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Abstract. It has been widely observed that Krylov space solvers based on two three-term
recurrences can give significantly less accurate residuals than mathematically equivalent solvers im-
plemented with three two-term recurrences. In this paper we attempt to clarify and justify this
difference theoretically by analyzing the gaps between recursively and explicitly computed residuals.

It is shown that, in contrast with the two-term recurrences analyzed by Sleijpen, van der Vorst,
and Fokkema [Numer. Algorithms, 7 (1994), pp. 75–109] and Greenbaum [SIAM J. Matrix Anal.
Appl., 18 (1997), pp. 535–551], in the two three-term recurrences the contributions of the local
roundoff errors to the analyzed gaps may be dramatically amplified while propagating through the
algorithm. This result explains, for example, the well-known behavior of three-term-based versions of
the biconjugate gradient method, where large gaps between recursively and explicitly computed resid-
uals are not uncommon. For the conjugate gradient method, however, such a devastating behavior—
although possible—is not observed frequently in practical computations, and the difference between
two-term and three-term implementations is usually moderate or small. This can also be explained
by our results.

Key words. system of linear algebraic equations, iterative method, Krylov space method,
conjugate gradient method, three-term recurrence, accuracy, roundoff

AMS subject classifications. 65F10, 65G05

PII. S0895479897331862

1. Introduction. Among the Krylov space solvers for linear systems Ax = b
(with A an (N ×N)-matrix and b an N -vector) there are quite a few that are based
on three-term recurrences for both the residuals rn and the iterates xn. Given an
initial approximation x0, we let r0 = b − Ax0, r−1 = o, x−1 = o, β−1 = 0 and
consider for n ≥ 0, while γn �= 0,

rn+1 = (Arn − rnαn − rn−1βn−1)/γn ,

xn+1 = −(rn + xnαn + xn−1βn−1)/γn .
(1.1)

In order that the recurrences (1.1) be consistent with the residual definition rn ≡
b−Axn, the scaling coefficients γn need to be chosen according to

γn = −(αn + βn−1),(1.2)

which means that the tridiagonal matrix with coefficients βn−1, αn, and γn in its
(n+ 1)st column has column sums zero; see, for example, section 4.3 of [14].

The list of algorithms based on (1.1) and (1.2) includes the Chebyshev iteration
[24, 21, 19], the second-order Richardson iteration [21] (which is the stationary form
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214 MARTIN H. GUTKNECHT AND ZDENĚK STRAKOŠ

of the Chebyshev iteration), the three-term versions (ORes) of the conjugate gra-
dient (CG) and the conjugate residual (CR) methods [24, 15], and the three-term
version (BiORes) of the unsymmetric or two-sided Lanczos method [18, 14] (which
is a variation of the biconjugate gradient (BiCG) method); see also [2, 15]. On the
other hand, for example, neither the version of CG suggested by Rutishauser [21]
(based on recurrences for the increments in x and r) nor the minres algorithm of
Paige and Saunders [20], which implements the CR method for symmetric indefinite
matrices, nor their symmlq algorithm is covered by our assumptions. An interesting
contribution to the rounding error analysis of minres and symmlq can be found in
[23].

The CG, CR, and BiCG methods have better known versions (OMin and BiOMin)
that are instead based on three two-term recurrences involving, in addition to the it-
erates and their residuals, direction vectors pn: for n ≥ 0,

pn = rn + pn−1ψn−1 ,

rn+1 = rn −Apnωn ,

xn+1 = xn + pnωn

(1.3)

with p0 = r0. Other methods like OrthoMin [28] use the last two of these recur-
rences, but have a more complex update formula for the direction vectors. In principle,
the version (1.3) can be obtained from the three-term version (1.1)–(1.2) by an LU
decomposition of the tridiagonal matrix of recurrence coefficients; see [1, 5, 14, 20].
The folklore is that implementations based on the two-term recurrences (1.3) are less
affected by roundoff than those based on the three-term recurrences (1.1)–(1.2). It
should be pointed out that the meaning of the phrase less affected by roundoff should
be carefully specified, otherwise the previous statement is imprecise and can be mis-
leading.

Recent work of Greenbaum [10, 11] shows that under the sole assumption that
the last two recurrences (1.3) hold, there is a limitation on the accuracy of the iterates
computed in finite precision arithmetic; the corresponding residuals b−Axn cannot be
expected to decrease below a certain level. (A similar but somewhat weaker result was
given by Sleijpen, van der Vorst, and Fokkema [22].) This level depends primarily
on the largest norm of an approximate solution xn generated during the iteration,
but it does not explicitly depend on how the coefficients ωn and ψn are determined.
Since, for example, the BiCG method may produce very large intermediate iterates
and residuals, this result is of great importance in practice. In contrast, related work
on GMRES showed that the size of intermediate iterates does not play a role [4, 12].

In this paper we investigate and answer the question when and why algorithms
based on two three-term recurrences of the form (1.1)–(1.2) usually do not produce
as small residuals as mathematically equivalent algorithms based on three two-term
recurrences (1.3). Similarly to [10, 11, 22, 4], we investigate the gap fn ≡ (b −
Axn) − rn between the explicitly computed residuals b − Axn and the recursively
updated residuals rn. We will refer to the former as true residuals and to the latter
as updated residuals. We show that for computations based on (1.1)–(1.2), the gap fn
satisfies a nonhomogeneous second-order difference equation. By writing n steps of
this difference equation as the superposition of n+1 homogeneous difference equations
(in a different context, this idea has been used by Grcar [8]), we receive an explicit
formula for fn in terms of the local roundoff errors. The resulting formula contains, in
addition to the sum of local errors (which is the analog of the sum that represents the
gap fn in the case of two-term recurrences analyzed by Greenbaum), each local error
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ACCURACY OF KRYLOV SPACE SOLVERS 215

multiplied by a set of potentially large multipliers. Moreover, the local errors may
become for the two three-term recurrences much larger than for two-term recurrences.

Assume that—in any application for which they are suitable—the methods based
on the recurrences (1.1)–(1.2) or (1.3) will eventually produce small updated residuals
(whose norm will decrease to the level of roundoff occurring in the finite precision
computation of the residual b −Ax for the exact solution x). Then the size of the
gap fn determines the ultimate attainable accuracy measured by the size of the true
residual; a large gap will eventually mean a poor residual b − Axn. The methods
based on (1.1)–(1.2) are proven to be in this sense potentially much less accurate than
those based on (1.3). In this sense, the folklore statement mentioned above is correct.

Our theoretical conclusions are well supported by numerical experiments.
It should be mentioned that the question of the ultimate attainable accuracy of

iterative methods was studied by several other authors in addition to those mentioned
above; see, for example, [3, 17, 25, 26, 27]. For a more detailed discussion we refer
to [11]. However, to our knowledge, the problem of numerical differences between the
recurrences (1.1)–(1.2) and (1.3) was not analyzed in these papers.

2. Local roundoff and the basic recurrence for the gap. In finite precision
arithmetic, recurrences (1.1) have to be replaced by

rn+1 = (Arn − rnαn − rn−1βn−1 + gn)/γn ,

xn+1 = −(rn + xnαn + xn−1βn−1 − hn)/γn ,
(2.1)

where gn and hn contain all the local rounding errors produced at the step n+1, and
rn, xn, etc., denote the actually computed quantities.

The first step of the analysis consists of estimating these local errors. We make
the usual assumption that the floating-point arithmetic with roundoff unit ε satisfies

fl(a± b) = a(1 + ε1) ± b(1 + ε2), |ε1|, |ε2| ≤ ε,(2.2)

fl(a op b) = (a op b)(1 + ε3), |ε3| ≤ ε, op = ∗, /.(2.3)

Then the roundoff in the matrix-vector multiplication (computed in a standard
way) is bounded according to

|fl(Ap) −Ap| ≤ m ε |A| |p| + O(ε2),(2.4)

where |A| and |p| denote the elementwise absolute values of A and p, and m is the
maximal number of nonzeros in any row of A. Assuming that the first and the third
terms in (1.1) are summed up first, by applying these rules we get

|gn| ≤ ((m+ 3) |A| |rn| + 3 |rnαn| + 4 |rn−1βn−1|) ε+ O(ε2),(2.5)

|hn| ≤ (3 |rn| + 3 |xnαn| + 4 |xn−1βn−1|) ε+ O(ε2).(2.6)

Both gn and hn are bounded by a quantity proportional to ε, but the behavior of
their bounds close to convergence is different. While the updated residual will become
eventually small in reasonable computations, and the bound for |gn| will decrease
correspondingly, the bound for |hn| will not. Note that we could consider a norm of
gn and hn here, but there is no real need for this.

In the following estimates we assume that the computed coefficients αn, βn−1,
and γn satisfy, in analogy to (1.2),

γ0 = −α0 , γn = −(αn + βn−1) + εn (n > 0)(2.7)
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216 MARTIN H. GUTKNECHT AND ZDENĚK STRAKOŠ

with error terms εn (note that this symbol is distinct from ε) that are bounded by

|εn| ≤ (|αn| + |βn−1|) ν ε (n > 0) ,(2.8)

where ν is a suitable small constant. Note that ν = 1 when γn is computed using
(1.2). For later convenience we set ε0 = 0.

We want to estimate the norm of the difference (or gap) between updated and
true residuals, hence, of

fn ≡ b−Axn − rn .

For n = 0, the gap f0 is the roundoff in computing r0 from A, x0, and b; that is,
f0 = b−Ax0 − fl(b−Ax0), and this is bounded by

|f0| ≤ ((m+ 1) |A| |x0| + |b|) ε+ O(ε2).(2.9)

Inserting the recursions (2.1) and the equality (2.7) we have

fn+1 = b + (Arn + Axnαn + Axn−1βn−1 −Ahn)
1

γn

− (Arn − rnαn − rn−1βn−1 + gn)
1

γn

= − [(b−Axn − rn)αn + (b−Axn−1 − rn−1)βn−1 − b εn + Ahn + gn]
1

γn

= − [fn αn + fn−1 βn−1 − b εn + Ahn + gn]
1

γn
.

(2.10)

Let us gather the last three terms, the local errors, in

ln ≡ (−b εn + Ahn + gn)
1

γn
.

By inserting the estimates (2.5), (2.6), and (2.8) we see that

|ln| ≤ [ |b| (|αn| + |βn−1|) ν + (m+ 6) |A| |rn| + 3 (|A| |xn| + |rn|) |αn|
+ 4 (|A| |xn−1| + |rn−1|) |βn−1| ] ε

|γn| + O(ε2).

For n = 0, we have γ0 = −α0, ε0 = 0, and thus

l0 = (Ah0 + g0)
1

γ0
, f1 = f0 − l0.

In summary, (2.10) yields for the gaps fn the linear second-order difference equation

f1 = f0 − l0 , fn+1 = −
(
fn
αn

γn
+ fn−1

βn−1

γn
+ ln

)
(n ≥ 1),(2.11)

or, equivalently, the pair of first-order difference equations[
fn
fn+1

]
=

[
O I

−βn−1

γn
I −αn

γn
I

] [
fn−1

fn

]
−
[
o
ln

]
(n ≥ 1)(2.12)
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ACCURACY OF KRYLOV SPACE SOLVERS 217

with f1 = f0 − l0. These recurrences describe the propagation of the local rounding
errors lk, k = 0, . . . , n. We see that the gap fn between the updated and the true
residuals after n steps is determined by a nonhomogeneous second-order difference
equation. This is in sharp contrast to the error behavior of the coupled two-term
recurrences, where the gap after n steps is just a simple sum of local errors; see [11].
Consequently, as we will see in the next section, the two three-term recurrences may
suffer from a strong amplification of the local errors.

3. Formula for the gap between true and updated residuals. For the
moment, assume that the term εn in (2.7) vanishes, that is,

−αn

γn
− βn−1

γn
= 1(3.1)

holds even in finite precision arithmetic. Denote by zn+1 = D(zn−m+1, zn−m;m) the
result of m steps of the recurrence

zk+1 = −zkαk

γk
− zk−1

βk−1

γk
, k = n−m+ 1, . . . , n,(3.2)

started at the step n−m. Note that due to (3.1), zn−m+k+1 = D(zn−m+1, zn−m; k) =
zn−m for all k whenever zn−m+1 = zn−m. Our discussion will rely heavily on this
fact.

First, we derive how the gap fn+1 is affected by f0. Clearly, the part of this gap
that depends on f0 is given by

D(f0, f0;n) = f0 ,

that is, f0 is not amplified in the process. Next we have to analyze the dependence
of fn+1 on the elementary rounding errors l0 born in the first step of the algorithm.
Clearly, considering (2.11) for n = 1, subtracting and adding l0

β0

γ1
, the contribution

of l0 to the gap fn+1 can be decomposed into two parts: the part which propagates
through the recurrence without any change,

D(−l0,−l0;n) = − l0 ,

and the part depending on the modified local error of the first step,

l̃1 ≡ l0
β0

γ1
+ l1 ,

which has yet to be analyzed. Repeating the same idea for the steps 2 through n,
we can conclude that the gap fn+1 can be written as the following superposition of
effects of local errors:

fn+1 = f0 −l0
−l0 β0

γ1
− l1

−l0 β0β1

γ1γ2
− l1

β1

γ2
− l2(3.3)

...

−l0 β0β1 · · ·βn−1

γ1γ2 · · · γn − . . .− ln−1
βn−1

γn
− ln.
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218 MARTIN H. GUTKNECHT AND ZDENĚK STRAKOŠ

Let us give another derivation of this fundamental result. From (2.12) we see
that, in view of f1 = f0 − l0,

[
fn
fn+1

]
=

n∏
k=1

[
O I

−βk−1

γk
I −αk

γk
I

] [
f0
f0

]
(3.4)

−
n∑

j=0

n∏
k=j+1

[
O I

−βk−1

γk
I −αk

γk
I

] [
o
lj

]
.

Here, due to (3.1), the matrices in the first product leave [ f�0 f�0 ]� invariant. In
the product that appears after the sum, we split off the last matrix (the one where
k = j + 1) and apply it to [ o� l�j ]� to get

[
lj

−lj αj+1

γj+1

]
=

[
lj
lj

]
+

[
o

lj
βj

γj+1

]
.

Now we have again a first term that is left invariant by the matrices it is multiplied
with and a second term of the form [ o� � ]� that can be treated in the same way

that [ o� l�j ]� was treated before. Repeating this trick we finally obtain

[
fn
fn+1

]
=

[
f0
f0

]
−

n−1∑
j=0

[
lj
lj

](
1 +

βj
γj+1

+ · · · +
βj · · ·βn−2

γj+1 · · · γn−1

)
(3.5)

−
n∑

j=0

[
o
lj

]
βj · · ·βn−1

γj+1 · · · γn ,

which is the same as formula (3.3), written for both fn and fn+1.
Now we describe how the picture changes when the coefficients αn, βn−1, and

γn are computed imprecisely, that is, when (3.1) is replaced by (2.7). We can fol-
low the analysis described above with the only difference being that we should add
the effect of the quantity f0ε1/γ1 propagating through n − 1 steps of the recurrence

(3.2) with z1 := o, the effect of l̃1ε2/γ2 propagating through n − 2 steps of (3.2)
with z2 := o, and so on. As long as the constant ν is small and εn is close to the
machine precision ε, these modifications will only cause effects proportional to O(ε2).
In (3.3) we should therefore add terms O(ε2) to individual terms of the sum. How-
ever, once the size of these terms is considered, the new O(ε2) contributions can be
thought of as being incorporated in the O(ε2) terms already present in the bounds for
f0, l0, . . . , ln. Therefore, we can use (3.3) in the further analysis with no change and
no limitation.

We summarize our main result in the following theorem.
Theorem 3.1. Up to a term O(ε2), the gap fn+1 between true and updated
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ACCURACY OF KRYLOV SPACE SOLVERS 219

residuals is given by the formula

fn+1 = f0 −
n∑

j=0

lj

− l0

(
β0

γ1
+
β0β1

γ1γ2
+ · · · +

β0 · · ·βn−1

γ1 · · · γn

)
− l1

(
β1

γ2
+ · · · +

β1 · · ·βn−1

γ2 · · · γn

)
...

− ln−1
βn−1

γn
.

(3.6)

It is tempting to estimate ||fn|| directly on the basis of (3.4), using an appropriate
norm for the 2 × 2 block matrices. However, the resulting estimate is too generous,
as it does not take into account the fundamental special properties of these block
matrices.

4. Comparison with three coupled two-term recurrences. In our nota-
tion, Greenbaum’s gap [11] for the coupled two-term recurrences (1.3) is

fGn+1 = f0 −
n∑

j=0

lGj , where lGj ≡ AhG
j + gG

j ,(4.1)

with gG
n and hG

n denoting the local rounding errors in the computation of the first
two recurrences of (1.3), analogously to gn and hn in (2.1). A comparison of (4.1)
with (3.6) is instructive.

We point out that the size of the local rounding errors may be considerably larger
in the two three-term recurrences than in the three two-term recurrences; the size of
the local error lGj in the step n is essentially bounded by O(ε)||A|| max1≤j≤n ||xj ||
(see [11]), where ||A|| denotes the spectral norm of A. In our case, a similar term in
the bound for ||ln|| would be multiplied by the factor (3|αn|+4|βn−1|)/|γn|, which can
be substantially larger than 1; see section 5 for the specific case of the CG method.
Nevertheless, as documented by our numerical experiments in section 6, the difference
between the implementations based on the two three-term recurrences (1.1)–(1.2) and
those using the three two-term recurrences (1.3) cannot be explained by the size of the
local rounding error terms only. The amplification of the local errors due to possibly
large multipliers plays a substantial if not decisive role: the additional terms in (3.6)
can be similar in size to or even dominate the sum of local rounding errors. If the
multipliers become very large, then the two three-term recurrences (1.1)–(1.2) are
likely to exhibit a dramatically wider gap than the two-term recurrences (1.3).

Assuming, as in [11], that the updated residuals become eventually negligible,
the relations (3.6) and (4.1) determine the ultimate attainable accuracy of the meth-
ods based on (1.1)–(1.2) and (1.3), respectively, measured by the norm of the true
residuals.

5. Example: CG method. For the following discussion of the size of the mul-
tiplicative factors

k∏
j=i

βj−1

γj
(1 ≤ i ≤ k)
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220 MARTIN H. GUTKNECHT AND ZDENĚK STRAKOŠ

we restrict ourselves to symmetric positive definite matrices A and to the CG method.
First, for the simplicity of our exposition, we assume exact arithmetic.

The coefficients in the two-term recurrences (1.3) are for CG given by [16]

ωn =
〈rn, rn〉

〈pn,Apn〉 , ψn =
〈rn+1, rn+1〉

〈rn, rn〉 .(5.1)

Both ωn and ψn are positive. Without specific knowledge about A and r0 we cannot
say anything more about their values. More precisely, given any two sequences of pos-
itive numbers, ω0, . . . , ωN−1 and ψ0, . . . , ψN−2, there is a symmetric positive definite
matrix A and a vector r0 such that the classical OMin form (the Hestenes–Stiefel
(HS) implementation) of the CG method applied to A with the initial residual r0
generates the given coefficients; see Theorem 18:3 of Hestenes and Stiefel [16]. This
result allows us to construct examples having any given set of multipliers, and thus
to find some with very large gaps. On the other hand, if the matrix A is reasonably
well conditioned and if the CG method converges well, then the bounds derived for
the multipliers will show that no substantial amplification of the local rounding errors
will occur.

It is well known [20, 5, 1] that by eliminating the direction vectors pn in (1.3)
we obtain the three-term (ORes) variant of the CG method with recurrences of the
form (1.1)–(1.2). From the orthogonality of the residuals we receive

αn =
〈rn,Arn〉
〈rn, rn〉 , βn−1 = γn−1

〈rn, rn〉
〈rn−1, rn−1〉 .(5.2)

Using (5.1) and γn = −(αn +βn−1), we see that the coefficients of the two implemen-
tations are related by

γn = − 1

ωn
< 0,

βn−1

γn
=
ψn−1ωn

ωn−1
≥ 0,

αn

γn
= −1 − ψn−1ωn

ωn−1
≤ −1,(5.3)

where ψ−1 = 0, ω−1 = 1. The equality is attained in the last two formulas only if
xn = x, that is, if we have reached the solution. We conclude that the multiplicative
factors in (3.3) have the form

k∏
j=i

βj−1

γj
=

ωk

ωi−1

k∏
j=i

ψj−1 ,(5.4)

and therefore they may exhibit, in general, an arbitrary behavior.
For a given matrix A and an initial residual r0, it is possible to relate the size of

the multipliers to the condition number of A and the convergence of the CG process
measured by the norm of the residuals. First, according to Theorem 5:5 in [16],

〈pn,Apn〉
〈pn,pn〉 <

1

ωn
= |γn| < 〈rn,Arn〉

〈rn, rn〉 ,

which yields, with the spectral norm,

1

‖A−1‖ =
1

σmin(A)
<

1

ωn
= |γn| < ‖A‖.(5.5)

Rewriting the multipliers in the form

k∏
j=i

βj−1

γj
=

ωk

ωi−1

||rk||2
||ri−1||2 ,
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we receive the following bounds:

1

κ(A)

||rk||2
||ri−1||2 ≤

k∏
j=i

βj−1

γj
≤ κ(A)

||rk||2
||ri−1||2 ,(5.6)

where κ(A) is the spectral condition number of the matrix A. Note that

||rk||2
||ri−1||2 =

||A1/2A1/2 (x− xk)||2
||A1/2A1/2 (x− xi−1)||2 ≤ ||A||

σmin(A)

||x− xk||2A
||x− xi−1||2A

≤ κ(A)

due to the monotonicity of the A-norm of the error. Consequently,

k∏
j=i

βj−1

γj
≤ κ2(A).

As mentioned in section 2, the bound for the size of the local rounding errors ln in
the two three-term recurrences (1.1)–(1.2) contains the factors |αn/γn| and |βn−1/γn|.
In view of (5.2) and (5.5) we have 0 ≤ αn ≤ ‖A‖ and |γn|−1 ≤ ‖A−1‖. Using (5.3),
we obtain the estimate

0 ≤ βn−1

γn
≤

∣∣∣∣αn

γn

∣∣∣∣ ≤ κ(A).(5.7)

Surprisingly, to establish that the developed bounds remain relevant in the case of
finite precision computation we do not need any extra work: the results of [9] and [13]
imply that in finite precision arithmetic the following slightly relaxed bounds hold:

(1 − ϑ)
1

κ(A)

||rk||2
||ri−1||2 ≤

k∏
j=i

βj−1

γj
≤ (1 + ϑ) κ(A)

||rk||2
||ri−1||2 ,(5.8)

k∏
j=i

βj−1

γj
≤ (1 + ϑ) κ2(A) ,(5.9)

βn−1

γn
≤

∣∣∣∣αn

γn

∣∣∣∣ ≤ (1 + ϑ) κ(A) ,(5.10)

where 0 ≤ ϑ � 1. (Here, we make the usual assumption about the numerical non-
singularity of the matrix A; for details see the references mentioned above.) Note,
however, that the conclusion we just made is far from trivial. The values of the ac-
tually computed recurrence coefficients and of the residual norms may be completely
different from their theoretical counterparts. But still, essentially the same bounds
hold!

The large size of the upper bounds for ill-conditioned A suggest that though
the size of the local errors may contribute to a possibly large gap between true and
updated residuals, the further amplification of the local errors due to large multipliers
may have a much stronger effect.
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6. Numerical experiments with the CG method. The construction of our
numerical experiments follows ideas from [16].

Example 1. We consider N = 48 and aim at the following values of the coefficients
(5.1) for the classical HS form of the CG method:

ω0 = ω1 = · · · = ω47 = 1,

ψ0 = 10, ψ1 = ψ3 = · · · = ψ43 = 0.01, ψ2 = · · · = ψ42 = 100,(6.1)

ψ44 = 10−2, ψ45 = 10−3, ψ46 = 10−4.

Using the well-known formulas [9]

T0,0 =
1

ω0
,

Ti,i =
1

ωi
+
ψi−1

ωi−1
,(6.2)

Ti,i−1 = Ti−1,i =

√
ψi−1

ωi−1
, i = 1, . . . , N − 1,

we construct an N×N symmetric positive definite tridiagonal matrix T with spectral
norm ‖T‖ = 102 and condition number κ(T) ≈ 2×106 (for N = 48). For any unitary
N × N matrix V, the CG method (1.3), (5.1) applied to the system Ax = b with
A = VTV� and r0 = b−Ax0 = Ve1 then generates in steps 1 to N the prescribed
coefficients ωj , ψj , j = 0, . . . , N − 1, and the residual norms

‖rj‖ = 101/2 for j = 1, 3, . . . , 43,

‖rj‖ = 10−1/2 for j = 2, 4, . . . , 44,

with ‖rj‖ sharply decreasing in the steps 45 through 48. For an initial residual
different from Ve1 the behavior of the residual norms will be different, but we may
still expect some oscillations and, consequently, some large multipliers.

We have used the construction described above, choosing V as the unitary matrix
resulting from the QR decomposition of a randomly generated N × N matrix; in
Matlab notation [V,R] = qr(randn(N,N)). Furthermore, we have chosen x =
(1, . . . , 1)�, b = Ax, x0 = o, r0 = b. Hence, r0 �= Ve1. Experiments were performed
on an Sun Ultra 10 workstation with ε ≈ 1.11 × 10−16 using Matlab 5.0.

Three implementations of the CG method have been compared: except for Fig-
ure 9, solid lines always represent results of the classical OMin or Hestenes–Stiefel
(HS) version given by (1.3) and (5.1), dots those of the Rutishauser (R) variant
described in [21], and dashed lines those of the ORes implementation of the form
(1.1)–(1.2) presented, for example, in [15, p. 143], and denoted here as HY. In the R
variant the recurrences are, for n ≥ 0, of the form

∆rn = (−Arn + ∆rn−1 ηn−1) τ−1
n , rn+1 = rn + ∆rn ,

∆xn = (rn + ∆xn−1 ηn−1) τ−1
n , xn+1 = xn + ∆xn ,

(6.3)

and they are started with r0 = b −Ax0, ∆r−1 = o, ∆x−1 = o, and η−1 = 0. The
coefficients are computed according to

τn =
〈rn,Arn〉
〈rn, rn〉 − ηn−1 , ηn = τn

〈rn+1, rn+1〉
〈rn, rn〉 .(6.4)
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Fig. 1. Example 1: Norms of the updated residuals for the two-term (HS, solid line), three-term
(HY, dashed line), and Rutishauser (R, dots) variants of the CG method.

In the HY variant, the following recurrences are used for n ≥ 0:

rn+1 = θn+1(−µn+1Arn + rn) + (1 − θn+1)rn−1 ,

xn+1 = θn+1(µn+1rn + xn) + (1 − θn+1)xn−1 .
(6.5)

They are started with r0 = b − Ax0, θ1 = 1, x−1 = o, and r−1 = o, and the
coefficients are computed according to

µn =
〈rn, rn〉
〈rn,Arn〉 , θn+1 =

(
1 − µn+1

µn

〈rn, rn〉
〈rn−1, rn−1〉

1

θn

)−1

.(6.6)

Clearly, the finite precision equivalent of (6.5) can be written in the form (2.1). Con-
sequently, Theorem 3.1 applies, although the bounds for the size of the local errors
derived in section 2 have to be modified slightly.

Norms of the updated residuals are compared in Figure 1. We can see the os-
cillations followed by the fast convergence for n around 70. Of course, theoretically
the method should converge in 48 steps, but, as can be explained by the analysis in
[9, 13], the convergence is delayed due to roundoff effects. Norms of the true residuals
‖b−Axn‖ are shown in Figure 2. Clearly, residual norms of the HY variant stagnate
at a significantly worse level than those of the HS variant, as predicted by our analysis.

In Figure 3 the norms of the gaps fn we investigated, that is, of the differences
between true and updated residuals, are displayed. Note that for the HY variant
the gap starts to grow soon, much earlier than one can detect from the two previous
figures. Figure 4 shows the behavior of the error norms ‖x − xn‖. Surprisingly,
the differences in the error norms are much less pronounced than those in the true
residuals.

Example 2. The second example makes use of the same construction, but now,
again for N = 48, we aim at

ω0 = ω1 = · · · = ω47 = 1,

ψ0 = ψ1 = · · · = ψ39 =
√

2, ψ40 = · · · = ψ46 = 2−7,
(6.7)
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Fig. 2. Example 1: Norms of the true residuals computed as ‖b−Axn‖ for the two-term (HS,
solid line), three-term (HY, dashed line), and Rutishauser (R, dots) variants of the CG method.
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Fig. 3. Example 1: Norms of the differences (gaps) fn between the true and updated residuals
for the two-term (HS, solid line), three-term (HY, dashed line), and Rutishauser (R, dots) variants
of the CG method.

which gives ‖T‖ ≈ 4.8 and κ(T) ≈ 6 × 107. Again, we consider the system Ax = b,
A = VTV�, where V is determined as in Example 1, x = (1, . . . , 1)�, b = Ax. If we
chose x0 so that r0 = Ve1, we would find residuals with

‖rn‖ = (
√

2)n for n = 1, 2, . . . , 40

and a sharply decreasing norm in the subsequent steps. However, we have again
chosen x0 differently, namely x0 = o, so that r0 = b. Then we do not find an initially
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Fig. 4. Example 1: Norms of the errors ‖x−xn‖ for the two-term (HS, solid line), three-term
(HY, dashed line), and Rutishauser (R, dots) variants of the CG method.
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Fig. 5. Example 2: Norms of the updated residuals for the two-term (HS, solid line), three-term
(HY, dashed line), and Rutishauser (R, dots) variants of the CG method.

increasing but rather a quickly decreasing residual norm, both for the updated (see
Figure 5) and the true residual (see Figure 6); note the significant oscillation around
n = 45. The norm of the true residuals of the HY variant stagnates again at a
significantly worse level than in the HS variant. Figure 7 shows the norm of the gaps
fn. The differences in the norms of the errors, displayed in Figure 8, are again less
pronounced.

To illustrate the contribution of the size of local rounding errors to the gap fn, we
plotted in Figure 9 the size of the coefficients |αn/γn|, βn/γn and |1/γn|. Clearly, while
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Fig. 6. Example 2: Norms of the true residuals computed as ‖b−Axn‖ for the two-term (HS,
solid line), three-term (HY, dashed line), and Rutishauser (R, dots) variants of the CG method.
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Fig. 7. Example 2: Norms of the differences (gaps) fn between the true and updated residuals
for the two-term (HS, solid line), three-term (HY, dashed line), and Rutishauser (R, dots) variants
of the CG method.

the gap exhibits a loss of accuracy of about six orders of magnitude, the anticipated
contribution of the local errors to this gap is not greater than about two orders
of magnitude. The disastrous difference between updated and true residuals must
therefore be caused by an amplification of the local rounding errors due to large
multipliers. In the analogous figure (not shown) for Example 1 the same behavior is
slightly less pronounced.

A detailed explanation of the performance of the R variant and of the behavior
of the error in all variants requires further work.
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Fig. 8. Example 2: Norms of the errors ‖x−xn‖ for the two-term (HS, solid line), three-term
(HY, dashed line), and Rutishauser (R, dots) variants of the CG method.
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Fig. 9. Example 2: Size of the three-term recurrence coefficients |αn/γn| (solid line), βn/γn
(dots) and |1/γn| (dashed line) for the HY variant of the CG method

.

7. Conclusions. We have explained why the ultimate attainable accuracy mea-
sured by the norm of the true residual b−Axn can be much worse for implementations
of Krylov space methods based on the two three-term recurrences (1.1)–(1.2) than for
the corresponding implementations based on two-term recurrences of the form (1.3).
For example, in the three-term (ORes) version of the CG method, the gap between
true and updated residuals is affected not only by the maximum size of the intermedi-
ate iterates ||xk|| as in the coupled two-term (OMin) version, but also by oscillations
of the squared norms of the residuals, that is, the quantities ||rk||2/||ri−1||2, 1 ≤ i ≤ k.
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Many well-known algorithms like minres and symmlq [20], or the three-term and
the coupled two-term versions of the quasi-minimal residual (QMR) method [6, 7], as
well as the Rutishauser variant of the CG method are not of the form (1.1)–(1.2) or
(1.3). Hence, the results presented in this paper do not apply to them.

Chris Paige suggested another derivation of the results presented in this paper,
based entirely on matrix formulations of the algorithms. His approach brings some
additional insight into the problem and has potential for further generalization of the
results. We hope to report about the results of the joint subsequent work in the near
future.
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