies. We then

conclude this section by presenting phase diagrams of the rel-

ative errors of the various methods as functions of the dissipa-

tion strength and the bath cut-off frequency. This allows us to

establish the regimes of validity of each approach across the

entire range of bath parameters. Throughout the paper, we set

ǫ = 1 and β = 1.

A. Fast bath, ωc > �

The value of 〈σ̂z〉 is plotted as a function of the dissipa-

tion strength, γ , in Fig. 1 for a fast bath, ωc > �. First, it can

be seen that the result from the usual 2nd-PT in the original

frame (dashed line) is linearly dependent on γ . While this ap-

proach is accurate at small γ , it quickly degrades as the cou-

pling increases. On the other hand, the results from 2nd-PT in

the polaron (empty circles) and the variational polaron (solid

line) frames are in excellent agreement with the exact path

integral result (solid dots) over the entire range of dissipa-

tion. The zeroth-order result for 〈σ̂z〉 in the the polaron frame

(crosses) tends to overestimate the correction, whereas the

variational frame result (diamonds) provides at least a qual-

itatively correct description.

FIG. 2. Slow bath, ωc < �. Comparison of the approximate methods with

the exact path integral results as a function of the dissipation, γ , for ωc

= 1.5ǫ and � = 5ǫ. Plotted are the values of 〈σ̂z〉 from the zeroth-order

density matrix in the polaron frame (light blue crosses) and the variational

polaron frame (dark blue diamonds), as well as from the density matrix in the

original frame with the second-order correction (red dashed line), the polaron

frame (purple empty circles), and the variational polaron frame (solid green

line). The exact path integral results are shown as filled (black) dots.

B. Slow bath, ωc < �

Figure 2 displays the opposite case, when the bath is slow

as compared to the tunneling rate, ωc < �. At small and in-

termediate γ , it can be seen that the polaron method with

2nd-PT fails to predict the correct behavior, while the usual

2nd-PT result in the original frame agrees well with the ex-

act result. As with the case of the fast bath, at large γ , the

polaron method provides an accurate description, while the

original frame 2nd-PT breaks down. The variational polaron

method (with 2nd-PT) interpolates between these two meth-

ods, providing accurate results over a large range of the dissi-

pation strength. The failure of the full polaron method is due

to the fact that the bath oscillators are sluggish and are not

able to fully dress the system. Therefore, the full polaron dis-

placement is no longer appropriate. It can also be seen that

the second-order correction in the full polaron frame is huge

at small γ (the difference between the crosses and open cir-

cles). This should cast doubt on the validity of 2nd-PT in this

case since the perturbative correction should be small.

It can also be observed that there is a discontinuity in

the variational result (both with and without 2nd-PT) at the

critical point of γ ≈ 10.6. The variational approach exhibits

a rather abrupt transition from a small transformation [F(ω)

≪ 1] to the full polaron transformation [F(ω) ≈ 1]. This dis-

continuity, which is an artifact of the transformation rather

than a physical phase transition, has been predicted by Silbey

and Harris19, 20 for a slow bath. The discontinuity comes from

solving the self-consistent equation in Eq. (14). Over a certain

range of dissipation strengths, there exist multiple solutions to

the self-consistent equation. According to the variational pre-

scription, the solution with the lowest free energy is selected.

This causes a “jump” in the solution, as depicted in Fig. 3.

It is also observed in Fig. 2 that the variational polaron re-

sult is least accurate around the transition point. Therefore,

it will be worthwhile to look for a better variational criterion

that removes this discontinuity, which can hopefully provide

a uniformly accurate solution. One possibility is to include

the second-order term (in HI) to the free energy AB. It has

Downloaded 24 Oct 2012 to 18.74.6.138. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions
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FIG. 3. Plot of the expression � = B − e
−2

∫

dω
π

J (ω)

ω2
F (ω)2 coth(βω/2)

. The so-

lutions to the self-consistent equation (14) are the points when � = 0. At

γ = 9.5, there is only one solution to the self-consistent equation. At γ

= 10, multiple solutions start to develop, but the solution with the lowest

free energy (denoted by the empty circle) is chosen. At the critical point of γ

= 10.6, there is a “jump” in the lowest free energy solution which causes a

discontinuity in the transformation.

FIG. 4. ωc ≪ �. Comparison of the approximate methods with the exact

result [from Eq. (26)] as a function of the dissipation, γ , for ωc = 0.1ǫ and �

= 1ǫ. Plotted are the values of 〈σ̂z〉 from the density matrix with the second-

order correction in the original frame (dashed red line), the polaron frame

(empty blue circles), and the variational polaron frame (solid green line). The

exact results are shown as filled (black) dots. The inset shows the small γ

regime.

been shown in Ref. 28 that the correction can be important

for a slow bath and its inclusion to the free energy calcula-

tions might improve the variational method. Additionally, an

alternative ground state ansatz has been proposed in Ref. 34

that seems to be free of the discontinuity present in the Silbey-

Harris approach.

C. Adiabatic bath, ωc ≪ β, �

In the adiabatic limit (ωc ≪ β), the exact solution to the

equilibrium state of the system can be obtained analytically.

In this regime, the partition function is given by Ref. 35,

ZS =
∫ ∞

−∞

dx
√

2πχ
exp

{

−
x2

2χ

+ ln
[

2 cosh[β
√

(�/2)2 + (x + ǫ/2)2]
]}

, (26)

where χ is the bath correlation function [in the original frame

with F(ω) = 0] in the adiabatic limit, χ = C(0)
zz = 2γ

πβ
. The ex-

pectation value, 〈σ̂z〉, can be obtained from the partition func-

tion via the following relation:

〈σ̂z〉 = −
2

β

∂

∂ǫ
lnZS . (27)

In the regime where ωc ≪ �, the transition from F(ω)

= 0 to F(ω) = 1 in the variational method is sharp, as seen

in Fig. 4. Before the transition, the variational polaron result

coincides with the exact result and that of perturbation theory

in the original frame. In contrast, the full polaron result yields

qualitatively incorrect results. Only at exactly γ = 0 does it

produce the correct result (see inset of Fig. 4). After the tran-

sition, the variational result deviates from the exact result and

becomes essentially the same as the full polaron result. As γ

increases, results from both methods approach the exact result

while the untransformed 2nd-PT breaks down as seen before.

FIG. 5. At � = 3, the relative errors of the second order perturbation theory as defined in Eq. (28) in (a) the original frame, (b) the full polaron frame, and (c)

the variational polaron frame.
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D. Relative errors

To get a better perspective of how the accuracy of 2nd-PT

in different frames depends on the properties of the bath, we

calculate the relative errors over the entire range of the bath

parameters. The relatives errors are defined as

∣

∣

∣

∣

〈σ̂z〉Pert − 〈σ̂z〉PI

〈σ̂z〉PI

∣

∣

∣

∣

, (28)

where the subscripts “Pert” and “PI” denote the perturba-

tive calculation and path integral calculation, respectively.

Figure 5 displays the respective errors for the three methods as

a function of the cut-off frequency and the coupling strength.

As seen in Fig. 5(a), the usual 2nd-PT without transforma-

tion breaks down at large γ . It is also less accurate when the

cut-off frequency is small, which corresponds to a highly non-

Markovian bath. On the other hand, the 2nd-PT in the full po-

laron frame fails at small γ and ωc [see Fig. 5(b)]. These two

approaches provide complementary behavior as a function of

the coupling strength; the polaron method is essentially ex-

act for large γ , while the usual 2nd-PT is exact for small γ .

The variational calculation is valid over a much broader range

of parameters [see Fig. 5(c)], and essentially combines the

regimes of validity of the full polaron result and 2nd-PTin the

original frame. It is only slightly less accurate in the slow bath

regime around the region where the discontinuity appears that

was discussed above.

IV. CONCLUSIONS

In conclusion, we have provided a thorough assessment

of the accuracy of the polaron and variational polaron meth-

ods. We compared the second order perturbation results in the

polaron and variational polaron transformed frames with nu-

merically exact path integral calculations of the equilibrium

reduced density matrix. Focusing on the equilibrium proper-

ties allowed us to systematically explore the whole range of

bath parameters without making any additional approxima-

tions as is generally required to simulate the dynamics. As

expected, it is found that the standard perturbation results

without the polaron transformation is only accurate for small

coupling. The results deteriorate when the bath cut-off fre-

quency decreases. On the other hand, the polaron results are

accurate for the entire range of coupling for a fast bath (ωc

> �), whereas they are only accurate in the strong cou-

pling regime when the bath is slow (ωc < �). The variational

method is capable of interpolating between the two methods

and, therefore, is valid over a much broader range of parame-

ters. It is only slightly less accurate around the region where

the discontinuity appears.

The equilibrium properties presented here are not nec-

essarily related to the accuracy of corresponding perturba-

tive non-equilibrium dynamics. However, it should be noted

that our findings are consistent with the results of Ref. 22

where the dynamics from the second order (variational) po-

laron master equation are compared with numerically exact

QUAPI simulations for different tunneling strengths. The dy-

namical results fail, even at short times, in the same regime

where the equilibrium properties fail. This consistency sug-

gests that the equilibrium results may indeed provide some

indication of the accuracy of the dynamics.
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APPENDIX: IMAGINARY TIME PATH INTEGRAL

For Hamiltonians such as the spin-boson model where

the bath is harmonic, the trace over the bath degrees of

freedom in Eq. (15) may be performed analytically. In the

path integral formulation this procedure leads to the well-

known Feynman-Vernon influence functional.27, 35–39 Using a

Hubbard-Stratonovich transformation,27, 35, 37, 40 it was shown

that the influence functional may be unraveled by an auxil-

iary stochastic field. The ensuing imaginary time evolution

may then be interpreted as one governed by a time-dependent

Hamiltonian. Explicitly, the spin-boson model may be equiv-

alently expressed as

Ĥ (τ ) =
ǫ

2
σ̂z +

�

2
σ̂x + σ̂zξ (τ ). (A1)

All of the effects of the bath are accounted for by the colored

noise term, ξ (τ ), which obeys the autocorrelation relation

〈ξ (τ )ξ (τ ′)〉 = C(0)
zz (τ − τ ′) , (A2)

where C(0)
zz (τ ) is the correlation function given in Eq. (24)

with F(ω) = 0. The trace over the bath that was present in

the original path integral formulation now corresponds to av-

eraging the imaginary time dynamics over realizations of the

noise. The auxiliary field is simply an efficient method of

sampling the influence functional. Similar schemes for com-

puting the real-time dynamics have recently shown promising

results.41–43

In practice, a sample of the reduced density matrix is

propagated to the imaginary time β, where the time steps, δτ ,

are determined by

ρ̂S(τ + δτ ) = exp[−δτĤ (τ )]ρ̂S(τ ) , (A3)

with the initial condition, ρ(0) = I. The primary benefit of this

approach is that it generates the entire reduced density matrix

from a single Monte Carlo calculation. Additionally, any form

for the spectral density of the bath, J(ω), may be used. In our

calculations, 108 (at small γ ) to 1011 (at large γ ) Monte Carlo

samples are needed to achieve convergence. The details of the

numerical implementation can be found in Ref. 40.
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