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Abstract: The Gaussian function is simple and easy to implement as Point
Spread Function (PSF) model for fitting the position of fluorescent emitters
in localization microscopy. Despite its attractiveness the appropriateness of
the Gaussian is questionable as it is not based on the laws of optics. Here we
study the effect of emission dipole orientation in conjunction with optical
aberrations on the localization accuracy of position estimators based on a
Gaussian model PSF. Simulated image spots, calculated with all effects
of high numerical aperture, interfaces between media, polarization, dipole
orientation and aberrations taken into account, were fitted with a Gaussian
PSF based Maximum Likelihood Estimator. For freely rotating dipole
emitters it is found that the Gaussian works fine. The same, theoretically
optimum, localization accuracy is found as if the true PSF were a Gaussian,
even for aberrations within the usual tolerance limit of high-end optical
imaging systems such as microscopes (Marechal’s diffraction limit). For
emitters with a fixed dipole orientation this is not the case. Localization
errors are found that reach up to 40 nm for typical system parameters
and aberration levels at the diffraction limit. These are systematic errors
that are independent of the total photon count in the image. The Gaussian
function is therefore inappropriate, and more sophisticated PSF models are
a practical necessity.

© 2010 Optical Society of America
OCIS codes: (180.2520) Fluorescence microscopy; (110.2990) Image formation theory;
(100.6640) Superresolution.
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1. Introduction

The exploitation of the physics of time dependent fluorescence has enabled the emergence of
the field of far-field optical nanoscopy [1, 2]. This time dependence can be achieved by on/off
switching of fluorophores, which is either intrinsically stochastic (blinking) or deliberately en-
gineereed (photoswitching, saturation or depletion). Within the spectrum of optical nanoscopy
techniques [3–9] localization microscopy holds the promise of ease-of-use because it uses a
conventional widefield fluorescence microscopy set-up. One of the key factors in the success of
localization microscopy is the Point Spread Function (PSF) model used for fitting the emitter
positions in the sparse images, as the achievable localization accuracy is affected by the cor-
rectness of the PSF model. So far, mainly Gaussian model PSFs have been used, because of
their conceptual simplicity and computational efficiency, despite the lack of physical founda-
tion. High objective numerical aperture values require full vectorial modelling of the PSF. In
addition, the orientation of the radiating dipoles plays a significant role in the observable spot
shape. In many cases the emitter can either rotate or change its conformation freely during the
lifetime of the excited state of the emitter, so for many excitation-emission cycles an average
over randomly distributed emission dipole orientations will be observed. In other cases we must
consider ensembles of fixed but randomly oriented dipoles, like fluorescent beads, and we need
to average over the different dipole orientations as well, but now weighted with the excitation
efficiency as a function of dipole orientation. In yet a third class of cases, the single emitter
cannot rotate freely, such as in solid-state or cryofreezed samples or for emitters immobilized
at a surface or in a matrix, and the fixed dipole orientation needs to be taken into account in the
analysis, as it affects the observed spot shape [10, 11].

The question how to accurately model the PSF in accordance with the laws of optics has been
addressed by a number of authors. The starting point is the theory laid down by Wilson, Higdon,
Török, and co-workers [12–15] and adapted to single molecule localization by Enderlein and
co-workers [16] and recently by Mortensen and co-workers [17]. The latter two references
restrict their analysis to the case of 2D Total Internal Reflection Fluorescence (TIRF) imaging
without any aberrations.

The goal of this paper is to find out how good or bad the popular Gaussian PSFs really are.
We will look at the effects of dipole orientation and of the conventional optical aberrations (de-
focus, astigmatism, coma, spherical aberration). To that end the model of [16,17] is generalized
to include arbitrary aberrations. This model is used for generating ‘ground truth’ simulated im-
ages, which are subsequently used as input for a Maximum Likelihood Estimator (MLE) based
on a Gaussian model PSF. In ref. [18] and in a recent paper co-authored by one of us [19] it
has been shown that such an estimator achieves the Cramér-Rao Lower Bound (CRLB) in the
presence of background and Poissonian noise, down to photon counts well below 100. Here we
analyze how the Gaussian-based MLE deviates from the theoretical CRLB due to model errors.
For the sake of simplicity we will also restrict our attention to 2D imaging. This entails the
study of only the lateral localization accuracy, the different methods for axial localization are
not taken into account in the model and the analysis. It does not entail the absence of defocus,
i.e. we do consider deviations of the imaged 2D-plane from the focal plane. Our analysis is
therefore appropriate to TIRF-imaging but also applies to conventional widefield imaging.

2. Vectorial theory of imaging of a dipole emitter

2.1. Preliminaries and definitions

The emitter dipole is located in a medium with refractive index nmed adjacent to a cover slip with
refractive index ncov. The emitter is imaged with an immersion objective lens with numerical
aperture NAob designed for an immersion fluid with refractive index nimm. The objective lens is
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assumed to be corrected for focusing onto the interface between the cover slip and the medium.
The intersection of the optical axis with this interface is taken to be the origin of the coordinate
system in object space. The emitted radiation is collected by the objective lens with focal length
Fob and focused by the tube lens with focal length Fim onto the detector. Both lenses are assumed
to be aplanatic and the imaging system is assumed to be telecentric, i.e. the aperture stop is
located at the back focal plane of the objective lens, which coincides with the front focal plane
of the tube lens. The magnification of the imaging system is M = Fim/Fob, thus making the
numerical aperture in image space NAim = NAob/M. In practice M � 1, so that NAim � 1.
The radius of the stop is given by R = FobNAob = FimNAim. Throughout this paper we use
scaled coordinates. The pupil coordinates are scaled with the stop radius R scaling the pupil to
the unit circle, the object and image coordiates are scaled with the diffraction lengths λ/NAob

(object space) and λ/NAim (image space). We use ‘u’ for object and image coordinates and ‘v’
for Fourier/pupil coordinates throughout this text. The emitter dipole vector is oriented along
the unit-vector �d = (sinθd cosφd,sinθd sinφd,cosθd), where θd is the polar angle, and φd is the
azimuthal angle, and has magnitude d0. The (2D) position of the emitter with respect to the
focal point is�rd = (xd,yd). The scaled position is�ud = NAob�rd/λ .

2.2. Model for the PSF for arbitrary aberrations

The electric field in the pupil plane at point �v = (vx,vy,0) corresponds to the plane wave in
object space with wavevector along (sinθmed cosφ ,sinθmed sinφ ,cosθmed), so:

vx =
nmed sinθmed

NAob
cosφ , (1)

vy =
nmed sinθmed

NAob
sinφ . (2)

The electric field in the pupil plane has only non-zero values for the Cartesian components
j = x,y given by [12–15]:

Epup, j (�v,�ud) =
πd0

ε0λ 2Fob
(
1− v2NA2

ob/n2
med

)1/4 ∑
k=x,y,z

q jk (�v)dk e2πi�ud·�v, (3)

and with the polarization vectors:

qxk = cosφTp pk − sinφTssk, (4)

qyk = sinφTp pk + cosφTssk, (5)

which depend on the p and s basis polarization vectors �p =
(cosθmed cosφ ,cosθmed sinφ ,−sinθmed) and �s = (−sinφ ,cosφ ,0) and on the Fresnel
coefficients:

Ta = Ta,med−covTa,cov−imm, (6)

for a = p,s and where the Fresnel coefficients for the two contributing interfaces (see in partic-
ular [14] for details of the effects of stratified media) are defined by:

Ta,1−2 =
2ca,1

ca,1 + ca,2
, (7)

for a = p,s and with cp,l = nl/cosθl and cs,l = nl cosθl for l = med,cov, imm.
The field in the pupil plane is modified by the pupil function

C (�v) =

{
A(�v)exp(iW (�v)) , |�v| ≤ 1,

0, |�v|> 1,
(8)
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with A(�v) the amplitude and W (�v) the phase (aberration) of the pupil function, and the field
in the image plane (on the detector) at scaled position �u is found by subsequently applying a
Fourier transform. As the numerical aperture of the tube lens is typically rather small compared
to unity we may safely apply scalar diffraction theory to the x and y components of the field
seperately. This gives:

Eim, j (�u,�ud) = E0 ∑
k=x,y,z

w jk (�u−�ud)dk, (9)

with:

E0 =
π2NAobNAimd0

iε0λ 3 , (10)

and:

wjk (�u) =
1
π

∫
d2vC (�v)

q jk (�v)
(
1− v2NA2

ob/n2
med

)1/4
exp(−2πi�u ·�v) . (11)

The measured signal (PSF) is proportional to the z-component of the Poynting-vector. In
view of the low numerical aperture on the image side this is simply proportional to the square
of the modulus of the electric field. The PSF then follows as:

I (�u,�ud) =
1
2

ε0c ∑
j=x,y

∣
∣Eim, j (�u,�ud)

∣
∣2 = I0 ∑

k,l=x,y,z

[

∑
j=x,y

w jk (�u−�ud)wjl (�u−�ud)
∗
]

dkdl . (12)

with:

I0 =
π4cNA2

obNA2
im |d0|2

2ε0λ 6 . (13)

If there are no aberrations present the equations of refs. [16, 17] are reproduced as a special
case. The current theory generalizes on these prior results by including arbitrary aberrations, in
particular asymmetric ones like astigmatism and coma.

The total power captured by a pixel centered at�up is found by integrating over the pixel area
Ap:

P
(
�up,�ud

)
=

λ 2

NA2
im

∫

Ap

d2u I (�u,�ud) = P0 ∑
k,l=x,y,z

[

∑
j=x,y

∫

Ap

d2u wjk (�u−�ud)wjl (�u−�ud)
∗
]

dkdl ,

(14)
with:

P0 =
π4cNA2

ob |d0|2
2ε0λ 4 . (15)

The dipole magnitude d0 is given by:

d0 = α�Eill · �dex, (16)

with α the polarizability, �Eill the electric field of the illumination and �dex a unit-vector along the
excitation dipole. For a fixed dipole the excitation and emission dipole orientation are equal:
�dex = �d. So, apart from the bilinear dependence on dipole orientation explicit in Eqs. (12)
and (14) the PSF also depends on dipole orientation implicitly via the excitation efficiency.

There is an interesting relation between the theory presented here and the theory of Richards
and Wolf and many subsequent authors for the vectorial field in the focal region when a polar-
ized plane wave in the pupil plane is focused by the objective lens. The exact same functions
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wjk (�u) turn out to determine the field close to focus. The electric field in the focal plane can be
written as (see [20, 21] and references therein):

Efoc,k (�u) =
πFob

iλ ∑
j=x,y

A jw jk (�u) , (17)

where (Ax,Ay) is the unit-vector representing the polarization of the plane wave in the pupil
plane.

2.3. Orientational averaging

There are two cases in which we must average over dipole orientation. The first case deals with
fluorophores that have a rotational diffusion time that is much smaller than the lifetime of the
excited state. In that case the emission dipole is fully uncorrelated to the excitation dipole and
an independent average over both the excitation and emission dipole orientations must be taken.
The second case in which averaging over dipole orientation is needed is the case of an ensemble
of fixed but randomly oriented fluorescent molecules, for example as in a fluorescent bead. Now
the excitation and emission dipoles are the same and the excitation probability poportional to∣
∣
∣�Eill · �d

∣
∣
∣
2

must be taken into account as a weight factor in the averaging prccedure over the

different dipole orientations contributing to the PSF. In general this will lead to a different
expression for the PSF. This has been explicitly shown for the TIRF-case by Mortensen et
al. [17]. In the appendix we derive explicit expressions for the different orientationally averaged
PSFs, for arbitrary states of polarization and coherence of the illumination electric field, and for
arbitrary aberrations of the optical system. In the following we only report on results for fixed
dipoles and for temporal orientationally averaged dipoles, the case of ensemble orientationally
averaged dipoles is not considered any further from hereon.

The fixed and averaged dipole cases described here can be seen as limiting cases of a general
distribution over dipole orientations characterized by a Probability Distribution Function (PDF),
as described in ref. [22]. The fixed dipole case corresponds to an infinitely sharply peaked PDF,
the averaged dipole case to a uniform PDF. Generalizing to an arbitary PDF would allow for
a description of the effects of e.g. an arbitrary rotational diffusion time or of thermally driven
fluctuations around a preferential orientation.

2.4. The case with azimuthal symmetry

In case of azimuthally symmetric aberrations (defocus, spherical aberration) the functions
wjk (�u) can be expressed as:

wxx (u,ψ) = F0 (u)+F2 (u)cos(2ψ) , (18)

wxy (u,ψ) = F2 (u)cos(2ψ) , (19)

wxz (u,ψ) = iF1 (u)cosψ, (20)

wyx (u,ψ) = F2 (u)cos(2ψ) , (21)

wyy (u,ψ) = F0 (u)−F2 (u)cos(2ψ) , (22)

wyz (u,ψ) = iF1 (u)sinψ, (23)
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with the three integrals over functions containing the Bessel functions Jk(x), k = 0,1,2 well-
known from the theory of Richards and Wolf and generalizations thereof [20]:

F0 (u) = 2
∫ 1

0
dv

v

(
Ts +Tp

√
1− v2NA2

ob/n2
med

)

2
(
1− v2NA2

ob/n2
med

)1/4
J0 (2πuv)exp(iW (v)) , (24)

F1 (u) = 2
∫ 1

0
dv

v2TpNAob/nmed
(
1− v2NA2

ob/n2
med

)1/4
J1 (2πuv)exp(iW (v)) , (25)

F2 (u) = 2
∫ 1

0
dv

v

(
Ts −Tp

√
1− v2NA2

ob/n2
med

)

2
(
1− v2NA2

ob/n2
med

)1/4
J2 (2πuv)exp(iW (v)) . (26)

The resulting electric field in the image plane turns out to be:

Eim,x (u,ψ) = E0 [F0 (u)sinθd cosφd +F2 (u)sinθd cos(2ψ −φd)+ iF1 (u)cosθd cosψ, ]

(27)

Eim,y (u,ψ) = E0 [F0 (u)sinθd sinφd +F2 (u)sinθd sin(2ψ −φd)+ iF1 (u)cosθd sinψ] ,

(28)

and the resulting intensity is:

I (u,ψ) = I0
[(

|F0 (u)|2 + |F2 (u)|2
)

sin2 θd + |F1 (u)|2 cos2 θd

+2Im
{
(F0 (u)+F2 (u))F1 (u)

∗}sin(2θd)cos(ψ −φd)

−2Re
{

F0 (u)F2 (u)
∗}sin2 θd cos(2ψ −2φd)

]
, (29)

In the absence of aberrations, this expression for the PSF is equivalent to the results of [16,
17]. For a dynamic dipole orientation the different terms average out to give:

I (u) =
1
3

I0
(

2 |F0 (u)|2 +2 |F2 (u)|2 + |F1 (u)|2
)
, (30)

which does not depend on the azimuthal angle ψ anymore.

3. The effect of aberrations and dipole orientation on spot shape and localization accu-
racy

It is worthwile to study the expressions for the PSF for the fixed and free dipole cases in some
detail before discussing the results of the numerical simulations.

The PSF for a freely rotating dipole is centrosymmetric but deviates significantly from the
classical Airy-shape of scalar diffraction theory for the high NA values used in practice. Ac-
tually, the PSF effectively approaches a Gaussian shape with small shoulders at the location
of the first Airy-rings (see Fig. 1). If the PSF is considered in the window of width 2λ/NA it
may be approximated with even better accuracy by a Gaussian plus a background [17,19]. This
change in PSF-shape is due to the various vectorial diffraction effects that smear out the fringe
structure of the Airy-distribution. For a water immersion objective the best-fit Gaussian has a
standard deviation approximately equal to 0.25λ /NA, which is equal to one pixel for Nyquist
sampling. The approximation of the PSF with a Gaussian has been analyzed in greater detail in
ref. [23].
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Fig. 1. Dipole orientation averaged PSF for a 100×/1.25 water immersion objective, an
Airy-distribution for the same NA, and a Gaussian with standard deviation σ = 0.25λ /NA.

For the case at hand, determining the location of a single emitter it may be anticipated that
the use of a Gaussian model PSF does not introduce a very harmful model error. Even for
symmetric aberrations like defocus and spherical aberration no large loss of localization accu-
racy is expected. However, for asymmetric aberrations like coma we may reasonably expect a
significant impact on localization accuracy.

The PSF for a fixed emission dipole is generally non-centrosymmetric [16, 17]. The spot
shape can change dramatically of character for different polar dipole angles. For a planar dipole
(θd close to π/2) the first and fourth term in Eq. (29) dominate. The first term is centrosym-
metric, the fourth term makes the spot slighlty elliptical, similar to image spots suffering from
astigmatism. For an axial dipole (θd close to zero) the second term dominates, giving rise to a
doughnut spot (dark spot in the middle with bright ring), similar to a spot with significant de-
focus and spherical aberration. For intermediate polar angles the third term gains importance.
This term makes the spot asymmetric and this resembles the effect of coma, when the spot
becomes asymmetric with an increased side lobe in one direction.

Figure 2 shows simulated image spots for different fixed dipole orientations and for different
aberrations. The qualitative similarity discussed before between the spot distortions that occur
for different polar dipole angles and the spot distortions that occur for different types of aber-
rations is quite apparent. It is also clear that the similarity is only qualitative, as the spot shapes
cannot be matched very well. The relation between dipole orientation induced spot distortions
and conventional aberrations such as defocus, astigmatism, coma, and spherical aberration sug-
gests that aberrations may be used to cancel the dipole orientation effects. Alas, it turns out that
this does not work very well; aberrations tend to make things worse in all circumstances.

It may be anticipated that similar conclusions may be drawn regarding the symmetry or asym-
metry of the spot, and type of distortions of spot shape, for more general optical imperfections,
such as the polarization aberrations described by McGuire and Chipman [24, 25].

The main source of error in emitter localization can be expected to come from the asymmetry
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Fig. 2. Simulated spot shapes for different dipole orientations and aberrations. Left: Image
spots for NAob = 1.45 (which is larger than nmed = 1.33) for a fixed dipole with polar angle
θd = 0 (a), θd = π/4 (b), θd = π/2 (c). Right: Image spots for a free dipole aberrated by
300 mλ RMS defocus (d), 160 mλ RMS coma (e), and 100 mλ RMS astigmatism (f).
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term. It appears from Eq. (29) that this term only contributes if the function F1(u) and/or the
function F0(u)+F2(u) is complex. This can occur when the Fresnel coefficients are complex.
This happens for a numerical aperture larger than the medium refractive index, e.g. when an oil
immersion objective is used to collect light from emitters in a watery medium. Then evanescent
waves can couple from the dipole emitter into the objective, and for these evanescent waves the
Fresnel-coefficients are complex. This is exactly the case studied in [16, 17], and indeed they
have noticed the strong asymmetry due to the third term in the PSF. This dipole orientation
induced asymmetry in the PSF can be eliminated by stopping down the objective to a numerical
aperture smaller than the medium refractive index at the expense of a reduction in photon
collection efficiency. The photon collection efficiency increases with NAob because the solid
angle subtended by the aperture of the microscope objective increases, and for NAob > nmed

also by evanescent wave coupling into the marginal region of the objective aperture. This so-
called supercritical fluorescence hugely increases the photon output [16] and the ratio of photon
collection efficiency between NAob = 1.45 and NAob = 1.25 turns out to be a factor of about
3. It follows that either the acquisition time is increased with this factor of 3 or the statistical
localization error is increased with a factor

√
3. This seems a small price to pay for avoiding

large systematic localization errors due to spot shape distortions. Naturally, the amplitude of the
evanescent wave contributions decay exponentially with the distance from the the cover slip.
As a consequence, the spot asymmetry effect and the supercritical fluorescence based photon
output gain only apply to the TIRF context, and vanish for emitters more than a few wavelengths
away from the cover slip.

The PSF can become markedly asymmetric, even for the case with NAob < nmed . This effect,
observed by Bartko and Dickson [10], occurs for non-zero aberrations, in particular defocus.
Then the functions Fj(u) also become complex valued. Fig. 3 shows the combined effect of
a fixed dipole orientation and a defocus of 72 mλ RMS (which corresponds to Marechal’s
diffraction limit). For λ = 500 nm, NAob = 1.25, and nmed = 1.33 it can be estimated with the
methods of ref. [26] that this amount of defocus corresponds to a change in focal position in
the medium of about 150 nm. The asymmetry effect is quite pronounced with a shift in the spot
peak of about 0.16λ/NAob ≈ 64 nm. The typical error is found from this worst case error by
multiplying with the average of the factor sin(2θd) over all appearing dipole orientations. This
gives a factor 2/3 making the typical error 43 nm. This error is a systematic error that must be
added to the statistical error related to the finite number of collected photons. Longer measure-
ments in order to decrease the statistical error therefore cease to be meaningful beyond a certain
photon count. From these considerations it may be anticipated that a fixed dipole orientation
implies that the spot shape is more prone to distortions caused by aberrations. Clearly, this ef-
fect reduces aberration tolerances for 2D localization microscopy and complicates attempts to
make 3D localization microscopy sufficiently accurate.

4. Numerical results

We performed numerical simulations for analyzing the accuracy of using a Gaussian model
PSF by applying the MLE described in [19] to ‘ground truth’ images calculated with the vector
imaging theory outlined in the previous sections. The field and intensity in the image plane
were calculated by evaluating the 2D Fourier transform in Eq. (11) using the chirp z-transform
method [27] with a 118×118 grid for the pupil plane and a 11×11 grid for the image plane. The
image plane grid corresponds to a block of 11×11 pixels, the pixel size was taken to be equal to
λ/4NAim (Nyquist sampling). For a water immersion objective with NAob = 1.25 and a wave-
length λ = 500 nm this implies a pixel size in object space of 100 nm. It was checked that the
simulated error did not depend significantly on pixel size in the range [0.15-0.30]×λ/NAim. In
addition, it appeared that convolution over the finite pixel size did not have a significant impact
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Fig. 3. Simulated spot shape for NAob = 1.25 (which is less than nmed = 1.33) for a fixed
dipole with polar angle θd = π/4, without aberrations (a) and with 72 mλ RMS defocus
(b).

on the error either, so subsequently it was ignored in the simulation. Random configurations
were generated with emitter positions distributed with a normal distribution centered on the
central pixel of the block and with standard deviation of one pixel. The dipole orientation for
each configuration was randomly selected from a uniform distribution over the full 4π solid
angle. After calculation of the ‘ground truth’ PSF an image was generated by distributing N
photons over the entire image following Poisson statistics with the ‘ground truth’ PSF as rate
parameter. The MLE with Gaussian model PSF was subsequently used to find the emitter lo-
cations as well as the best fit to the background and to the height and width of the Gaussian.
About 20 iterations were sufficient for convergence of all fitted parameters. In addition to sim-
ulations with fixed, randomly selected, dipole orientation we have also done simulations with
freely rotating dipoles giving the rotationally averaged PSF. The statistical error was evaluated
from 500 random configurations. For a small photon count (less than 20 in the 11×11 block of
pixels) outliers with a fitted photon count more than twice the ‘real’ photon count were removed
before calculating the localization error. We wish to emphasize that similar results to ours are
to be expected from other estimators than the MLE given a sufficient photon count, i.e. a good
signal-to-noise-ratio [28]. In particular, Least Mean Squares (LMS) methods for estimating the
center of gravity of the spot [29], possibly in conjunction with spatial high-pass filtering for
background removal, should be mentioned in this context.

4.1. Effect of dipole orientation

Figure 4 shows the effect of dipole orientation on the accuracy of the MLE-fit. The estimated
error is plotted as a function of the detected number of photons for both fixed and free dipole
orientation and for NA-values below and above the medium refractive index nmed = 1.33 (NA
= 1.25 and 1.45). The CRLB that can be achieved with the MLE-estimator if the actual PSF
was a Gaussian with a σ of one pixel is also plotted in the figure. It appears that a free dipole
orientation gives rise to a localization accuracy that approaches the Gaussian based CRLB for
all photon counts. This may be attributed to the centrosymmetric nature of the PSF and the
fact that the MLE-estimator not only estimates the emitter location but also the PSF width and
background. A fixed but unknown dipole orientation hardly changes the performance of the
estimator provided the NA is smaller than the medium refractive index, as then the asymmetry
term in the PSF is not present. If the NA is larger than the medium refractive index, however, the
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Fig. 4. Estimated error as a function of detected number of photons for fixed/free dipole
orientation and NAob values below and above the refractive index of the medium, and the
theoretical Gaussian based CRLB.

error of the Gaussian model PSF is so large that this will lead to a systematic localization error
approaching 10 nm that must be added to the statistical error related to the finite photon count. It
may be concluded that a Gaussian model PSF gives an excellent fit of emitter location provided
the emitter dipoles can rotate freely during the excited state lifetime of the emitter or provided
the objective NA is less than the medium refractive index in case the dipole orientation is fixed.
In practice, the latter requirement boils down to using water immersion objectives instead of oil
immersion objectives.

4.2. Effect of aberrations

Figure 5 shows the error as a function of detected number of photons for free and fixed dipoles
and for different aberration settings. We have investigated the effect of defocus, astigmatism,
coma, and spherical aberration, taking values of 50% and 100% of Marechal’s diffraction limit
(72 mλ RMS). An optical system is considered well-corrected if the total RMS aberation is less
than the diffraction limit. In the simulations NAob = 1.25 and we take Nyquist sampling, so for
the wavelength λ = 500 nm the pixel size is equal to the Nyquist unit λ/4NAob = 100 nm.
For freely rotating dipoles aberrations hardly have an effect on localization accuracy, with the
exception of coma, which gives rise to a systematic localization error of about several nm for the
diffraction limit. For dipoles with a fixed orientation the situation is entirely different. Now the
same level of aberrations introduce systematic localization errors (the plateau for large photon
counts) of several tens of nm. For example, for a diffraction limited amount of defocus the x and
y systematic error for diffraction limited defocus (the plateau for large photon count) is about 23
nm, so the total mean square error is 33 nm, in reasonable agreement with the estimate based on
the average peak offset of the simulated spot shapes equal to 43 nm. Astigmatism and spherical
aberration have a similar effect albeit with a smaller systematic localization error for the same
level of aberrations. Naturally, coma gives foremost an effect in the asymmetry direction with
systematic errors of 22 nm for the diffraction limited level.
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Fig. 5. Estimated error as a function of detected number of photons for different aberration
settings. Left (a to d): averaged over dipole orientation, right (e to f): randomly selected
fixed dipole orientation. First row: defocus (a and e), second row: astigmatism (b and f),
third row: coma (c and g), fourth row: spherical aberration (d and h).
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4.3. Effect of background

We have noticed several subtleties regarding the fitted background. For a small photon count the
fitted background is zero, for high photon count the fitted background is essentially non-zero.
Somewhat suprisingly, the transition between the two regimes does not appear to be contin-
uous. For intermediate photon counts, around 100, the MLE fit routine can converge to two
qualitatively different local minima, one with zero background and one with non-zero back-
ground. The relative occurence of the two types of solutions gradually changes from the zero
background type to the non-zero background type as the photon count increases. It appears that
there is no correlation between the type of solution that is found and the dipole orientation or
any other parameter. The small shoulder in the intermediate regime of the curves of Fig. 5 that
can develop when aberrations are present is attributed to this effect. For the case of coma, the
asymmetric aberration, another complication arises. Now the zero background solution appears
to have a systematic offset whereas the non-zero background solution has not. For that reason
the offset averaged over all configurations varies depending on the relative occurence of the
two types of solutions, i.e. depending on photon count. This will introduced another systematic
error if the variations in photon count per emitter are large. These are largely determined by
shot noise variations, although the effect of dipole orientation on detection efficiency may be
quite significant for the fixed dipole case. For a TIRF setup it is therefore advisable to use a
circularly polarized illumination, as this minimizes the dependence of excitation efficiency on
dipole orientation.

Simulations with ‘ground truth’ images with an added background reveal another effect of
interest. For an added background of one photon per pixel the bistable effect described above
has disappeared, but now a new complication is observed. For small photon counts (total num-
ber of ‘signal’ photons in the block of 11×11 pixels is less than the total number of background
photons) the MLE fit routine converges to Gaussians with a significantly larger width than the
physical PSF width and a significant fraction of the background photons is counted as signal.
We believe this is due to randomly distributed shot noise peaks in the background that are mis-
takenly identified as the image spot. As a consequence, the localization uncertainty is larger
than the CRLB for a Gaussian PSF with the width of the physical PSF, even if the effect of the
added background is incorporated in the CRLB-curve [19]. The increase in localization error
in this regime is evident from Fig. 6. The deviations of the MLE curve from the CRLB in the
low photon count regime can possibly be described by efficiency metrics such as the Barankin
bound [30] or even more elaborate measures [31].

5. Conclusion

It may be concluded from the foregoing analysis that the use of a Gaussian PSF does not com-
promise the localization accuracy provided the emitter dipole orientations are not fixed, even
for aberrations that are within the usual tolerances of optical design, with the exception of coma.
For fixed emitter dipole orientations the use of a Gaussian PSF is no longer justified. In case the
aberrations are corrected well below the diffraction limit the use of a water immersion objective
instead of an oil immersion objective is quite beneficial, but for aberration levels that can occur
in practice the image spots are distorted to such an extent that the use of Gaussian model PSFs
introduces systematic errors of up to about 40 nm, even for water immersion objectives.

There are several ways forward to alleviate the problem for fixed dipoles. First of all, we
may follow the lines of [17] and use a fully vectorial PSF model, including aberrations, in the
estimator for the emitter position. Second, we can also try a computationally efficient set of ba-
sic functions to expand the PSF, and use the expansion coefficients to fit a possibly asymmetric
spot shape. Possibly, a limited set of extra shape parameters can be accommodated, at the ex-
pense of a moderate increase in the photon count required for a good quality fit of all parameters
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Fig. 6. Estimated error as a function of detected number of photons for fixed dipole orien-
tation and NAob = 1.25, for different defocus settings in presence of a background of one
photon per pixel, and the theoretical Gaussian based CRLB with this background.

involved. Finally, the experimental setup can be modified with polarization optics [10, 11, 15]
for measuring dipole orientation parameters instead of estimating them.

Aberration induced spot deformations are also anticipated to be problematic for 3D local-
ization microscopy, outside of the context of TIRF imaging. The measurement of the axial
coordinate requires the introduction of astigmatism with a cylinder lens [32,33] or making two
images with different defocus [34, 35] (see also [36] for an experimental comparison). In addi-
tion, the different axial positions introduce large amounts of defocus. This level of aberrations
introduces spot distortions that are so large that they must be dealt with in the position esti-
mator with a more sophisticated model PSF than the simple, straightforward, and convenient
Gaussian.

A. Temporal and ensemble orientational averaging

Here we show how to do the averaging for both temporal and ensemble orientational averag-
ing, for arbitrary states of polarization and coherence of the illumination electric field, and for
arbitrary aberrations of the optical imaging system. For the sake of notational convenience we
drop all functional dependencies from the equations and write Eq. (12) as:

I = ∑
i jkl

Ci jAkldex,idex, jdkdl , (31)

with the matrix Akl defined by:
Akl = I0 ∑

l

w jlw
∗
kl , (32)

and with the mutual coherence:

Ci j = 〈Re
(
Eill,iE

∗
ill, j

)〉E , (33)

#133558 - $15.00 USD Received 17 Aug 2010; revised 18 Oct 2010; accepted 24 Oct 2010; published 9 Nov 2010
(C) 2010 OSA 22 November 2010 / Vol. 18,  No. 24 / OPTICS EXPRESS  24475



where the angular brackets 〈. . .〉E denotes the averaging over the stochastic occurences of the
electric field (state of coherence). The electric field of the illumination can always be written
as:

�Eill =
1√
2

A0 (�p+ i�q) , (34)

with A0 a (complex) amplitude, and �p and �q two real unit vectors that span the polarization
ellipse. For example, for a linear polarization �p and�q are equal, while for a circular polarization
they are mutually orthogonal. The mutual coherence matrix can be expressed in terms of these
vectors as:

Ci j =
1
2
|A0|2 〈pi p j +qiq j〉E . (35)

For fully incoherent illumination we have Ci j =
(
|A0|2 /3

)
δi j.

For the temporal orientational averaging we need independent averaging over the excitation
and emission dipole, which gives a PSF:

〈I〉= 1
9 ∑

kl

CkkAll , (36)

where it is used that:

〈d jdk〉= 1
3

δ jk, (37)

with δ jk Kronecker’s delta function (and a similar expression for the excitation dipole). For the
ensemble orientational averaging we have �dex = �d and we can use the orientational average
over the product of four dipole factors dk:

〈did jdkdl〉= 1
15

(
δi jδkl +δilδ jk +δikδ jl

)
, (38)

(this expression can be easily derived from symmetry arguments), in order to obtain the aver-
aged intensity:

〈I〉= 1
15 ∑

kl

(CkkAll +2CklAkl) . (39)

The second term between brackets makes this ensemble orientationally averaged PSF gener-
ally different in character from the temporal orientationally averaged PSF. For the special case
of fully incoherent illumination, however, it is found that both cases of orientational averaging
give the same PSF.
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