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Summary

An example system is studied to discuss precision of the multipole expansion, applied to
determine forces exerted on particles by a viscous low-Reynolds-number fluid flow. A single
sphere in an ambient flow (pure shear, quadratic, and modulated shear) parallel to a close
plane wall is considered. Forces and torques exerted by the ambient flow on a motionless
sphere are evaluated. Their precision is determined and related to a multipole order of the
truncation. Similar analysis is performed for a moving sphere with no ambient flow and for
a freely moving sphere. Relative motion of the sphere with respect to the wall gives rise to
strong lubrication interactions. It is analysed how these interactions affect accuracy of the pure
multipole expansion, and what are the smallest distances where it becomes insufficient. An
alternative precise method is applied, in which lubrication expressions are subtracted from the
hydrodynamic forces and torques, and the residue is evaluated as a fast-convergent series of
inverse powers of the distance between the sphere centre and the wall. The accuracy of this
procedure is carefully analysed.

1. Introduction

Multipole expansion is widely used to determine transport coefficients and structure of suspensions,
and to evaluate hydrodynamic interactions between individual particles in low-Reynolds-number
fluid flows; see, for example, (1 to 3). This method is adequate to determine the motion of many
spherical particles, which undergo external forces in an ambient fluid flow. Periodic boundary con-
ditions, or one or two plane boundaries can be taken into account (4 to 9). The multipole method
is based on analytical developments, and therefore its precision is controlled. In particular, rela-
tive motion of close solid surfaces can be accurately calculated. Such a lubrication correction is
implemented in numerical simulations performed also by other methods or for other shapes of the
particles; see (10 to 12).

The multipole expansion is based on a boundary-integral representation of the velocity and pres-
sure disturbances (13, 14), in conjunction with the use of a Green’s tensor for the Stokes equations,
suitable for geometry of the system and the boundary conditions. For a fluid bounded by a plane
wall, the Green’s tensor was given by Blake (15). Cichocki and Jones (16) used it to combine the
multipole expansion with the method of images (17). In this approach, the force density and the
velocity field at the surfaces of the sphere and of its image are projected on to the complete set
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564 M. L. EKIEL-JEŻEWSKA AND E. WAJNRYB

of irreducible multipole functions (18). The coefficients of the truncated expansion are determined
from the boundary integral equation, which takes the form of a large system of linear algebraic
equations. For further details and successful implementations of the irreducible multipole expan-
sion, the reader is directed to the papers by Felderhof, Cichocki, Jones and collaborators, especially
to the paper (19) for the hydrodynamic interactions between many spheres in infinite space or with
periodic boundary conditions. The irreducible multipole expansion was also applied to calculate
hydrodynamic interaction of a single sphere with a solid plane wall (16) and the results were used
to construct theoretical and numerical algorithms for many spheres near a solid plane wall (7). Re-
cently, the irreducible multipole expansion has been applied to one sphere between two parallel
solid plane walls (8, 9).

Accuracy of the multipole expansion is of great practical interest. Therefore in this paper, an
example is studied to discuss the multipole precision: a single sphere, motionless or moving freely,
in an ambient flow parallel to a close plane wall. There are three basic goals of this study. First,
challenged by the accurate results obtained in the companion paper (20) with the use of bipolar
coordinates, we have asked what is the ‘top precision’ of the multipole expansion applied to the
same problem, especially for very small distances from the sphere centre to the wall. Secondly,
it is of interest to specify how to reach a reasonable relative accuracy, for example, one per cent,
using this approach, which could be easily generalized for many spheres. Thirdly, for systems with
lubrication between surfaces in relative motion, it is useful to determine the accuracy of the pure
multipole expansion (in principle, applicable for relatively large separations of the sphere from the
wall) and compare it with the precision of the power-series expansion, performed after subtracting
the lubrication expressions (and therefore accurate even for very small separations).

In section 2, we specify the problems; in section 3, we outline how the multipole expansion
is applied to solve them. In section 4, we evaluate forces and torques exerted on a motionless
sphere by pure shear, quadratic and modulated shear ambient flows. We estimate the accuracy as
a function of the multipole order, and as a function of the distance from the sphere centre to the
wall. The problem of a freely moving sphere in these ambient flows is more complicated because of
lubrication effects, caused by motion of the sphere with respect to the very close wall. Therefore in
section 5, forces and torques on a sphere moving close to the wall in the absence of ambient flows
are constructed by the pure multipole expansion, and alternatively, by a fast-convergent power-
series expansion, applied after subtracting the lubrication asymptotic expressions, valid for very
small gaps between the sphere surface and the wall. The accuracy of each method is estimated
and the two are compared. In section 6, free motion of a sphere in ambient flows is evaluated
and its precision is discussed, based on results from previous sections. Section 7 contains the final
conclusions.

2. The problem

Three generic ambient flows parallel to a solid plane wall at z = 0 are considered:

u∞ =

⎧⎪⎨
⎪⎩

ksz ex (pure shear),

kqz2 ex (quadratic),

2kmzy ex (modulated shear),

(2.1)

with a solid sphere of radius a located at a distance � from the wall; see Fig. 1. The same system
was investigated in a companion paper (20) with the use of bipolar coordinates.
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ACCURACY OF THE MULTIPOLE 565

Fig. 1 Notation for a spherical particle close to a plane wall

Here another method will be applied: the multipole expansion. The ultimate goal is to estimate
the accuracy of the multipole expansion in various physical contexts. Three generic problems will
be solved, and precision of the following quantities will be estimated for a given multipole order:

(i) the force and torque exerted by the fluid on a motionless sphere in these ambient flows,
(ii) the force and torque exerted by the fluid on a sphere moving with given translational and

angular velocities in the absence of ambient flow,
(iii) the translational and angular velocities of a freely moving sphere in these ambient flows.

The fluid velocity and pressure satisfy the Stokes equations, with the no-slip boundary conditions
at the surfaces of the spheres and of the wall. The problem may be reformulated as a boundary
integral equation (13, 14) for the density of forces (the fluid normal stress) [−σσσ(y) · ny] induced at
a point y on the sphere surface S (21 to 23), exerted by the sphere on the fluid,

U + ��� × (x − ���) = u∞(x) −
∫
S

G(x, y) · σσσ( y) · ny dSy, x ∈ S. (2.2)

Here U and ��� denote the translational and angular velocities of the sphere, and G is the Green’s
function obtained by Blake (15) for velocity of the fluid bounded by a solid plane wall. Using the
Cartesian indices α, β, γ = 1, 2, 3,

Gαβ(x, y) = Tαβ(r) − Tαβ(R) + 2y3(δβγ − 2δβ3δ3γ )
∂

∂ Rγ

[
y3 Rα

8πµR3 − Tα3(R)

]
, (2.3)
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566 M. L. EKIEL-JEŻEWSKA AND E. WAJNRYB

Table 1 Definition of friction factors (see (2.1) and Fig. 1 for the notation)

Friction Force Torque
factor divided by divided by Ambient flow Sphere

f s
xx 6πµ a�ks pure shear motionless

cs
yx 4πµ a3ks pure shear motionless

f q
xx 6πµ a�2kq quadratic motionless

cq
yx 8πµ a3�kq quadratic motionless

cm
zx −8πµ a3�km modulated shear motionless

f t
xx −6πµ aU no translating with U along x

ct
yx 8πµ a2U no translating with U along x

f r
xy 6πµ a2�y no rotating with �y along y

cr
yy −8πµ a3�y no rotating with �y along y

cr
zz −8πµ a3�z no rotating with �z along z

with r = (r1, r2, r3) = x−y, and R = (R1, R2, R3) = x−y′ where y′ is symmetric to y with respect
to the plane z = 0 (see Fig. 1). Further, δ is the Kronecker symbol, y3 = y · ez , and Tαβ denotes the
Green’s tensor for the unbounded fluid (the Oseen tensor), with

Tαβ(r) = 1

8πµ

(
δαβ

r
+ rαrβ

r3

)
, (2.4)

where r = |r|. The Green’s function is symmetric, Gαβ(x, y) = Gβα( y, x), as can be shown using
the Lorentz reciprocity theorem (14).

In this paper, we follow the normalization used in the companion paper (20). The dimensionless
forces and torques in the problems (i), (ii) are called friction factors. The normalization coefficients
are listed in Table 1. They are chosen in such a way that for �/a → ∞, the friction factors tend
to unity (or zero). Translational velocities of the sphere in the problem (iii) are normalized by the
corresponding values of the ambient flow at the sphere centre (and then denoted by Ũ ), and angular
velocities by values of the ambient flow at the sphere centre divided by the sphere radius a (and
then denoted by �̃).

3. Multipole expansion

In (20, 24), the solution to the problems (i), (ii) and (iii), specified in the previous section, has been
determined in the bipolar coordinates as a linear combination of a large number of scalar harmonics.
In this paper, we outline how to construct the solution as a linear combination of a large number of
vector spherical harmonics (25, 26), introduced to hydrodynamics of low-Reynolds-number flows
by Felderhof (23).

Let us now summarize the irreducible multipole expansion (18, 27). Following Cichocki and
Jones (16), we apply this expansion to a single solid sphere in a fluid bounded by a planar solid
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ACCURACY OF THE MULTIPOLE 567

wall at z = 0, under a general ambient flow u∞(x). Note that the formulae given below are general
and may also be applied to different geometries of the boundaries, if the corresponding Green’s
function is known. In this procedure, the forces, torques and velocities are projected on a basic set
of multipole functions, and represented by the coefficients of this expansion (the so-called force and
velocity multipoles); see Appendix A for details. Here we use the real multipole vector functions
u+

lmσ (X), with X = x−���. The subscripts are the multipole indices l = 1, 2, . . ., m = 0, ±1, . . . , ±l
and σ = 0, 1, 2. The definitions of all the u+

lmσ (X) are given in (7) and some of the multipole func-
tions are explicitly listed in Appendix B. The projection casts the integral equation (2.2) into an
infinite set of algebraic equations, which relate the velocity multipoles c(lmσ) to the force multi-
poles f (l ′m′σ ′) through known multipole matrix elements M(lmσ, l ′m′σ ′). For a fluid bounded by
a solid plane wall, these matrix elements were determined in (16). One obtains

c(lmσ) =
∞∑

l ′=1

l ′∑
m′=−l ′

2∑
σ ′=0

M(lmσ, l ′m′σ ′) f (l ′m′σ ′), (3.1)

where the force multipoles are defined as

f (lmσ) = −
∫

S
u+

lmσ ( y − ���) · σσσ( y) · ny dSy. (3.2)

The velocity multipoles c(lmσ) contain the two contributions

c(lmσ) = c0(lmσ) − c∞(lmσ), (3.3)

which are the expansion coefficients of the velocity field U +���× ( y − ���) at a point y on the sphere
surface (c0), and of the velocity u∞(x) of the ambient flow at any point x of the fluid (c∞). In other
words,

U + ��� × (y − ���) =
1∑

m=−1

1∑
σ=0

c0(1mσ) u+
lmσ ( y − ���), (3.4)

u∞(x) =
∞∑

l=1

l∑
m=−l

2∑
σ=0

c∞(lmσ) u+
lmσ (x − ���). (3.5)

Note that the only non-vanishing c0(lmσ) are those with l = 1, σ = 0, 1. Each of them is pro-
portional to a component of the translational or the angular velocity of the sphere relative to the
ambient flow. Similarly, the force multipoles with (l, σ ) = (1, 0) and (l, σ ) = (1, 1) are propor-
tional to components of the force and the torque exerted by the fluid on the sphere, with coefficients
given in Appendix A.

After truncating the expansion at multipole order L , that is, neglecting terms with l, l ′ > L ,
equation (3.1) reduces to a finite set of linear algebraic equations. These equations are solved for
the force multipoles by inverting the large matrix M formed by the coefficients M(lmσ, l ′m′σ ′),
with l, l ′ � L . More precisely, one obtains

f (lmσ) =
L∑

l ′=1

l ′∑
m′=−l ′

2∑
σ ′=0

ZL(lmσ, l ′m′σ ′) c(l ′m′σ ′), (3.6)

where the so-called grand resistance (or generalized friction) matrix ZL is the inverse of M. Note
that all coefficients ZL(lmσ, l ′m′σ ′) depend on the choice of the truncation, that is, on the multipole
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568 M. L. EKIEL-JEŻEWSKA AND E. WAJNRYB

order L . For a single sphere immersed in a fluid bounded by a solid plane wall, ZL(lmσ, l ′m′σ ′)
has been calculated by Cichocki and Jones (16), using an algorithm based on the method of images
and therefore similar to the approach of Schmitz and Felderhof (27) for two spheres in infinite fluid.

In the absence of an ambient flow, for given translational and angular velocities of the sphere
(problem (ii) in section 2), the forces and the torques are determined by (3.6) with l = 1, m = 0, ±1
and σ = 0, 1,

f0,L(1mσ) =
1∑

m′=−1

1∑
σ ′=0

ZL(1mσ, 1m′σ ′) c0(1m′σ ′). (3.7)

These multipole elements ZL(lmσ, l ′m′σ ′), which enter (3.7), form the so-called friction matrix.
Let us now explain how the multipole expansion is applied to solve the problems (i) and (iii),

introduced in section 2. We first project each ambient flow (that is, pure shear, quadratic and mod-
ulated shear) on to the basic set of the multipole functions. Each flow is a linear combination of
several multipole vector functions with l � 3, listed in Appendix B (the corresponding coefficients
c∞(lmσ) can be deduced easily).

When the sphere is motionless in the ambient flow (problem (i) in section 2), we determine the
force and torque exerted on the sphere. In the multipole expansion, this means that we search the
force multipoles with l = 1, m = 0, ±1 and σ = 0, 1. We denote these as f∞,L(1mσ), with
the subscript ∞ specifying the problem (the sphere is fixed and the force multipoles are determined
by all the coefficients c∞(l ′m′σ ′) only). Note that all the force multipoles depend on L , as indicated
by the second subscript L . In particular, for pure shear and quadratic flows along ex , the forces
(along ex ) and the torques (along ey) are determined by f∞,L(110) and f∞,L(1 −11), respectively.
For the modulated shear flow, the force vanishes and the torque is perpendicular to the wall, that is,
given by f∞,L(101). These force multipoles are evaluated from (3.6), which takes the form

f∞,L(1mσ) = −
L∑

l ′=1

l ′∑
m′=−l ′

2∑
σ ′=0

ZL(1mσ, l ′m′σ ′) c∞(l ′m′σ ′). (3.8)

Note that in precise computations, the selected multipole order L should be large enough to include
in the above sum all the coefficients c∞(l ′m′σ ′) �= 0. In Appendix C, equation (3.8) is expressed in
terms of friction factors rather than f∞,L , with the use of Table 1 and Appendix A.

When the sphere is freely moving in an ambient flow, with f (lmσ) = 0 for l = 1, m = 0, ±1
and σ = 0, 1, then the goal is to determine its translational and rotational velocities (problem (iii)
in section 2). These velocities are expressed by the velocity multipoles with l = 1, m = 0, ±1 and
σ = 0, 1, as in Appendix A. By virtue of (3.3) and (3.6), one obtains

c0,L(1mσ) = −
1∑

m′=−1

1∑
σ ′=0

µL(1mσ, 1m′σ ′) f∞,L(1m′σ ′), (3.9)

with f∞,L already calculated in (3.8). Here µL(lmσ, l ′m′σ ′) denote coefficients of the 6×6 mobility
matrix, which is the inverse of the corresponding 6 × 6 friction matrix,

(
Ũ s

�̃s

)
=
(

f t
xx − 4

3 ct
yx

− 4
3 ct

yx
4
3 cr

yy

)−1(
�/a f s

xx
2
3 cs

yx

)
, (3.10)
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ACCURACY OF THE MULTIPOLE 569

(
Ũ q

�̃q

)
=
(

f t
xx − 4

3 ct
yx

− 4
3 ct

yx
4
3 cr

yy

)−1(
(�/a)2 f q

xx
4
3 �/a cq

yx

)
, (3.11)

�̃m = (cr
zz)

−1 cm
zx , (3.12)

where Table 1 and Appendix A have been used.
The algorithm described above has been implemented in a numerical FORTRAN code and calcu-

lations have been carried out with quadruple precision (32 digits). The accuracy will be discussed
in the following sections.

4. Motionless sphere in an ambient flow

In this section, equation (3.8) is applied to compute the forces and torques exerted on a single sphere
by pure shear, quadratic, and modulated shear ambient flows. The accuracy is estimated numerically
by analysing the forces and torques as functions of the multipole order L .

Challenged by the precise (truncated at 16 digits) results of Pasol et al. (20), we start by asking
whether it is possible to obtain such a high accuracy also from the multipole expansion. First, we
consider the forces and torques applied by the quadratic ambient flow. Using (C.8) and (C.9) from
Appendix C, we calculate the corresponding friction factors, that is, f q

xx (L) and cq
yx (L), as functions

of L . Next, we construct a sequence of the differences, bL = F(L) − F(L − 1), with F equal to
f q
xx or cq

yx . As illustrated in Fig. 2, for large L the following inequalities are numerically observed:

|bL | �
⎧⎨
⎩

c

L4 for �/a � 1·0001,

b q L for �/a � 1·001,

(4.1)

Fig. 2 A fixed sphere in a quadratic ambient flow: convergence rate of the multipole expansion. For the force,
bL = f

q
xx (L) − f

q
xx (L − 1), and for the torque, bL = c

q
yx (L) − c

q
yx (L − 1), where L is the multipole order.

For �/a � 1·0001 (left plot with �/a = 1), bL is estimated by c/L4 whereas for �/a � 1·001 (the right plot
with �/a = 1·01), bL is estimated by bq L
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570 M. L. EKIEL-JEŻEWSKA AND E. WAJNRYB

where c is constant and b, q depend on �/a. The uncertainty of a friction factor F(L) is thus
estimated as follows:

|F(L) − F(∞)| =
∣∣∣∣∣

∞∑
l=L+1

bl

∣∣∣∣∣ �
⎧⎪⎪⎨
⎪⎪⎩

c

3L3 for �/a � 1·0001,

b q L+1

1 − q
for �/a � 1·001.

(4.2)

The change of the scaling at intermediate distances between �/a = 1·0001 and �/a = 1·001 is
related to the rapid increase of accuracy for �/a � 1·001.

If the sphere is far from the wall, then the scaling bL ∼ (a/�)2L can be derived from the multiple
scattering expansion. For small distances, however, bL is a complicated function of L and �/a. The
characteristic size of the gap corresponding to transition from exponential to algebraic convergence,
and the specific scaling 1/L4 law are just the numerical findings, which would require further
theoretical explanation.

For �/a � 1·0001, we improve the 5×10−9 accuracy deduced from (4.2). This has been achieved
by extrapolating the results from a finite to an infinite multipole order, as illustrated in Fig. 3.
From (4.2) it follows that for small distances, | f q

xx (L) − f q
xx (∞)| ∼ 1/L3 and we therefore plot

f q
xx (L) versus 1/L3. For very small �/a, f q

xx (L) and cq
yx (L) are decreasing functions of L (for

L � 10 and L � 3, respectively). By extrapolating the line to 1/L3 → 0 we thus obtain the cor-
rected value f q

xx (∞). A similar extrapolation has been carried out for the torque. The corresponding
estimate of the multipole precision is listed in Table 2.

For �/a � 1·001, the convergence with L is fast and we may decrease the multipole order below
500 to keep the 5 × 10−17 accuracy, chosen in the companion paper (20). The multipole order L
sufficient to keep this precision is evaluated and listed in Table 2. Instead of applying (4.2), it is

Fig. 3 The dimensionless force f
q
xx on a sphere fixed at �/a = 1 in a quadratic ambient flow versus 1/L3.

Extrapolation of the plot with a straight line from a finite to the infinite multipole order L results in more
accurate value of f

q
xx
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ACCURACY OF THE MULTIPOLE 571

Table 2 The multipole order L needed to obtain the indicated absolute precision of the dimension-
less forces and torques f s

xx , cs
yx , f q

xx , cq
yx , and cm

zx , exerted on a fixed sphere centred at a distance �
from the wall by pure shear, quadratic, and modulated shear flows, respectively

f s
xx , cs

xx f q
xx , cq

xx cm
zx

�/a L precision L precision L precision

1·0 500 5 × 10−10 500 5 × 10−10 92 5 × 10−17

1·000002 500 5 × 10−10 500 5 × 10−10 92 5 × 10−17

1·000005 500 1 × 10−9 500 5 × 10−10 92 5 × 10−17

1·00001 500 1 × 10−9 500 1 × 10−9 92 5 × 10−17

1·0001 500 5 × 10−10 500 1 × 10−9 91 5 × 10−17

1·001 373,378 5 × 10−17 381,377 5 × 10−17 79 5 × 10−17

1·005 174,175 5 × 10−17 177,176 5 × 10−17 66 5 × 10−17

1·01 124,126 5 × 10−17 127,126 5 × 10−17 60 5 × 10−17

1·05 56 5 × 10−17 57 5 × 10−17 38 5 × 10−17

1·1 40,41 5 × 10−17 39,40 5 × 10−17 30 5 × 10−17

1·2 29,30 5 × 10−17 28 5 × 10−17 24 5 × 10−17

1·5 20 5 × 10−17 18 5 × 10−17 16 5 × 10−17

2·0 14 5 × 10−17 13,14 5 × 10−17 12 5 × 10−17

4·0 9 5 × 10−17 9 5 × 10−17 7 5 × 10−17

5·0 8 5 × 10−17 8 5 × 10−17 6 5 × 10−17

10·0 6 5 × 10−17 6 5 × 10−17 4 5 × 10−17

21·0 5 5 × 10−17 5 5 × 10−17 3 5 × 10−17

51·0 4 5 × 10−17 4 5 × 10−17 2 5 × 10−17

equivalent to look at the smallest L at which the sixteenth digit after the decimal point does not
change any more if the multipole order is increased.

In pure shear ambient flow, the forces and the torques f s
xx (L) and cs

yx (L) scale with L also
according to (4.2). Moreover, they are increasing functions of L , if L � 7 and L � 2, respectively.
Therefore, for �/a � 1·0001 the forces and torques due to pure shear are extrapolated in the same
way as in case of quadratic flow. The multipole precision is listed in Table 2, together with the
multipole order L sufficient to keep the 5 × 10−17 precision for �/a � 1·001.

The calculation of the torque exerted on the motionless sphere in the modulated shear ambient
flow is significantly more precise than the evaluation of the friction factors in the quadratic flow.
Even at contact, we obtain the exact result of Goren and O’Neill (28), that is, π4/90, with a 32-digit
precision. To keep the chosen 5×10−17 accuracy at any value of �/a, we need significantly less mul-
tipoles than in the case of quadratic flow, as indicated by the corresponding values of L in Table 2.

Table 2 allows for an easy comparison with the results obtained in bipolar coordinates (20, 24).
Our accuracy is lower only for the pure shear and quadratic friction factors, and only for 1 � �/a �
1·0001. In this case, the maximal multipole precision is 10−10 to 10−9 (in bipolar coordinates,
5 × 10−17 for 1 < �/a � 1·0001 and 5 × 10−11 for �/a = 1). Within the estimated precision, all
our values of the forces and the torques coincide with those obtained in bipolar coordinates (20, 24).
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572 M. L. EKIEL-JEŻEWSKA AND E. WAJNRYB

Fig. 4 Relative accuracy 
 = |F(L) − F(500)|/F(500) of the friction factors F(L) as functions of the
multipole order L . The sphere is at contact with the wall, �/a = 1. (A): the whole range of multipole orders L .
(B): small L only

Fig. 5 Relative accuracy 
 = |F(L) − F(100)|/F(100) of the friction factors F(L) as functions of the
distance �/a between the sphere centre and the wall. The multipole order L = 3. Left: large and small �/a.
Right: small �/a only

Now we focus on a sphere at contact with the wall. We compare relative accuracy of the friction
factors for different ambient flows.† In Fig. 4A, the resulting relative accuracy is plotted as a function
of the multipole order 3 � L � 500.

For practical applications, it is especially important to analyse the relative accuracy for very
low values of the multipole order L . From Fig. 4B it follows that L = 3 is already sufficient to

† For large �/a, the friction factors tend to 1. For smaller distances, they are also O(1). At �/a = 1, f s
xx = 1·7006182335,

cs
yx = 0·943986501, f

q
xx = 1·942809373, c

q
yx = 0·990770518, and cm

zx = π4/90.
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ACCURACY OF THE MULTIPOLE 573

obtain one per cent relative accuracy of the forces and torques on the sphere at contact with the
wall. Indeed, for the motionless sphere, there is no lubrication effect, and fast convergence of the
multipole expansion has been expected even at the contact, where the accuracy is the lowest. The last
conclusion is clearly seen in Fig. 5, where the relative accuracy of the forces and torques, calculated
with L = 3, is plotted versus �/a. Therefore L = 3 is sufficient to obtain one per cent relative
accuracy for arbitrary separations between the sphere surface and the wall.

5. Moving sphere, no ambient flow

In this section, we focus on the friction factors f t
xx , ct

yx and cr
yy and their accuracy.

5.1 Pure multipole expansion

For large and intermediate distances, �/a � 1·001, we evaluate the friction factors F(L), equal
to f t

xx (L), ct
yx (L) and cr

yy(L), as functions of the multipole order L . We estimate the (absolute)
precision in the same way as previously, since we also obtain |bL | � bq L in this range. The top
accuracy of f t

xx (L), ct
yx (L) and cr

yy(L) is comparable to that of f q
xx (L) and cq

yx (L), but more
multipoles are needed to reach the same precision. Results are listed in Table 3.

If a solid sphere moves with respect to a close solid wall, lubrication forces dominate and the
multipole expansion of the friction factors f t

xx , ct
yx and cr

yy converges very slowly. For example, at
�/a = 1·001, the 0·01 absolute precision is reached for as many as L ∼ 90. For small distances,
the previous estimate (4.1) is now replaced by |bL | � d/L . Indeed, for �/a → 1, values of the
friction factors diverge, and their uncertainty rapidly increases. There is no analogue of Fig. 3. For
�/a � 1·0001, we use a more accurate method (called in brief a ‘power series’), proposed by
Cichocki and Jones (16). In this range, even for L = 500, absolute precision of the pure multipole
expansion is poor in comparison to the power-series accuracy. Therefore the absolute precision of
the pure multipole expansion is evaluated as the difference between the multipole-expansion values
and the power-series values of the friction factors, and listed in Table 3.

5.2 Power series

Making the inverse-power-series expansion in �/a of the friction factors F = f t
xx , ct

yx and cr
yy , it is

essential to speed up the convergence rate by subtracting the corresponding asymptotic expressions,
non-analytical and divergent at close distances (29). For a single sphere next to a flat hard wall, such
a procedure has been constructed by Cichocki and Jones (16). They used the multipole expansion
to evaluate

G = F − (A ln ξ + B ξ ln ξ), (5.1)

with ξ = �/a − 1, and A, B listed in (16). Then, they expanded the difference G in the inverse
powers of �/a, and truncated at a certain large power n,

G(n) =
n∑

k=0

Dk

(a

�

)k
. (5.2)

The idea originates from Jeffrey and Onishi (29), who considered two unequal spheres in infinite
space. In the limit of infinite radius of sphere 2 (which becomes the plane wall), the Jeffrey–Onishi
functions Y A

11, Y B
11 and Y C

11 tend to f t
xx , −2 ct

yx and cr
yy , respectively.
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ACCURACY OF THE MULTIPOLE 575

In (16), the power-series expansion of F was constructed from the multipole expansion, rep-
resented as a sum of multiple scatterings. Then, subtracting the power-series expansion of the lub-
rication expressions A ln ξ + B ξ ln ξ , they obtained a fast-convergent series G. The lubrication
asymptotics is essential to determine Dk as a function of k. Indeed, if ξ → 0, then G = O(ξ2 log ξ),
and therefore Dk = O(1/k3). However, for cr

yy , f t
xx and ct

yx , this scaling cannot be directly used to
estimate the truncation error, because of large oscillations inherent to the inverse-power expansion
in �/a, illustrated in Fig. 6A. We thus use a procedure equivalent to that introduced in (16), that is,
we represent the term G as G(p)(n) = [G(p−1)(n) + G(p−1)(n − 1)]/2, with G(0)(n) = G(n). With
p = 3, we then decrease amplitude of the oscillations by two orders of magnitude, as shown in

Fig. 6 The friction coefficient f t
xx versus 1/n2, calculated from (5.1) with (A) G(n); (B) G(1)(n); (C) G(2)(n);

(D) G(3)(n). Extrapolation of plot (D) to 1/L = 0 with a straight line finally results in f t
xx = 5·86667539 ±

5 × 10−9. To illustrate the improved accuracy, we have marked on the vertical axis of plot (A) two small ticks,
which correspond to the range of ordinates in plot (D)
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576 M. L. EKIEL-JEŻEWSKA AND E. WAJNRYB

Fig. 6D. For very small �/a, almost linear dependence of the friction factors on 1/n2 is obtained,
consistently with Dk = O(1/k3). For �/a � 1·01, we extrapolate values of the friction factors
from n = 450 to n = ∞, as illustrated in Fig. 6, improving precision of (16). Precision of the
extrapolated values is listed in Table 3 as the ’absolute precision of the power series’.

It is important to mention that the extrapolation correction can be deduced from the lubrication
expansion. For �/a close to one, Chaoui and Feuillebois (24) determined the asymptotic lubrication
expansion of the friction factors up to O(ξ5 log ξ). In particular, they evaluated C ξ2 log ξ , with
C ≈ 0·0116 for f t

xx , C ≈ −0·0369 for ct
yx , and C ≈ −0·213 for cr

yy . Expanding C ξ2 log ξ in
powers of a/�, we evaluate the extrapolation correction as

−2C
∞∑

k=n+1

1

k3

(a

�

)k
. (5.3)

Indeed, (5.3) is in excellent quantitative agreement with our extrapolation correction.
Actually, (5.3) can be used to estimate and improve precision of the power series not only for

very small, but also for larger distances. The point is that G(3) practically do not oscillate, and
F (3)(n) = G(3)(n) + A ln ξ + B ξ ln ξ are linear functions of S(n) = ∑∞

k=n+1 (a/�)k/k3. The
reference variable S(n) is a straightforward generalization of 1/n2 used in Fig. 6. For �/a = 1·05,
the linear dependence of F (3)(n) on S(n) is illustrated in Fig. 7. The slopes of the straight lines
in Fig. 7 correspond to 2C = 0·025 for f t

xx , 2C = −0·08 for ct
yx , 2C = −0·46 for cr

yy , in
agreement with the corresponding values calculated in (24). The friction factor cr

zz has also been
plotted in the same figure, with 2C = 0·9. This is the only friction factor finite at the contact, with
cr

zz = ζ(3) ≈ 1·202057.
For practical purposes, very high accuracy is not needed. In Fig. 8, absolute precision of the

power series is studied as a function of the truncation power n. Here �/a = 1 is taken, where

Fig. 7 Friction factors F (3)(n) = cr
zz, cr

yy , ct
yx , f t

xx as a function of S(n) = ∑∞
k=n+1(a/�)k/k3, for

�/a = 1·05. The upper limit in the sum is numerically approximated by 10000
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ACCURACY OF THE MULTIPOLE 577

Fig. 8 Absolute precision of the friction factor f t
xx versus the power n of the series truncation. Here �/a = 1.

Inset: analogical plots for the friction factors cr
zz , cr

yy , ct
yx and f t

xx

Fig. 9 Absolute precision of the friction factors F = cr
zz, cr

yy , ct
yx , f t

xx versus the distance �/a between the
sphere centre and the wall. The series is truncated at n = 8

the convergence rate is the slowest. Figure 9 illustrates how the absolute precision changes with
distance from the wall. The truncation power as small as n = 8 is sufficient to reach the one per
cent absolute precision for all the distances. The ‘cusps’ seen in Fig. 9 correspond to intersections
of curves F (3)(n) and F (3)(450) for some values of �/a.
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5.3 Comparison

In summary, the friction factors f t
xx , ct

yx and cr
yy and their accuracy have been calculated by two

methods. In Table 3, we list the ‘top precision’ of the pure multipole expansion, and of the inverse-
power expansion in �/a. For �/a � 1·05, we reach by both methods the chosen 5 × 10−17 accuracy
with powers L and n of the corresponding truncations listed in Table 3. For �/a � 1·01, the conver-
gence of the power expansion slows down and the precision rapidly deteriorates because we numer-
ically cannot go beyond n = 450. As a result, in the range of 1·001 � �/a � 1·01, the multipole
expansion is slightly more accurate than the power series. For very close distances �/a � 1·001,
it is essential to take into account the lubrication effects, therefore in this range the pure multipole
expansion is practically of no use. Within the specified accuracy, values of the friction factors f t

xx ,
ct

yx and cr
yy calculated here (and listed in table D1 in Appendix D) coincide with the results obtained

in bipolar coordinates (24).
It is important to stress that for a single sphere close to a wall, the inverse-power expansion is

more practical (convenient and faster) than the pure multipole expansion, because the expansion
coefficients are calculated only once for all the separations. For many spheres, however, the most
efficient method is the multipole expansion with a low multipole order, combined with pairwise
sphere–sphere and sphere–wall lubrication corrections, each built from a corresponding power se-
ries, truncated at a large power n.

6. Freely moving sphere in an ambient flow

Free motion of a sphere immersed in pure shear and quadratic flows has been calculated with a high
precision from (3.10), (3.11). The ‘top relative accuracy’ of the translational and angular sphere
velocities, listed in Table 4, has been evaluated in the standard way from the ‘top absolute precision’
of the corresponding friction factors. Within this accuracy, our values coincide with the results
obtained in bipolar coordinates in (20, 24). For n = 450 and a small multipole order L = 3, in the
whole range of the distances, the relative accuracy of the translational and angular sphere velocities
coincides with that of the corresponding friction factors; see Fig. 5.

Table 4 Top relative accuracy of the translational and angular velocities, Ũ s, �̃s, Ũ q and �̃q of a
sphere with its centre at a distance � from the wall, freely moving in an ambient pure shear and a
quadratic flow, respectively. For �/a � 1·005, the chosen accuracy 5 × 10−17 is easily obtained

relative accuracy of

�/a Ũ s �̃s Ũ q �̃q

1·000002 3 × 10−9 1 × 10−8 4 × 10−9 1 × 10−8

1·000005 3 × 10−9 1 × 10−8 4 × 10−9 1 × 10−8

1·00001 4 × 10−9 2 × 10−8 5 × 10−9 2 × 10−8

1·0001 4 × 10−9 3 × 10−8 6 × 10−9 3 × 10−8

1·001 2 × 10−16 4 × 10−16 2 × 10−16 3 × 10−16
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ACCURACY OF THE MULTIPOLE 579

The translational and angular sphere velocities decrease to zero when the sphere tends to touch
the wall. However, there appears a non-vanishing slip �̃

s,q
y /Ũ s,q in this limit. Using (3.10), (3.11),

and the relations (C.11) given in (30, 31), we obtain at the contact

�̃s
y

Ũ s
= 8cs

yx + 3 f s
xx

2(cs
yx + 6 f s

xx )
and

�̃
q
y

Ũ q
= 16cq

yx + 3 f q
xx

4(cq
yx + 3 f q

xx )
. (6.1)

With the calculated values of f s,q
xx and cs,q

yx , we obtain �̃s
y/Ũ s = 0·567549869 (improving the

precision of (32)), and �̃
q
y/Ũ q = 0·794842531. In pure shear flow, the slip at the contact is more

significant than in quadratic flow.

7. Conclusions

A single sphere near a plane wall in quadratic and pure shear low-Reynolds-number flows has been
considered. The force and the torque exerted on the motionless sphere by the fluid were evaluated
by a multipole expansion. The same method has been applied to determine the free motion of the
sphere. For very small separations �/a − 1 � 10−4 between the sphere surface and the wall, the
‘top relative accuracy’ of the multipole expansion is of the order of 10−9 to 10−10. For larger gaps,
the uncertainty rapidly decreases with the distance and for �/a − 1 � 0·001 the required 16 digits
precision is easily obtained and exceeded by our 32-digit FORTRAN calculation. For a single sphere
in modulated shear flow, the 32-digit ME accuracy is obtained for the whole range of distances,
even at the contact. All the calculated values are in perfect agreement with the ones obtained by
Pasol et al. from the bipolar coordinates method in the companion paper (20).

For practical applications, to reach the one per cent relative accuracy of the forces and torques
on a motionless sphere, the multipole order L = 3 is sufficient. A motion of the sphere with re-
spect to a very close wall requires significantly more multipoles, or a more elaborate treatment:
subtracting the lubrication expressions from the friction coefficients, and calculating the rest as a
fast-convergent series in inverse powers of the distance from the sphere centre to the wall, �/a.
With no ambient flow, the one per cent absolute precision is obtained already for truncation at as
low power as n = 8. Actually, the power series with n = 450 can also be used with no substantially
larger computational cost. Then, for small gaps �/a − 1 � 10−2, the precision is not worse than
10−7; for larger gaps at least 16 digits are precise. For all the distances, the absolute precision is
evaluated (and improved) from (5.3), using coefficients of lubrication asymptotic expressions. Note
how strong is this result, taking into account that the lubrication expressions are applicable for very
close distances only. Our analysis indicates that precise calculation of Chaoui and Feuillebois (24)
of the lubrication coefficients in bipolar coordinates may be used to significantly improve accuracy
of the power series. Such a series is used in many-body systems to construct pairwise lubrication
corrections, which account for interactions between each sphere and the wall, and also between two
spheres. Such lubrication corrections, after (33), are used in the Stokesian dynamics (4, 19) and in
the statistical description of suspensions, in a similar way as in (34). The multipole method used in
this paper can currently treat up to around one hundred spheres, plus one or two plane walls.
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APPENDIX A

How do force- and velocity-multipoles relate to physical quantities?

The force F and the torque C, exerted by the fluid on the sphere, are expressed in terms of the force multipoles
as

F =

⎛
⎜⎜⎝

Fx

Fy

Fz

⎞
⎟⎟⎠ =

√
4π

3

⎛
⎜⎜⎝

f (1 1 0)

f (1−10)

− f (1 0 0)

⎞
⎟⎟⎠, C =

⎛
⎜⎜⎝

Cx

Cy

Cz

⎞
⎟⎟⎠ =

√
4π

3

⎛
⎜⎜⎝

f (1 1 1)

f (1−11)

− f (1 0 1)

⎞
⎟⎟⎠. (A.1)

The translational and angular velocities of the sphere are expressed by the velocity multipoles as

U =

⎛
⎜⎜⎝

Ux

Uy

Uz

⎞
⎟⎟⎠ =

√
3

4π

⎛
⎜⎜⎝

−c0(1 1 0)

−c0(1−10)

c0(1 0 0)

⎞
⎟⎟⎠, ��� =

⎛
⎜⎜⎝

�x

�y

�z

⎞
⎟⎟⎠ =

√
3

4π

⎛
⎜⎜⎝

−c0(1 1 1)

−c0(1−11)

c0(1 0 1)

⎞
⎟⎟⎠. (A.2)

 at Instytut Podstaw
ow

ych Problem
ow

 T
echniki on O

ctober 9, 2015
http://qjm

am
.oxfordjournals.org/

D
ow

nloaded from
 

http://qjmam.oxfordjournals.org/
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At the centre of the sphere, the ambient flow and its derivatives of all orders are expressed by the corre-
sponding velocity multipoles c∞. In particular,

u∞(���) =
√

3

4π

⎛
⎜⎜⎝

−c∞(1 1 0)

−c∞(1−10)

c∞(1 0 0)

⎞
⎟⎟⎠,

1

2
∇ × u∞(���) =

√
3

4π

⎛
⎜⎜⎝

−c∞(1 1 1)

−c∞(1−11)

c∞(1 0 1)

⎞
⎟⎟⎠. (A.3)

APPENDIX B

Ambient flows as combinations of the multipole vector functions

According to (3.5), the ambient fluid flows u∞(x) at any point x in the fluid may be expressed as superposition
of multipole vector functions, u+

lmσ (X), with the position X = x − ��� measured with respect to the sphere
centre ��� = [0, 0, �]; see Fig. 1. The basic set of these functions was defined in (7). We explicitly write below
the decomposition (3.5) for the pure shear, quadratic, and modulated shear flows. In all these cases, the sums
in (3.5) consist of only several terms. It is convenient to denote

ũ+
lmσ = u+

lmσ

l
, with l =

√
l(2l + 1)!!

4π(l − 1)!
. (B.1)

Using this notation, with x = (x, y, z) and X = (X, Y, Z) = (x, y, z − �), as defined in Fig. 1, we write the
pure shear, quadratic, and modulated shear flows as

z ex = −�ũ+
110(X) − 1

2
ũ+

1−11(X) − 1√
2

ũ+
210(X), (B.2)

z2 ex = −�2ũ+
110(X) − �ũ+

1−11(X) − √
2�ũ+

210(X)

− 1

15
ũ+

112(X) −
√

2

3
ũ+

2−11(X) − 2√
15

ũ+
310(X), (B.3)

2yz ex = √
2�ũ+

2−20(X) −
√

2

3
ũ+

221(X) +
√

2

3
ũ+

3−20(X)

− �ũ+
101(X) −

√
2

3
ũ+

201(X). (B.4)

The multipole vector functions ũ+
lmσ appearing in (B.4) have the form

ũ+
110(X) = [−1, 0, 0], (B.5)

ũ+
1−11(X) = [−Z , 0, X ], (B.6)

ũ+
210(X) = 1√

2
[−Z , 0, −X ], (B.7)

 at Instytut Podstaw
ow

ych Problem
ow

 T
echniki on O

ctober 9, 2015
http://qjm

am
.oxfordjournals.org/

D
ow

nloaded from
 

http://qjmam.oxfordjournals.org/


ACCURACY OF THE MULTIPOLE 583

ũ+
112(X) = [−3(X2 + 2Y 2 + 2Z2), 3XY, 3X Z ], (B.8)

ũ+
2−11(X) = 1√

2
[Y 2 − Z2, −XY, −X Z ], (B.9)

ũ+
310(X) = 1

2
√

15
[3X2 + Y 2 − 4Z2, 2XY, −8X Z ], (B.10)

ũ+
101(X) = [−Y, X, 0], (B.11)

ũ+
2−20(X) = 1√

2
[Y, X, 0], (B.12)

ũ+
201(X) =

√
3

2
[−Y Z , X Z , 0], (B.13)

ũ+
221(X) = 1√

2
[−Y Z , −X Z , 2XY ], (B.14)

ũ+
3−20(X) =

√
2

3
[Y Z , X Z , XY ]. (B.15)

APPENDIX C

Evaluation of friction factors

The force multipoles are now calculated. The forces and torques on a moving sphere are calculated from
equation (3.7), with c0 related to the translational and angular velocities as in Appendix A. For the forces and
torques exerted on the sphere in the ambient fluid flow, equation (3.8) is applied, with the coefficients c∞,
determined in Appendix B. The resulting friction factors are

f t
xx (L) = 2

9µa
ZL (110, 110), (C.1)

ct
yx (L) = − 1

6a2µ
ZL (1 −11, 110), (C.2)

f r
xy(L) = − 2

9a2µ
ZL (110, 1 −11), (C.3)

cr
yy(L) = 1

6a3µ
ZL (1 −11, 111), (C.4)

cr
zz(L) = 1

6a3µ
ZL (101, 101), (C.5)
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584 M. L. EKIEL-JEŻEWSKA AND E. WAJNRYB

f s
xx (L) = 1

9a�µ

[
2�ZL (110, 110) + ZL (110, 1 −11) + 1√

5
ZL (110, 210)

]
, (C.6)

cs
yx (L) = 1

6a3µ

[
2�ZL (1 −11, 110) + ZL (1 −11, 1 −11) + 1√

5
ZL (1 −11, 210)

]
, (C.7)

f
q
xx (L) = 2

9a�2µ

[
�2 ZL (110, 110) + �ZL (110, 1 −11) + �√

5
ZL (110, 210)

+ 1

15
ZL (110, 112) + 1

3
√

5
ZL (110, 2 −11) + 2

√
2

15
√

7
ZL (110, 310)

]
, (C.8)

c
q
yx (L) = 1

6a3�µ

[
�2 ZL (1 −11, 110) + �ZL (1 −11, 1 −11) + �√

5
ZL (1 −11, 210)

+ 1

15
ZL (1 −11, 112) + 1

3
√

5
ZL (1 −11, 2 −11) + 2

√
2

15
√

7
ZL (1 −11, 310)

]
, (C.9)

cm
zx (L) = 1

6a3�µ

[
�ZL (101, 101) + 1√

15
ZL (101, 201)

]
. (C.10)

Note that due to the Lorentz symmetry, ZL (lmσ, l ′m′σ ′) = ZL (l ′m′σ ′, lmσ) and, due to the axial sym-
metry, ZL (lmσ, l ′m′σ ′) = 0 for m �= ±m′. Moreover, for large �/a the leading non-constant terms of
ZL (lmσ, l ′m′σ ′) scale as ∼ (�/a)−(l+l ′+σ+σ ′−1).

For ξ = �/a − 1  1, the friction factors f t
xx , ct

yx and cr
yy diverge as A ln ξ , with At

xx = − 8
15 , At

yx =
− 1

10 , Ar
yy = − 2

5 , see (30, 31). Therefore

lim
ξ→0

(
ct

yx

f t
xx

)
= At

yx

At
xx

= 3

16
and lim

ξ→0

(
cr

yy

f t
xx

)
= Ar

yy

At
xx

= 3

4
. (C.11)

Finally, it is interesting to discuss the dependence of the friction factors on the multipole order L . Both
f t
xx (L) and cr

yy(L) are strictly increasing functions of L , because the friction matrix ZL is symmetric and
positive-definite for arbitrary �/a. From this property it follows that ct

yx is also an increasing function of L ,
if �/a is sufficiently small, because in this case the leading contributions to the friction factors (proportional
to ln ξ ) are related to each other by (C.11). Moreover, for very large �/a, f

q
xx (L) and f s

xx (L) are increasing
functions of L , because according to (C.6) and (C.8), their leading contributions, proportional to a/�, arise
from f t

xx .

APPENDIX D

Values of friction factors f t
xx , ct

yx and cr
yy

Values of the friction factors f t
xx , ct

yx , and cr
yy have been precisely calculated in bipolar coordinates in (20).

Here we recalculate the same values by the multipole expansion, and list them in Table D1, as a reference for
the calculated precision.
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Table D1 Friction factors f t
xx , ct

yx and cr
yy for a sphere centred at a distance � from the wall,

calculated by the inverse-power expansion (for �/a � 1·0001) and by the pure multipole expansion
(for �/a � 1·001)

�/a f t
xx ct

yx cr
yy

1·000002 7·95289287 1·11928831 5·6198525
1·000005 7·46421170 1·02766552 5·2533556
1·00001 7·09454458 0·95836061 4·9761270
1·0001 5·86667539 0·72824978 4·0555491
1·001 4·640038165209212 0·499111844773750 3·137983756794614
1·005 3·7867298869201254 0·3419456909933512 2·5059413761990461
1·01 3·4225329663656397 0·2765174026634165 2·2407976493684943
1·05 2·5989632789810749 0·1379253408245965 1·6674610087470452
1·1 2·2643030353880285 0·0887633441741130 1·4548512100169826
1·2 1·9527071178778222 0·0496376581486575 1·2766391754162502
1·5 1·5957066189809054 0·0165739619041205 1·1104954933381374
2·0 1·3827523824112231 0·0050247112290880 1·0417835548066169
4·0 1·1619560820699792 0·0003318077201772 1·0049215496715140
5·0 1·1258610645109942 0·0001385021924306 1·0025100848288520

10·0 1·0594825555256237 0·0000090119714614 1·0003126564736819
21·0 1·0275096534244965 0·0000004732608454 1·0000337454784515
51·0 1·0111514796398637 0·0000000137547589 1·0000023558147164
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