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Accuracy of the spin sum rule in XMCD for the transition-metal L edges
from manganese to copper
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The effective spin sum rule is widely used in the quantitative analysis of x-ray magnetic circular dichroism
spectra. Here, this important, though imperfect, sum rule is reviewed with a detailed analysis of the various
sources for errors and deviations. The simulations confirm that the final state effects of the core level spin-orbit
coupling and the core-valence exchange interactions (multiplet effects) are linearly related with the effective
spin sum-rule error. Within the charge transfer multiplet approach, we have analyzed these effects, in combi-
nation with the interactions affecting the magnetic ground state, including the crystal field strength, the charge
transfer effects, the exchange (magnetic) field, and the 3d spin-orbit coupling. We find that for the late
transition-metal systems, the error in the effective spin moment is between 5% and 10%, implying that for
covalent and/or metallic systems the effective spin sum rule is precise to within 5-10 %. The error for 3d°
systems is ~30% and for 3d* systems, the error is very large, implying that, without further information, the

derived effective spin sum-rule values for 3d* systems have no meaning.
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I. INTRODUCTION

The x-ray magnetic circular dichroism (XMCD) sum
rules have been introduced by Thole et al. in 1992 (Ref. 1)
and Carra et al. in 1993.2 Thole et al. showed that the inte-
gral over the XMCD signal of a given edge allows for the
determination of the ground state expectation values of the
orbital moment (L) and Carra et al. introduced a second sum
rule for the effective spin moment (SE_). The sum rules ap-
ply to a transition between two well-defined shells, for ex-
ample, the transition from a 2p core state to 3d valence states
in transition-metal systems. These 3d valence states are as-
sumed to be separable from other final states, for example,
the 4s conduction band states that can be reached via a 2p4s
transition. This implies that the 2p3d edge absorption must
be separated from the 2p4s and other 2p-continuum transi-
tions. In general, it is assumed that continuum transitions can
be described as an edge step followed by a constant cross
section.

The XMCD sum rules have been reviewed in a number of
publications.’*® Here we briefly introduce the main aspects.
The integrated 2p3d x-ray absorption spectrum is propor-
tional to the number of empty 3d states ({n,)),

fMEf(M+1+uo+M_1)=§<Nh>

with f,u:f u(Q)dQ). (1)
Ly+L,

The absorption cross section (u) is integrated over a certain
energy range ({)) that covers the complete L, 5 edge. C is a
constant factor including the radial matrix element of the
dipole transition. The integrated circular dichroism spectrum
is defined as the absorption of left circular polarized, positive
helicity, x rays (u,;) minus the absorption of right circular
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polarized, negative helicity, x rays (u_;). In case of a 2p3d
transition this yields

C
fL3+L2 (g1 = py) == E<Lz>‘ (2)

This XMCD sum rule implies that one can directly determine
the orbital moment from the difference of positive (u, ;) and
negative (u_;) helicity x rays. Because in most soft x-ray
experiments one uses yield detection schemes, the absolute
absorption cross section is not measured and only a relative
signal is measured. A solution is to normalize the XMCD
signal by the absorption edge. This defines the orbital mo-
ment sum rule as

B fL3+L2(:u+l - M_1)
Ju

It is important if one could also determine the spin moment
and this is indeed possible with an additional sum rule. How-
ever, this effective spin sum rule has some additional com-
plications as is discussed below,

(L) = 2N 3)

S = po) =201, (e = 1) 3

SE;) = ~(Ny. @
(SE2 7 SN @)

The effective spin moment (SE.) is given as
(SEy=(S)+3(T.). (5)

where (T,) is the spin-quadrupole coupling. If this sum rule
is used to determine the spin moment (S,) one has to assume
that (T.) is zero or (T,) must be known from other experi-
ments or theoretically approximated. The effective spin sum
rule makes an additional approximation that the L; and the
L, edges are not mixed and well separated. The edges must
be well separated in energy because otherwise there is no
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clear method to divide the spectrum into L; and L,. More-
over, the two edges must be pure 2ps,, and 2p,,. Throughout
this paper we will discuss two different sum-rule errors:

(a) the error in the spin moment (S.) and

(b) the error in the effective spin moment (SE.).

The error in the effective spin moment (SE) is, as will be
shown below, caused by the mixing of the L; and L, edges.
The error in the spin moment (S,) has, in addition, the effect
of 7/2(T,).

Since the derivation of the effective spin sum rule, its
accuracy and validity have been discussed. The effective spin
sum rule has been theoretically simulated and tested by Tera-
mura et al.” They calculated the expectation values of the
effective spin (SE,) and compared them with simulated ef-
fective spin sum-rule values [SE;"™]. van der Laan et al.®
used the ratio of the G(pd) Slater integral and the core hole
spin-orbit coupling to estimate the purity of the L, and L;
edges and as such the accuracy of the effective spin-orbit
sum rule. They found the largest error for the L edges of 3d
transition metals. Also the M, s edge of the rare earth has
large errors, but the edges of the 4d, 5d, and 5f systems have
negligible errors due to the mixing of the spin-orbit split
components.®

Crocombette et al.® also tested the effective spin sum rule
theoretically. For an octahedral system at 300 K they found
that the sum-rule value for (S.) is ~10% too small for 3dS,
3d’, and 3d8. The errors increase to 28% and 56% too small
for 3d> and 34*. In this paper the focus is on the role of the
(T.) operator and it was found that in octahedral symmetry,
the value of (T) is determined by the 3d spin-orbit coupling.
Because the spin-orbit coupling is small, the value of (T,) is
close to zero at room temperature. (7) reaches larger values
at temperatures where the 3d spin-orbit coupling causes an
uneven distribution over the states. At lower symmetry the
value of (7,) is essentially given by the occupation of the
respective 3d orbitals and it is essentially unaffected by the
3d spin-orbit coupling.” van der Laan et al.'® also discussed
the role of (T.) and its large value for small crystal field
values. Wu et al.''"!2 calculated the value of (T.) for both the
bulk and the surface of 3d transition metals using density
functional theory based band structure calculations. They
found large values of (T.) at the surface, yielding (S,) errors
up to 50% for the Ni(001) surface, solely due to the value of
(T.). Within this approximation, the error in (SE_) is found to
be small.

Goering et al.’> developed an element specific renormal-
ization technique to derive the spin moment from the effec-
tive spin sum rule. The technique uses moment analysis to
disentangle the L; and L, parts of the spectrum, yielding a
correction factor for the spin moment. The various features
of the L, and the L5 edges are fitted simultaneously, which
result in a deconvolution of the XMCD spectra into different
excitation channels, interpreted by variations of the unoccu-
pied density of states. Effectively, it is assumed that the de-
viation of the branching ratio from its statistical value of 2/3
gives rise to a correction factor. In the discussion we analyze
this assumption with respect to the calculated curves and
their potential to derive a correction factor.

l.13
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II. METHOD
A. Ligand field multiplet calculations

In case of the 3d metal L, 5 edges, the agreement between
one-electron codes and the x-ray absorption spectral shape is,
in general, poor. The reason for this discrepancy is that one
does not observe the density of states in such x-ray absorp-
tion processes due to the strong overlap of the core wave
function with the valence wave functions. In the final state of
an x-ray absorption process one finds a partly filled core
state, for example, a 2p° configuration. In case one studies a
system with a partly filled 3d band, for example, a 3d® sys-
tem, the final state will have an incompletely filled 3d band,
which after the 2p3d transition can be approximated as a 3d°
configuration. The 2p hole and the 34 hole have radial wave
functions that overlap significantly. This wave function over-
lap is an atomic effect that can be very large. It creates final
states that are found after the vector coupling of the 2p and
3d wave functions. This effect is well known in atomic phys-
ics and actually plays a crucial role in the calculation of
atomic spectra. Experimentally it has been shown that while
the direct core hole potential is largely screened, these so-
called multiplet effects are hardly screened in the solid state.
This implies that the atomic multiplet effects are of the same
order of magnitude in atoms and in solids. Ligand field
theory is a model that is based on a combination of these
atomic effects and the role of the surrounding ligand ap-
proximated with an effective electric field. The starting point
of the crystal field model is to approximate the transition
metal as an isolated atom surrounded by a distribution of
charges that should mimic the system, molecule or solid,
around the transition metal.!%!13

B. Charge transfer multiplet calculations

Charge transfer effects are the effects of charge fluctua-
tions in the initial and final states. The ligand field multiplet
model uses a single 3d@" configuration to describe the ground
state and final state. One can combine this configuration with
other low-lying configurations similar to the way configura-
tion interaction works with a combination of Hartree-Fock
matrices. In oxides and metals, a 3d" ground state is typi-
cally combined with a 3d"*'e configuration, where & is a
missing electron (hole) in a delocalized band or in a ligand
state (L).

C. Procedure to determine the theoretical sum-rule values

Within the ligand field multiplet (LFM) calculations, the
transition-metal ion is defined with one configuration, 34".
The ground state expectation values of (L), (S.), and (T) are
calculated. These ground state expectation values are af-
fected by the 3d3d Slater integrals, the 3d spin-orbit cou-
pling, and the ligand field splitting.

The 2p x-ray absorption and XMCD spectra are calcu-
lated. The spectral shape is, in addition to the ground state
interactions mentioned above, determined by the 2p core
hole spin-orbit coupling and the 2p3d Slater integrals. The
orbital sum rule and the effective spin sum rules are applied
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to the calculated spectra. This theoretical sum-rule calcula-
tion uses the following assumptions:

(i) The division of the spectrum into its L; and L, com-
ponents, similar as one would use for an experimental spec-
trum.

(ii) The addition of the calculated, unbroadened, stick val-
ues for both the L5 and the L, edges.

(iii) The application of the effective spin sum rule [Eq.
(4)]. This yields the theoretical sum-rule-derived value for
(SE,), defined as [SE:"™]. The theoretical sum-rule-derived
value for the orbital moment is defined as [L}"™"].

(iv) The sum-rule values are compared with the calculated
ground state values to determine the ratio [SEZ"™]/(SE_) and
[L™]/(L,).

(v) The value of [L}"™]/(L.) is equal to 1 for all calcula-
tions performed, confirming the theoretical validity of the
orbital moment sum rule.

III. RESULTS

The effective spin moment sum rule has been tested theo-
retically for Mn’* 3d*, Fe’* 3d°, Fe** 3d°, Co’*3d’,
Ni?* 38, and Cu®* 3d°. The procedure we use calculates for
a given ground state their spin (S,), orbital (L,), and spin-
quadrupole (7.) expectation values and compares them with
the sum-rule values that have been derived from the multi-
plet simulations. The value of (SE,) is then given as (S.)
+7/2(T.).

The calculated value for (L.) is found to be always exactly
equal to the derived sum-rule value. This confirms the valid-
ity of the (L.) sum rule. Because this sum rule integrates the
complete L edge, the internal structure of the L edge due to
spin-orbit coupling and multiplet effects has no effect on the
integrated value. Except for Sec. III E, all other simulations
were done at 0 K.

A. Case of the Cu?* 3d° ground state

The 3d° ground state has only a single 3d hole. This im-
plies that there are no 3d3d two-electron integrals. The final
state of the 2p x-ray absorption process has a 2p3d'° con-
figuration, in other words a single 2p hole, which implies
that there are also no 2p3d two-electron multiplet effects.
The result is that there are no theoretical errors in applying
the effective spin sum rule to 34° systems. On the other
hand, (T) is significant and some general aspects are dis-
cussed below. For an analytical deduction of the Cu?* case as
well as temperature dependence calculations, the reader is
referred to Ref. 16.

If the 3d spin-orbit coupling is zero, the Cu>* 3d° L edge
spectrum is characterized with a L3: L, intensity ratio of 2:1
and a XMCD ratio of —1:1. The (S.) expectation value is
—0.5. Without 3d spin-orbit coupling (7,) is zero, implying
that (SE,) is also —0.5. This is also exactly the value that is
found after applying the sum rule to the L edge spectrum.

If the 3d spin-orbit coupling is not zero, the spin sum rule
remains exact, but (7,) will obtain a nonzero value. It turns
out that for a 3d” ground state, the value of (7.) is large. In
atomic symmetry, using a cubic crystal field (10Dg) of 0 eV,
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an atomic 3d spin-orbit coupling of ~0.1 eV, and an ex-
change field of 0.01 eV, one finds that all intensity is found in
the transition u_(Lz). All transitions to the L, edge are zero
and all transitions of u, are zero. In other words w, (L)
=p_y(Ly)=pm, (Ly)=0. This implies that u_u_,(L;) and us-
ing Eq. (4),

SEy="E3vy=-1s. (6)
m 2

The value of (S.) is —0.5, which implies that the value of
7/2(T,) must be —1.0. One can conclude that the effective
spin value of (SE_)=-1.5 is exactly reproduced by the effec-
tive spin sum rule, but due to the large value of (T.) this
value of —1.5 is very far from the spin expectation value (S.)
of —0.5.

Applying a cubic crystal field of 1.0 eV yields a value for
(SE,) of —1.37. The precise value is determined by a combi-
nation of the 3d spin-orbit splitting, the exchange interaction,
and the cubic crystal field and in fact for this Jahn-Teller
system also by the effects of symmetry distortion to tetrago-
nal symmetry. However, in all cases the effective spin sum
rule remains correct. The fact that 7/2(T,) is equal to —1
implies that the hole is in a 3d,2_2 orbital. Without spin-orbit
coupling this state is degenerate with a hole in a 3d 2 orbital,
but the spin-orbit splitting causes a single 3d hole in the
3d,>_,» orbital at 0 K. At finite temperatures, the occupation
is equivalent between 3d,2_2 and 3d2 holes as the energy
splitting is only 107 eV. In actual systems, the 3d° ground
state is split by a Jahn-Teller distortion, usually an elongation
of the z axis toward a square planar symmetry. This again
creates a single hole in the 3d,>_,2 orbital and a (7.) value of
—1. Without spin-orbit coupling the value of 7/2(T.) is (half)
integer for all 3d orbitals. It is +1 for the 3d,2_,» and 3d,,
orbitals, it is —1 for the 3d orbital, and it is —1/2 for the
3d,; and 3d,,, orbitals. If the ground state of a material has its
3d states split by a value larger than the 3d spin-orbit cou-
pling, one can directly derive the approximate values of (7.)
for all high-spin systems from 3d' to 3d°. A 3d" configura-
tion with an elongated z axis has its 3d,, state occupied, a
3d" configuration with a compressed z axis has its 3d,, and
deZ states half occupied, etc.

B. Effects of the crystal field splitting
and the 3d spin-orbit coupling

We start by calculating the expectation values for systems
between four and eight 3d electrons, i.e., Mn3* 3d*, Fe3* 34°,
Fe?* 3d° Co?* 3d’, and Ni** 3d®, using atomic 2p3d and
3d3d Slater integrals, atomic 2p spin-orbit coupling, and an
internal exchange field of 10 meV. The 3d spin-orbit cou-
pling was varied between the atomic value and zero. The
octahedral crystal field (10Dg) is changed between 0.0 and
3.0 eV.

Figure 1 gives the expectation values of the spin (S_), the
spin-quadrupole contribution to the sum rule 7/2(T.), and
the theoretical value of the effective spin (SE.) as a function
of 10Dgq. Different curves indicate calculations with distinct
magnitudes for the 3d spin-orbit coupling. The magnitude of
7/2(T.) plays an important role in the application of the sum
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FIG. 1. (Color online) The expectation values of (S,), 7/2(T,), and (SE_) are given as a function of the cubic crystal field splitting of
10Dg. Given are (top, left) Mn3* 3d*, (top, right) Fe3* 34, (bottom, left) Fe?* 345, (bottom, middle) Co?* 3d’, and (bottom, right) Ni** 345
The symbols indicate calculations with atomic 3d spin-orbit coupling (filled square, red), 60% of the atomic value (up triangle, orange), 30%
of the atomic value (down triangle, green), and no 3d spin-orbit coupling (open circle, blue).

rules in experimental spectra since its value is often un-
known and in most cases assumed to be negligible. Analyz-
ing Fig. 1 it is seen that in case the atomic 3d spin-orbit
coupling is zero (open circles), the value of (7,) is zero and
(S.) is given by —0.5 times the number of holes. A zero value
for (T.) also implies that (SE,)=(S,). For all cubic 3d°, 3d’,
and 34® systems with a crystal field above 0.5 eV, the value
of 7/2(T.) is between —0.1 and 0.1. In case of 3d° systems
the sign of (7,) depends on the magnitude of the 3d spin-
orbit coupling. The contribution of (7) is therefore small and
(SE.) is very close to (S.). In case of 3d® systems, (T,) is
always zero because the shell is half-filled. The 3d* systems
present a special case with respect to the values of (7). One
can observe that there are essentially two options for (T,), (1)
a value close to zero or (2) a value close to 1.0. The origin
for the value of 1.0 can be found in Table I. The 3d spin-orbit
coupling creates a small energy difference between the

3d,>_» and 3d > states. If only the 3d > state is occupied, the
value of (T.) is +1. A value of 0.0 is found without 3d spin-
orbit coupling and for a small spin-orbit coupling. In real
systems, there will often be a distortion in the 3d* ground
state implying a (T.) value of —1 or +1. One can use Fig. 1 to
have an indication of the differences for the values of (7.)
being equal to 0 or +1.

There is little change in the value of (S.) as a function of
the crystal field except for the 3d’ diagrams, where a S
=1.5 high-spin to $=0.5 low-spin transition is visible at 2.3
eV. The variation of (S.) with the spin-orbit coupling magni-
tude is due to the competition between the spin-orbit cou-
pling and the exchange energy. For the atomic spin-orbit
coupling the exchange energy of 10 meV is not enough to
completely saturate the system for Fe>* and Co**. The effect
of the exchange energy is studied in more detail in Sec. III D.
(SE.) is for all case equal to (S,)+7/2(T.). In case of the 3d*
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TABLE L. The expectation values for 7/2(T,) in Dy, (square
planar) symmetry for the different occupations of the 3d states in
case that the 3d spin-orbit coupling and the 3d3d interactions are
set to zero. Both cases for an elongated and compressed octahedron
are shown.
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systems this yields again the two options: (1) (SE,)=(S.) or
(2) (SE.)=(S.)+1.0.

Figure 2 gives the ratio [SE}""]/(SE,) (top panels) and
[SEX"™]/(S,) (bottom panels). A value of 1.0 implies that the
sum-rule value [SEZ""] is equal to the expectation values for
(SE.) and (S,), respectively. The error in the spin sum rule is

Conf. 7/2(T,) (elongated 7/2(T,) (compressed . . . : . .

(T (clongated) (T2 (comp ) given by [SEX"™]/(SE,). The ratio [SE}"™]/(S,) is also given
3d! % -1 as the experimental quantity that one usually attempts to
342 1 -1 determine is (S,). In case of Ni’*3d® the values for
38 0 0 [SE;"™]/(SE,) and [SE;"™]/(S,) are close to 0.90, except for
3 1 - the atomic calculations and calculations with very small
34 0 0 crystal fields. This implies that for 3d® systems one finds an
34 1 : underestimation in (S,) of approximately 10%, independent

. 2 . of the precise value of the crystal field and also independent
3d8 -1 2 of the 3d spin-orbit coupling. Figure 2 shows that for the 3d’
3d 0 0 systems (Co*"), the [SES"™]/(SE,) value is approximately
3d -1 1 0.92 with 3d spin-orbit coupling and ~0.84 without 3d spin-
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FIG. 2. (Color online) The ratio of the sum-rule value [SE:"™] with (SE_) (top panels) and (S,) (bottom panels) for (top, left) Mn3* 3d%,
(top, right) Fe3* 34°, (bottom, left) Fe>* 34°, (bottom, middle) Co** 3d”, and (bottom, right) Ni** 3¢%. The symbols indicate calculations
with atomic 3d spin-orbit coupling (filled square, red), 60% of the atomic value (up triangle, orange), 30% of the atomic value (down

triangle, green), and no 3d spin-orbit coupling (open circle, blue).
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and 0.96. At 10Dg=2.4 a transition to a low-spin ground
state is visible. All low-spin 3d” systems have an error value
of ~0.8, implying a sum-rule error of ~20%, independent of
crystal field strength and spin-orbit coupling.

The case of Fe?* 3d° is similar to the 3d” ground state: a
[SEX"™]/(SE,) value of 0.8 without spin-orbit coupling and a
value at ~0.88 with spin-orbit coupling. In case of
[SEZ"™]/(S,), the values vary between 0.80 and 0.96. This
implies a (S,) between 4% and 20%, dependent on the values
of 10Dq and the 3d spin-orbit coupling. The Fe** 3d° sys-
tems have identical curves for [SE."™]/(SE, and
[SE:"™]/(S,) as all values of (T.) are zero. We observe values
for [SEX"™]/(SE,) and [SE."™]/(S,) between 0.68 and 0.74,
where these values are determined by the value of the cubic
crystal field. This implies a systematic (uniform) underesti-
mation of (S,) by ~30%.

In case of Mn3* 3d*, there is little relation between the
sum-rule value and the (SE.) and (S.) expectation values. In
systems where 7/2(T.)=0, in other words in systems where
the two lowest states are degenerate, the values of
[SEX"™]/(SE,) and [SE:"™]/(S,) are approximately 0.5, im-
plying an underestimation of 50% by the sum rule. If the 3d
spin-orbit coupling or alternatively a symmetry distortion
splits these two lowest states, the [SE}""]/(SE_) value is be-
tween —0.2 and —0.5 and the value of [SE"™]/(S,) lies be-
tween 0.0 and —0.3. This implies that the sum rule gives next
to an underestimation of 50-80 %, also the wrong sign for
the (SE,) (and (S.)) value. For actual 3d* systems, it is not a
priori known if the ground state is degenerate or split; one
does not know if the error of the effective spin sum rule is
50% or —50%, so one is not even sure of the sign of the
(effective) spin from the derived sum-rule value.

It can be concluded that the case that (T, is close to zero
does not imply that the spin sum rule is exact. As seen in Fig.
2, the largest errors in the spin sum rule actually arise with-
out 3d spin-orbit coupling (for zero (T,) values).

C. Effect of multiplet interactions
and the 2p spin-orbit coupling

Next we would like to determine which interactions play
arole in the spin rule errors. First, we focus on the role of the
final state interactions: the 2p3d multiplet interactions and
the 2p spin-orbit coupling. These final state effects do not
influence the ground state and as such do not modify the
expectation values for (S.), (L.), and (T,). They affect how-
ever the spectral shapes and as such they modify the values
for [SEX"™].

Figure 3 shows that changing the 2p3d multiplet interac-
tions F;,3, and G5, in Ni2* from zero to their atomic values
decreases the sum-rule value from its calculated value of
—1.0 to a value of approximately —0.90. The atomic values of
the Slater integrals yield a 10% error. There is no error for a
calculation without 2p3d multiplet effects and the relation
between the 2p3d multiplet effects and the [SE;"™] value is
approximately linear. An interesting observation is that the
error is almost completely due to the F §p3 4 Slater integral, in
other words due to the dipole-dipole interactions between
the 2p and 3d holes. The exchange terms (Gép3 4 and Gg‘,ﬁ 2
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FIG. 3. (Color online) The sum-rule-derived value [SE;""] ex-
pectation value for Ni2*(d®) as a function of the relative 2p3d mul-
tiplet interactions (F,,3, and G,,3,), where 1.0 refers to the atomic
Slater integral values. Three curves are given for only G,,3, (open
triangle, red), only F,,3, (open circle, green), and for the combined
effect of Gy,3, and F,3, (filled square, blue).

have little effect on the error, as is indicated by the triangles.

Figure 4 shows the spin expectation value as a function of
the inverse 2p spin-orbit coupling (1/{’), where ¢’ is nor-
malized to the atomic value of the core hole spin-orbit cou-
pling ({yom) a8 ¢' =&/ yom- The [SEI™]/(SE,) ratio at the
atomic 2p spin-orbit coupling is ~10% in case of Ni**. One
observes that a larger 2p spin-orbit coupling decreases the
error. The error decreases linearly with 1/¢’, implying that if
the 2p spin-orbit coupling is large, the effective spin sum
rule is correct. Or, more specifically, if {,,/(F;,34) is large,
the error in (SE.) can be neglected. This also implies that the
L edges of the 4d, 5d, and 4f elements will have errors in
(SE.) close to zero, at least due to the multiplet and spin-
orbit induced effects.

D. Effect of exchange field

The calculations shown in Secs. III A-III C have used an
exchange field of 10 meV to split the ground state. As a first

-0.90 T T T T T

00 02 04 06 08 10
inverse 2p spin-orbit coupling (1/¢')

FIG. 4. (Color online) The [SE""] value for Ni%*(d®) as a func-
tion of the inverse 2p spin-orbit coupling 1/¢’.
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FIG. 5. (Color online) The expectation values (S,) (red, small
squares), (SE,) (green, closed circles), and [SE:"™] (black, open
circles) as a function of the exchange field. Given are Fe** 34° (top)
and Co?* 3d” (bottom) ground states.

approximation one can assume that the exchange field that
should be used is given by the Curie temperature of the sys-
tem. An exchange field of 10 meV corresponds to a Curie
temperature of approximately 116 K. If the 3d spin-orbit
coupling is zero, the ground state can be indicated by a pure
LS term symbol. Such ground state will be evenly split by an
exchange field. The magnitude of the exchange field deter-
mines the size of the splitting, but (for all practical exchange
field values) it will not modify the nature of the states. This
implies that (at 0 K) the expectation values are independent
of the exchange field.

Things change if the 3d spin-orbit coupling is nonzero.
The small but finite 3d spin-orbit coupling splits the ground
state into its double group states. These states are closely
spaced and their nature is determined by a combination of all
interactions: (i) the exchange interaction combined with (ii)
the 3d spin-orbit coupling, (iii) the 3d3d interactions, (iv) the
crystal field, and (v) translation symmetry (or band) effects.

Figure 5 shows the effect of the magnitude of the applied
exchange field on the expectation values of the spin (S.), the
effective spin (SE_), and the sum-rule-derived value [SE}"™"].
The values are given from 0 to 100 meV, where the 100 meV
values are similar to the saturated values (where we used a
value of 1.0 eV). The difference between (S.) and (SE.) is
again caused by the value of 7/2(T,). One can observe that
the difference between (S.) and (SE,) slowly increases for
3d% and 3d’. In case of a 3d® ground state (T.) changes sign
at an exchange field of approximately 10 meV.

One observes that for 3d°, the (S.) expectation values de-
creases from —1.5 to —2.0 with an increasing exchange field,
where the value of —2.0 represents the fully spin-polarized
case of four electrons. Similarly for 3d’ the (S.) expectation
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values decrease from —0.9 to —1.5. Without exchange field
the 3d spin-orbit coupling mixes the spin-polarized state with
other states, an effect that is counteracted by the exchange
field. An exchange field of 100 meV yields effectively a
completely spin-polarized state. The effect on the value of
(SE.,) is, in addition, determined by (T,). In case of a 3d°
ground state, we observe a decrease from —0.9 to —1.25 at a
field of 30 meV, followed by a slight increase to —1.15. This
increase is due to the effect of (T,). The 3d’ ground state
decreases from —1.4 to —2.5. The difference between the
(SE.) expectation value and the sum-rule value remains ap-
proximately constant for all exchange fields. In other words,
the exchange field has a significant effect on the (S,) and (7)
expectation values, but the sum-rule error remains essentially
constant.

In case of the 34® ground state of Ni**, the exchange
splitting has no effect on the expectation values. The reason
is that the ground state has a *A, ground state, i.e., a filled fre
band plus a half-filled e, band. A 3A, state is a single (7))
state in double group symmetry and it is not affected by the
3d spin-orbit coupling.

E. Temperature dependence

In this section we will present how a finite temperature
changes the results obtained in Sec. III B. Figure 6 shows the
expectation values (S.), (SE_), and 7/2(T,) and the sum-rule
correction factors [SE}"™]/(SE,) and [SE*"™]/(S,) as a func-
tion of temperature. From all systems presented in Sec. III B
only Mn**(34*), Fe>*(3d°), and Co’*(3d") show a significant
temperature dependence and therefore these are the only sys-
tems discussed in this section. These are exactly the systems
for which (7,) has a significant contribution to (SE_). The
calculations presented in Fig. 6 were done for 10Dg
=1.0 eV, exchange energy of 100 meV, and atomic 3d spin-
orbit coupling. The exchange energy was considerably in-
creased compared to Sec. III B to assure magnetic saturation
at 300 K.

For all three systems presented in Fig. 6 [SE;"™]/(S,) has
an important dependence with temperature, approaching
[SE:"™]/(SE,) as temperature increases. This is a direct con-
sequence of the decrease of the (7T,) contribution to the ef-
fective spin as temperature increases. With increasing tem-
perature the spin-orbit split values are more equally
populated which leads to a quenching of (7.).° For
Mn**(3d*), [SE"™]/(SE.) also changes significantly with
temperature. This comes from the fact that for 3d* there is no
straightforward separation between Lz and L, XMCD and the
spectral shape is different for each 3d spin-orbit split ground
state. As temperature increases, the different 3d spin-orbit
split states are populated and therefore [SE;"™]/(SE,)
changes reaching saturation when all spin-orbit split states
are equally populated. The increase in temperature has an
equivalent effect in [SE}"™]/(SE_) as the decrease of the 3d
spin-orbit coupling, presented in Fig. 2.

For Fe?*(3d°) [SES"™]/(SE.) varies only around 3% from
0 K to room temperature. [SE."™]/(S) is higher than 1.0 for
low temperature and approaches [SE;"™]/(SE,) as (T,) goes
from negative values to zero. Notice that in Fig. 1 the values
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FIG. 6. (Color online) Temperature dependence for (S.), (SE.), 7/2*(T), [SE:*™]/(SE.), and [SE$"™]/(S.) for Mn>*(3d*), Fe**(3d°), and
Co?*(3d"). Simulations done with 10Dg=1.0 eV and exchange=0.1 eV. The lowest temperature point is 10 K.

of (T,) are positive due to the different exchange energy used
there (see in Fig. 5). [SE;"™]/(SE,) for Co**(3d") is almost
constant with temperature varying only between 0.91 and
0.90, while [SE}"™]/(S.) varies between 0.80 and 0.85.

F. Effect of charge transfer

Figure 7 gives the calculations of the (S.), 7/2(T,), and
(SE.) expectation values in the presence of charge transfer
effects. We have applied charge transfer in a series of two-
state calculations mixing 3d" with 3d"¥*!'L. The parameters
used were a spherical symmetric hopping 7 of 2 eV with
varying charge transfer energy A. Large positive A yields a
pure 3d" ground state and large negative A yields a pure
3dM*!L state. The expectation values are plotted as a function
of the resulting 3d occupancy for Fe?*(3d%+3d’L),
Co?**(3d"+3d®L), and Ni**(3d%+3d°L) calculations. Figure 7
shows calculation for two values of exchange fields: 10 and
500 meV.

With a large 500 meV exchange field one observes for
(S.) in all cases a completely polarized ground state with
only spin-down holes. The 3d hole occupancy is for 100%
spin-down holes, yielding a value of —0.5 times the number
of holes ({n,)), implying a straight line in the relationship
between (S.,) and the 3d occupancy. A smaller exchange field
of 10 meV is not able to counteract the effects of the 3d
spin-orbit coupling and incomplete polarization is visible in
the value of (S,). The values for 7/2(T,) are close to zero for
a 3d® ground state. The values for 7/2(T.) are larger for the
500 meV exchange field, where a 3d’ state has a positive
value of (T,) and a 3d° ground state has a negative value.
The resulting effective spin (SE.)=(S.)+7/2(T,) deviates
from a straight line as systems between 3d’ and 3d® have
higher values and systems between 3d° and 3d’ have more

negative values, both due to the effect of (7).

The resulting sum-rule errors of charge transfer calcula-
tions are given in Fig. 8. The [SE}"™]/(SE,) ratio is between
0.88 and 0.95 in most cases, with values approaching 1.0 for

<
z
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o &

<7/2*T >

-0.4
-0.5 '

A0f @M
N 15 _f i
2.0 _M ]
25 .
6.0 615 ' 710 ' 715 ' 810 ' 815 9.0
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<SE >

FIG. 7. (Color online) From top to bottom the expectation val-
ues (S.), 7/2(T,), and (SE_) as a function of the 3d occupancy of the
ground states using a two-state charge transfer calculation are
given. The exchange fields used are 10 meV (closed squares) and
500 meV (open circles). Results for Fe>* d°, Co** d’, and Ni** d8
are showed in green, blue, and red, respectively.
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FIG. 8. (Color online) The ratio of the sum-rule value [SE®™]
with (SE_) (top) and (S,) (bottom) as a function of the 3d occupancy
of the ground states using a two-state charge transfer calculation.
The exchange fields used are 10 meV (closed squares) and 500 meV
(open circles).

systems close to a 3d° ground state. These errors are rela-
tively small. The [SE.""]/(SE,) ratio has been calculated tak-
ing the correct number of holes into account. The number of
holes (n,,) is directly given as ten minus the number of 3d
electrons, which obviously varies with the charge transfer
strength and considerably influences the value of [SE;"™].
The error in the spin expectation value, i.e., the [SEZ"™]/(S.)
ratio, shows similar behavior for the 10 meV exchange spec-
tra since in those cases the value of 7/2(T.) is small. The
curves for an exchange field of 500 meV have errors that are
dominated by 7/2(T.), with too small values for Co** and
too large values for Fe?*.

G. Effective spin sum rule for Ni metal

The x-ray absorption and XMCD spectra of Ni metal have
been simulated with the parameters from van der Laan and
Thole.!” The calculation assumes three configurations in the
ground state: 3d%+3d°L+3d'°L> at relative energies O,
—2.25, and -3.0 eV. Hoppings of 0.7 and 1.4 eV for e, and
1, states were used. Crystal field splitting (10Dg) is zero and
exchange energy is 0.5 eV. The values obtained for the rela-
tive contributions of 3d%+3d°L+3d'°L? are 15%, 49%, and
36%, respectively. The sum-rule values obtained are summa-
rized in Table II.

TABLE II. The expectation values obtained for Ni metal.

(S.) 7IATY  (SE)  [SEM™/(SE.)

Ni metal —-0.394 —-0.003 -0.37 0.97

PHYSICAL REVIEW B 80, 184410 (2009)

From Table II it is seen the [SE""]/(SE,) value is close to
1, showing that the application of the sum rule in isotropic
metallic systems such as bulk Ni metal works well. The con-
tribution of (7,) to (SE.) is also negligible for the case of Ni
metal. From Fig. 8, it is clear that for Co and for Fe metal
one would expect a more significant contribution of 7/2(T).

IV. DISCUSSION

We have analyzed the various parameters that influence
the validity of the effective spin sum rule. The effective spin
sum rule is correct for Cu’* because the final state has a filled
3d'% shell and is not affected by the 2p3d intra-atomic inter-
actions. The value for 7/2(T.) is however —1.0 for all octa-
hedral systems at low temperature and also for tetragonal
distorted (elongated) systems. For all systems that deviate
from O, symmetry, a large value for 7/2(T.) is found. For
3d°, 3d°, 3d’, and 3d® systems it was shown that, while in
the same ground state symmetry, the crystal field splitting
has almost no effect on [SE;"™]/(SE_). On the other hand a
difference between high-spin and low-spin states is always
observed. The ratio [SE"™]/(S,) shows small dependences
with crystal field due to the (7) contribution. The 3d spin-
orbit coupling has some influence on the [SEX""]/(SE_) ratio
for 3d° and 3d” systems and this dependence is also reflected
in the [SEI"™]/(S,) values. For Mn?* 3d*  system
[SE;"™]/(SE,) varies not only in magnitude but also in sign
with crystal field splitting showing that in this case an appli-
cation of the sum rule is practically impossible. For 3d°> sys-
tems the sum-rule errors are seemly large: 0.68 for high spin
and 0.74 for low spin. However it has no dependence on
crystal field splitting or 3d spin-orbit coupling. For 3d%, 3d’,
and 3d® systems the correction factors range between 0.8 and
0.9.

In Sec. I C, we found that the effective spin sum-rule
error scales linearly with F;d/ LS,,, in agreement with previ-
ous determinations. A remarkable result is that it is not the
2p3d exchange interaction that is the origin of the error but
instead the dipole-dipole interaction between the 2p hole and
the 3d hole.

In systems with charge transfer the ratio [SE;""]/(SE,) is
around 0.9 and 1, showing therefore small dependence on the
charge transfer amount. However, in the calculations the
number of holes is known, which in the experimental case
would be the limiting factor for the sum-rule application in
systems with charge transfer.

A. Potential derivation of a general correction factor

We analyze the calculated results here with regard to the
question if one can derive a correction factor which would
make it possible to derive the (SE.) or even (S.) from the
derived sum-rule value [SE""]. As mentioned in Sec. I, Go-
ering et al.'3 developed such renormalization technique to
derive the spin moment from the effective spin sum rule. An
important factor in such correction factor is the branching
ratio [B]. Just as the effective spin sum rule, the branching
ratio is affected by the 2p3d multiplet effects.'320 Analysis
of the effect of the 2p3d multiplet effect on the effective spin
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FIG. 9. (Color online) The variation of the deviation of the
sum-rule value [SEZ]ERR (blue, open circles) and the value of the
deviation from the statistical branching ratio [a] (red, closed
squares) for Fe?*(3d°).

sum rule yields an error that is linearly dependent on the
magnitude of the multiplet effect, as was shown in Fig. 3. It
can be shown that also the branching ratio is linearly depen-
dent on the multiplet effect (see Fig. 6 in Ref. 19). This
brings us to the following reasoning:

(1) The error in the spin sum rule is linearly dependent on
the 2p3d multiplet effects.

(2) The branching ratio is also linearly dependent on the
2p3d multiplet effects.

(3) This implies that the deviation in the effective spin
sum rule and the deviation in the branching ratio are corre-
lated and one can calculate the effective spin deviation from
the branching ratio deviation.

We define the transferred intensity between the L, and the
L edges as [«a], where [«] is directly given by the branching
ratio [B] as [a]=[B]-2/3. Note that [ B] and thus [«] can be
derived from the experimental spectra without any theoreti-
cal input. We also define the error in the effective spin sum
rule as [SE,]PRR=(SE_)~[SE.] and we propose a linear rela-
tion between [SE.JERR and [a], in other words [SE,JERR
=f[a]. From the actual calculations for Ni** with a crystal
field of 1.0 eV, we derive indeed a factor f equal to —0.25,
with a deviation of ~0.01. This implies that for Ni** system
the error in the effective spin sum rule can be corrected with
a final accuracy of less than 0.5%, where we note that this
applies for the effective spin sum rule. This analysis and
correction do not involve the value of (7).

So, have we now derived a useful correction procedure
for the effective spin sum rule? Unfortunately not. The cor-
relation between branching ratio and the effective spin sum
rule is only valid as a function of the 2p3d multiplet effects.
If one varies the ground state, for example, a crystal field
parameter, distortion, charge transfer effects, or the spin-orbit
coupling, there is no linear relation between the [«] and
[SE.]ERR. For example, Fig. 9 shows the example of [«] and
[SE_JERR in the case of Fe?* as a function of 10Dg. There is
no simple relation and thus no general correction rule for the
effective spin sum rule applies. The best procedure to correct
the [SE.] values is to simulate the XAS and XMCD spectra
and then to calculate the expectation values directly on the
ground state. A general approach to determine an effective
spin and spin correction procedure could be the following:
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(1) Simulate the experimental spectrum with charge trans-
fer multiplet calculations.

(2) Calculate the (T.) and (S.) expectation values for the
as-such determined ground state.

(3) Calculate the theoretical sum-rule value [SE;""] for
this ground state.

(4) Determine the theoretical
[SEX"™]/(SE,) and [SE"™]/(S,).

(5) Use this correction for the experimentally determined
sum-rule value.

sum-rule  errors

B. Experimental effective spin sum-rule values

In principle, the experimental sum-rule value and the the-
oretical sum-rule value should be the same, but the experi-
ment is, in addition to the theoretical issues discussed here,
affected by a number of additional aspects (see also Ref. 21),
including the following:

El. The number of holes in the accepting band plays a
role because of the normalization to the overall XAS inten-
sity. The number of holes is not always known experimen-
tally.

E2. The L; and L, edges must be separable in order to
determine the independent integrations, including the sub-
traction of the backgrounds. In addition, the appropriate
edges must be separated from other structures and the con-
tinuum edge jump. In general this is a nontrivial task, with
some variation in the methods used.

E3. If there is an angle between the x-ray beam and the
magnetization vector, there is an x-ray absorption due to ),
in addition to w_ and u,. This effect can be neglected if the
XAS spectrum of u is given by the average of u_ and pu,,
which would imply that the linear dichroism effect (u_+pu,
—2uyg) is zero, an assumption that in general is not correct.

E4. If electron yield is used, the detection effectiveness
must be equal for spin-up and spin-down electrons. This also
implies that the escape chance for spin-up and spin-down
electrons must be equal and in turn that the electron scatter-
ing should be spin independent.

E5. If fluorescence yield (FY) is used, there can be an
angular and energy dependence of the signal distorting the
XAS spectrum and also its associated XMCD signal. In ad-
dition, the FY signal is often affected by state (=energy)
dependent variations in the measured signal.??

E6. When measuring by total electron yield (TEY), satu-
ration effects will occur when the probing depth is of the
order or smaller than the electron escaping depth. This is the
case for very thin films or for measurements in grazing
angles. Correction factors need to be applied to the x-ray
absorption intensity.?32*

C. Examples from experiments

The experimentally determined sum-rule values are af-
fected by two types of errors or inaccuracies: (1) due to the
experimental procedures as described above and (2) due to
the intrinsic theoretical errors for the (effective) spin sum
rule. In order to verify the applicability of the individual
orbital and spin sum rules, Chen et al.?> determined the val-
ues of (L.) and (S_), where both values were ~5-10 % too
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small for Fe and 5% too large for Co. For the orbital mo-
ment, there is no theoretical error, but for (S.) one would
expect values that deviate between 5% and 20% (cf. Fig. 8).
Apparently the experimental uncertainties dominate in this
case. In Ref. 24 the values for (S,) and (L,) obtained by the
sum rules are compared to neutron diffraction data for Fe,
Co, and Ni metal. The ratio (S?MCDW(S;‘"““"“) (estimated
from Fig. 8 in Ref. 24) is around 0.9, while we obtained 0.97
in Sec. III G. This is a satisfactory agreement in view of the
experimental uncertainties involved in the determination of
<S§MCD>. In Ref. 26 it is found a correction factor of
1/1.47=0.68 for Mn**(3d°). This correction factor is found
with the help of theoretical simulations and it is the same as
obtained here for Fe**(34°).

Khanra et al. calculated the L edge spectrum of a molecu-
lar Mn,Og core system, with Mn?* ions.”” They found a de-
viation in the spin sum-rule value of ~30%, exactly in
agreement with Fig. 2 as given in this paper. This confirms
the larger errors for 3d> systems. Gambardella et al. studied
Fe, Co, and Ni atoms on a potassium surface.?8 They found
exactly correct (SE,) values for the 3d” system Ni*, in agree-
ment with theory as a 3d° system has no deviation for the
effective spin sum rule. Actually for the atomic 3d® and 3d’
systems, the theoretical error is also very small, +3% for 3d®
and +1% for 3d’, provided that the 3d spin-orbit coupling is
not quenched. The experimental data on Co* 3d® are ~10%
too small and for Fe* 3d it is ~20% too large, which are
likely due to experimental aspects as discussed in the paper.

V. CONCLUDING REMARKS

We have analyzed the validity of the effective spin sum
rule. In case of the 3d° ground state of Cu?*, the effective
sum-rule value is exactly correct because the final state has a
filled 3d band and also there are no initial state or final state
multiplet effects. The value of 7/2(T,) is large (~1.0), im-
plying that the effective spin is largely different from the
spin moment (S.).

The effective spin sum-rule errors for the 3d*—3d° sys-
tems as a function of (1) the crystal field effects and (2) the
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3d spin-orbit coupling show errors of 5-10 % for Ni** 34®
and 5-20 % for Co** 3d’ and also for Fe?* 3d°. The error for
Mn?* 3d4° is approximately 30% and for the case of a
Mn?* 3d* ground state, the error is very large and varies
between —50% and +50%. This implies that, without further
information, the derived effective spin sum-rule values for
Mn** 34* have essentially no meaning. The 3d* ground state
is strongly affected by the Jahn-Teller distortion, which is
strongly linked with the magnitude of the (7,) value.

The simulations confirm that the final state effects of the
2p3d multiplet effects and the core hole 2p spin-orbit cou-
pling are linearly related with the effective spin sum-rule
error, that is, the error scales exactly with (F,,3,)/ {5, in
agreement with previous results. Increasing the molecular
exchange field saturates the spin moment and the value of
(T,) while maintaining the error in the sum-rule value for the
whole range of applied fields.

The inclusion of charge transfer effects create a range of
ground states with varying 3d occupation, where we have in
detail studied the occupation range between 6 and 9. For
large exchange fields the spin moment is saturated, but
712(T,) is large, except for the range between 8 and 9. For
small exchange fields, 7/2(T.) is small. The error in (SE.) is
between 5% and 10% for the whole parameter range, imply-
ing that for covalent and/or metallic systems the effective
spin sum rule is precise to within 5-10 %. Because the sum
rule always yields a too small value, a correction with +5%
will limit the error to less than 5%. Because of the large
7/2(T,) values, the spin moment cannot reliably be deter-
mined from the effective spin sum rule with deviation be-
tween —20% and +10%. It turns out to be not possible to
derive a general correction method based on the branching
ratio. Such correction is only possible for systems with simi-
lar ground states.
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