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Abstract

Background: Dimensionality reduction is an indispensable analytic component for many areas of single-cell RNA

sequencing (scRNA-seq) data analysis. Proper dimensionality reduction can allow for effective noise removal and

facilitate many downstream analyses that include cell clustering and lineage reconstruction. Unfortunately, despite

the critical importance of dimensionality reduction in scRNA-seq analysis and the vast number of dimensionality

reduction methods developed for scRNA-seq studies, few comprehensive comparison studies have been performed

to evaluate the effectiveness of different dimensionality reduction methods in scRNA-seq.

Results: We aim to fill this critical knowledge gap by providing a comparative evaluation of a variety of commonly

used dimensionality reduction methods for scRNA-seq studies. Specifically, we compare 18 different dimensionality

reduction methods on 30 publicly available scRNA-seq datasets that cover a range of sequencing techniques and

sample sizes. We evaluate the performance of different dimensionality reduction methods for neighborhood

preserving in terms of their ability to recover features of the original expression matrix, and for cell clustering and

lineage reconstruction in terms of their accuracy and robustness. We also evaluate the computational scalability of

different dimensionality reduction methods by recording their computational cost.

Conclusions: Based on the comprehensive evaluation results, we provide important guidelines for choosing

dimensionality reduction methods for scRNA-seq data analysis. We also provide all analysis scripts used in the

present study at www.xzlab.org/reproduce.html.

Introduction
Single-cell RNA sequencing (scRNA-seq) is a rapidly grow-

ing and widely applying technology [1–3]. By measuring

gene expression at a single-cell level, scRNA-seq provides

an unprecedented opportunity to investigate the cellular

heterogeneity of complex tissues [4–8]. However, despite

the popularity of scRNA-seq, analyzing scRNA-seq data re-

mains a challenging task. Specifically, due to the low cap-

ture efficiency and low sequencing depth per cell in

scRNA-seq data, gene expression measurements obtained

from scRNA-seq are noisy: collected scRNA-seq gene mea-

surements are often in the form of low expression counts,

and in studies not based on unique molecular identifiers,

are also paired with an excessive number of zeros known as

dropouts [9]. Subsequently, dimensionality reduction

methods that transform the original high-dimensional noisy

expression matrix into a low-dimensional subspace with

enriched signals become an important data processing step

for scRNA-seq analysis [10]. Proper dimensionality reduc-

tion can allow for effective noise removal, facilitate data

visualization, and enable efficient and effective downstream

analysis of scRNA-seq [11].

Dimensionality reduction is indispensable for many

types of scRNA-seq analysis. Because of the importance

of dimensionality reduction in scRNA-seq analysis, many

dimensionality reduction methods have been developed

and are routinely used in scRNA-seq software tools that

include, but not limited to, cell clustering tools [12, 13]

and lineage reconstruction tools [14]. Indeed, most com-

monly used scRNA-seq clustering methods rely on

dimensionality reduction as the first analytic step [15].
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For example, Seurat applies clustering algorithms dir-

ectly on a low-dimensional space inferred from principal

component analysis (PCA) [16]. CIDR improves cluster-

ing by improving PCA through imputation [17]. SC3

combines different ways of PCA for consensus clustering

[18]. Besides PCA, other dimensionality reduction tech-

niques are also commonly used for cell clustering. For

example, nonnegative matrix factorization (NMF) is used

in SOUP [19]. Partial least squares is used in scPLS [20].

Diffusion map is used in destiny [21]. Multidimensional

scaling (MDS) is used in ascend [22]. Variational infer-

ence autoencoder is used in scVI [23]. In addition to cell

clustering, most cell lineage reconstruction and develop-

mental trajectory inference algorithms also rely on di-

mensionality reduction [14]. For example, TSCAN

builds cell lineages using minimum spanning tree based

on a low-dimensional PCA space [24]. Waterfall per-

forms k-means clustering in the PCA space to eventually

produce linear trajectories [25]. SLICER uses locally lin-

ear embedding (LLE) to project the set of cells into a

lower-dimension space for reconstructing complex cellu-

lar trajectories [26]. Monocle employs either independ-

ent components analysis (ICA) or uniform manifold

approximation and projection (UMAP) for dimensional-

ity reduction before building the trajectory [27, 28].

Wishbone combines PCA and diffusion maps to allow

for bifurcation trajectories [29].

Besides the generic dimensionality reduction methods

mentioned in the above paragraph, many dimensionality

reduction methods have also been developed recently

that are specifically targeted for modeling scRNA-seq

data. These scRNA-seq-specific dimensionality reduction

methods can account for either the count nature of

scRNA-seq data and/or the dropout events commonly

encountered in scRNA-seq studies. For example, ZIFA

relies on a zero-inflation normal model to model drop-

out events [30]. pCMF models both dropout events and

the mean-variance dependence resulting from the count

nature of scRNA-seq data [31]. ZINB-WaVE incorpo-

rates additional gene-level and sample-level covariates

for more accurate dimensionality reduction [32]. Finally,

several deep learning-based dimensionality reduction

methods have recently been developed to enable scalable

and effective computation in large-scale scRNA-seq data,

including data that are collected by 10X Genomics tech-

niques [33] and/or from large consortium studies such

as Human Cell Atlas (HCA) [34, 35]. Common deep

learning-based dimensionality reduction methods for

scRNA-seq include Dhaka [36], scScope [37], VASC

[38], scvis [39], and DCA [40], to name a few.

With all these different dimensionality reduction

methods for scRNA-seq data analysis, one naturally

wonders which dimensionality reduction method one

would prefer for different types of scRNA-seq analysis.

Unfortunately, despite the popularity of scRNA-seq

technique, the critical importance of dimensionality re-

duction in scRNA-seq analysis, and the vast number of

dimensionality reduction methods developed for scRNA-

seq studies, few comprehensive comparison studies have

been performed to evaluate the effectiveness of different

dimensionality reduction methods for practical applica-

tions. Here, we aim to fill this critical knowledge gap by

providing a comprehensive comparative evaluation of a

variety of commonly used dimensionality reduction

methods for scRNA-seq studies. Specifically, we com-

pared 18 different dimensionality reduction methods on

30 publicly available scRNA-seq data sets that cover a

range of sequencing techniques and sample sizes [12, 14,

41]. We evaluated the performance of different dimen-

sionality reduction methods for neighborhood preserving

in terms of their ability to recover features of the original

expression matrix, and for cell clustering and lineage re-

construction in terms of their accuracy and robustness

using different metrics. We also evaluated the computa-

tional scalability of different dimensionality reduction

methods by recording their computational time. To-

gether, we hope our results can serve as an important

guideline for practitioners to choose dimensionality re-

duction methods in the field of scRNA-seq analysis.

Results
We evaluated the performance of 18 dimensionality re-

duction methods (Table 1; Additional file 1: Figure S1)

on 30 publicly available scRNA-seq data sets (Add-

itional file 1: Table S1-S2) and 2 simulated data sets. De-

tails of these data sets are provided in “Methods and

Materials.” Briefly, these data sets cover a wide variety of

sequencing techniques that include Smart-Seq2 [1] (8

data sets), Smart-Seq [53] (5 data sets), 10X Genomics

[33] (6 data sets), inDrop [54] (1 data set), RamDA-seq

[55] (1 data set), sci-RNA-seq3 [28] (1 data set), SMAR-

Ter [56] (5 data sets), and others [57] (3 data sets). In

addition, these data sets cover a range of sample sizes

from a couple of hundred cells to over tens of thousands

of cells. In each data set, we evaluated the ability of dif-

ferent dimensionality reduction methods in preserving

the original feature of the expression matrix, and, more

importantly, their effectiveness for two important single-

cell analytic tasks: cell clustering and lineage inference.

In particular, we used 14 real data sets together with 2

simulated data sets for dimensionality reduction method

comparison in terms of cell clustering performance. We

used another set of 14 real data sets for dimensionality

reduction method comparison in terms of trajectory in-

ference. We used yet two additional large-scale scRNA-

seq data sets to examine the effectiveness and scalability

of different dimensionality reduction methods there. In

addition, we measured the computing stability of
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different dimensionality reduction methods and recorded

their computation time. An overview of the comparison

workflow is shown in Fig. 1. Because common tSNE software

can only extract a small number low-dimensional compo-

nents [48, 58, 59], we only included tSNE results based on

two low-dimensional components extracted from the re-

cently developed fast FIt-SNE R package [48] in all figures.

All data and analysis scripts for reproducing the results in

the paper are available at www.xzlab.org/reproduce.html or

https://github.com/xzhoulab/DRComparison.

Performance of dimensionality reduction methods for

neighborhood preserving

We first evaluated the performance of different dimen-

sionality reduction methods in terms of preserving the

original features of the gene expression matrix. To do

so, we applied different dimensionality reduction

methods to each of 30 scRNA-seq data sets (28 real data

and 2 simulated data; excluding the two large-scale data

due to computing concerns) and evaluated the perform-

ance of these dimensionality reduction methods based

on neighborhood preserving. Neighborhood preserving

measures how the local neighborhood structure in the

reduced dimensional space resembles that in the original

space by computing a Jaccard index [60] (details in

“Methods and Materials”). In the analysis, for each di-

mensionality reduction method and each scRNA-seq

data set, we applied the dimensionality reduction

method to extract a fixed number of low-dimensional

components (e.g., these are the principal components in

the case of PCA). We varied the number of low-

dimensional components to examine their influence on

local neighborhood preserving. Specifically, for each of

16 cell clustering data sets, we varied the number of

low-dimensional components to be either 2, 6, 14, or 20

when the data contains less than or equal to 300 cells,

and we varied the number of low-dimensional compo-

nents to be either 0.5%, 1%, 2%, or 3% of the total num-

ber of cells when the data contains more than 300 cells.

For each of the 14 trajectory inference data sets, we varied

the number of low-dimensional components to be either

2, 6, 14, or 20 regardless of the number of cells. Finally, we

also varied the number of neighborhood cells used in the

Jaccard index to be either 10, 20, or 30. The evaluation re-

sults based on the Jaccard index of neighborhood preserv-

ing are summarized in Additional file 1: Figure S2-S14.

Table 1 List of compared dimensionality reduction methods. We list standard modeling properties for each of compared

dimensionality reduction methods

No. Methods Modeling
counts

Modeling zero
inflation

Non-linear
projection

Computation
efficiency

Implementation
language

Year of
publication

Reference

1 PCA No No No Yes R 1901 [42]

2 ICA No No No No R 1994 [43]

3 FA No No No Yes R 1952 [44]

4 NMF No No No Yes R 1999 [45]

5 Poisson NMF Yes No No Yes R 1999 [45]

6 Diffusion Map No No Yes Yes R 2005 [46]

7 ZIFA No Yes No No Python 2016 [30]

8 ZINB-WaVE Yes Yes No No R 2018 [32]

9 GLMPCA Yes No No No R 2019 [47]

10 pCMF Yes Yes No No R 2019 [31]

11 scScope No Yes Yes Yes Python 2019 [37]

12 DCA Yes Yes Yes Yes Python 2018 [40]

13 tSNE No No Yes No R 2008 [48]

14 MDS No No No Yes R 1958 [49]

15 LLE No No Yes Yes R 2000 [50]

16 LTSA No No Yes No R 2004 [51]

17 Isomap No No Yes Yes R 2000 [11]

18 UMAP No No Yes Yes Python 2019 [52]

These properties include whether it models count data (3rd column), whether it accounts for zero inflation (4th column), whether it is a linear dimensionality reduction

method (5th column), its computation efficiency (6th column), implementation language (7th column), year of publication (8th column), and reference (9th column). FA

factor analysis, PCA principal component analysis, ICA independent component analysis, NMF nonnegative matrix factorization, Poisson NMF Kullback-Leibler divergence-

based NMF, ZIFA zero-inflated factor analysis, ZINB-WaVE zero-inflated negative binomial-based wanted variation extraction, pCMF probabilistic count matrix

factorization, DCA deep count autoencoder network, scScope scalable deep-learning-based approach, GLMPCA generalized linear model principal component analysis,

Diffusion Map, MDS multidimensional scaling, LLE locally linear embedding, LTSA local tangent space alignment, Isomap; UMAP uniform manifold approximation and

projection, tSNE t-distributed stochastic neighbor embedding
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In the cell clustering data sets, we found that pCMF

achieves the best performance of neighborhood preserving

across all data sets and across all included low-

dimensional components (Additional file 1: Figure S2-S7).

For example, with 30 neighborhood cells and 0.5% of low-

dimensional components, pCMF achieves a Jaccard index

of 0.25. Its performance is followed by Poisson NMF

(0.16), ZINB-WaVE (0.16), Diffusion Map (0.16), MDS

(0.15), and tSNE (0.14). While the remaining two

methods, scScope (0.1) and LTSA (0.06), do not fare well.

Increasing number of neighborhood cells increases the ab-

solute value of Jaccard index but does not influence the

relative performance of dimensionality reduction methods

(Additional file 1: Figure S7). In addition, the relative per-

formance of most dimensionality reduction methods re-

mains largely similarly whether we focus on data sets with

unique molecular identifiers (UMI) or data sets without

UMI (Additional file 1: Figure S8). However, we do notice

two exceptions: the performance of pCMF decreases with

increasing number of low-dimensional components in

UMI data but increases in non-UMI data; the perform-

ance of scScope is higher in UMI data than its perform-

ance in non-UMI data. In the trajectory inference data

sets, pCMF again achieves the best performance of

neighborhood preserving across all data sets and across all

included low-dimensional components (Additional file 1:

Figure S9-S14). Its performance is followed closely by

scScope and Poisson NMF. For example, with 30 neigh-

borhood cells and 20 low-dimensional components, the

Jaccard index of pCMF, Poisson NMF, and scScope across

all data sets are 0.3, 0.28, and 0.26, respectively. Their per-

formance is followed by ZINB-WaVE (0.19), FA (0.18),

ZIFA (0.18), GLMPCA (0.18), and MDS (0.18). In con-

trast, LTSA also does not fare well across all included

low-dimensional components (Additional file 1: Figure

S14). Again, increasing number of neighborhood cells in-

creases the absolute value of Jaccard index but does not

influence the relative performance among dimensionality

reduction methods (Additional file 1: Figure S9-S14).

We note that the measurement we used in this subsec-

tion, neighborhood preserving, is purely for measuring

dimensionality reduction performance in terms of pre-

serving the original gene expression matrix and may not

be relevant for single-cell analytic tasks that are the main

focus of the present study: a dimensionality reduction

method that preserves the original gene expression

matrix may not be effective in extracting useful bio-

logical information from the expression matrix that is

Fig. 1 Overview of the evaluation workflow for dimensionality reduction methods. We obtained a total of 30 publicly available scRNA-seq data

from GEO and 10X Genomics website. We also simulated two addition simulation data sets. For each of the 32 data sets in turn, we applied 18

dimensionality reduction methods to extract the low-dimensional components. Afterwards, we evaluated the performance of dimensionality

reduction methods by evaluating how effective the low-dimensional components extracted from dimensionality reduction methods are for

downstream analysis. We did so by evaluating the two commonly applied downstream analysis: clustering analysis and lineage reconstruction

analysis. In the analysis, we varied the number of low-dimensional components extracted from these dimensionality reduction methods. The

performance of each dimensionality reduction method is qualified by Jaccard index for neighborhood preserving, normalized mutual information

(NMI) and adjusted rand index (ARI) for cell clustering analysis, and Kendall correlation coefficient for trajectory inference. We also recorded the

stability of each dimensionality reduction method across data splits and recorded the computation time for each dimensionality reduction

method. Through the comprehensive evaluation, we eventually provide practical guidelines for practitioners to choose dimensionality reduction

methods for scRNA-seq data analysis
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essential for key downstream single-cell applications.

Preserving the original gene expression matrix is rarely

the sole purpose of dimensionality reduction methods

for single-cell applications: indeed, the original gene

expression matrix (which is the best-preserved matrix

of itself) is rarely, if ever, used directly in any down-

stream single-cell applications including clustering

and lineage inference, even though it is computation-

ally easy to do so. Therefore, we will focus our main

comparison in two important downstream single-cell

applications listed below.

Performance of dimensionality reduction methods for cell

clustering

As our main comparison, we first evaluated the perform-

ance of different dimensionality reduction methods for

cell clustering applications. To do so, we obtained 14

publicly available scRNA-seq data sets and simulated

two additional scRNA-seq data sets using the Splatter

package (Additional file 1: Table S1). Each of the 14 real

scRNA-seq data sets contains known cell clustering in-

formation while each of the 2 simulated data sets con-

tains 4 or 8 known cell types. For each dimensionality

reduction method and each data set, we applied dimen-

sionality reduction to extract a fixed number of low-

dimensional components (e.g., these are the principal

components in the case of PCA). We again varied the

number of low-dimensional components as in the previ-

ous section to examine their influence on cell clustering

analysis. We then applied either the hierarchical cluster-

ing method, the k-means clustering method, or Louvain

clustering method [61] to obtain the inferred cluster la-

bels. We used both normalized mutual information

(NMI) and adjusted rand index (ARI) values for compar-

ing the true cell labels and inferred cell labels obtained

by clustering methods based on the low-dimensional

components.

Cell clustering with different clustering methods

The evaluation results on dimensionality reduction

methods based on clustering analysis using the k-means

clustering algorithm are summarized in Fig. 2 (for NMI

criterion) and Additional file 1: Figure S15 (for ARI cri-

terion). Because the results based on either of the two

criteria are similar, we will mainly explain the results

based on the NMI criteria in Fig. 2. For easy

visualization, we also display the results averaged across

data sets in Additional file 1: Figure S16. A few patterns

are noticeable. First, as one would expect, clustering ac-

curacy depends on the number of low-dimensional com-

ponents that are used for clustering. Specifically,

accuracy is relatively low when the number of included

low-dimensional components is very small (e.g., 2 or

0.5%) and generally increases with the number of

included components. In addition, accuracy usually satu-

rates once a sufficient number of components is in-

cluded, though the saturation number of components

can vary across data sets and across methods. For ex-

ample, the average NMI across all data sets and across

all methods are 0.61, 0.66, 0.67, and 0.67 for increasingly

large number of components, respectively. Second, when

conditional on using a low number of components,

scRNA-seq-specific dimensionality reduction method

ZINB-WaVE and generic dimensionality reduction

methods ICA and MDS often outperform the other

methods. For example, with the lowest number of com-

ponents, the average NMI across all data sets for MDS,

ICA, and ZINB-WaVE are 0.82, 0.77 and 0.76, respect-

ively (Additional file 1: Figure S16A). The performance

of MDS, ICA, and ZINB-WaVE is followed by LLE

(0.75), Diffusion Map (0.71), ZIFA (0.69), PCA (0.68),

FA (0.68), tSNE (0.68), NMF (0.59), and DCA (0.57).

While the remaining four methods, Poisson NMF (0.42),

pCMF (0.41), scScope (0.26), and LTSA (0.12), do not

fare well with a low number of components. Third, with

increasing number of low-dimensional components, gen-

eric methods such as FA, ICA, MDS, and PCA are often

comparable with scRNA-seq-specific methods such as

ZINB-WaVE. For example, with the highest number of

low-dimensional components, the average NMI across

all data sets for FA, ICA, PCA, ZINB-WaVE, LLE, and

MDS are 0.85, 0.84, 0.83, 0.83, 0.82, and 0.82, respect-

ively. Their performance is followed by ZIFA (0.79),

NMF (0.73), and DCA (0.69). The same four methods,

pCMF (0.55), Poisson NMF (0.31), scScope (0.31), and

LTSA (0.06) again do not fare well with a large number

of low-dimensional components (Additional file 1: Fig-

ure S16A). The comparable results of generic dimen-

sionality reduction methods with scRNA-seq-specific

dimensionality reduction methods with a high number

of low-dimensional components are also consistent

some of the previous observations; for example, the ori-

ginal ZINB-WaVE paper observed that PCA can gener-

ally yield comparable results with scRNA-seq-specific

dimensionality reduction methods in real data [32].

Besides the k-means clustering algorithm, we also used

the hierarchical clustering algorithm to evaluate the per-

formance of different dimensionality reduction methods

(Additional file 1: Figure S17-S19). In this comparison,

we had to exclude one dimensionality reduction method,

scScope, as hierarchical clustering does not work on the

extracted low-dimensional components from scScope.

Consistent with the k-means clustering results, we found

that the clustering accuracy measured by hierarchical

clustering is relatively low when the number of low-

dimensional components is very small (e.g., 2 or 0.5%),

but generally increases with the number of included

components. In addition, consistent with the k-means
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clustering results, we found that generic dimensionality

reduction methods often yield results comparable to or

better than scRNA-seq-specific dimensionality reduction

methods (Additional file 1: Figure S17-S19). In particu-

lar, with a low number of low-dimensional components,

MDS achieves the best performance (Additional file 1:

Figure S19). With a moderate or high number of low-di-

mensional components, two generic dimensionality

reduction methods, FA and NMF, often outperform

various other dimensionality reduction methods

across a range of settings. For example, when the

number of low-dimensional components is moderate

(6 or 1%), both FA and NMF achieve an average

NMI value of 0.80 across data sets (Additional file 1:

Figure S19A). In this case, their performance is

followed by PCA (0.72), Poisson NMF (0.71), ZINB-

WaVE (0.71), Diffusion Map (0.70), LLE (0.70), ICA

(0.69), ZIFA (0.68), pCMF (0.65), and DCA (0.63).

tSNE (0.31) does not fare well, either because it only

extracts two-dimensional components or because it

does not pair well with hierarchical clustering. We

note, however, that the clustering results obtained by

hierarchical clustering are often slightly worse than

that obtained by k-means clustering across settings

(e.g., Additional file 1: Figure S16 vs Additional file 1:

Figure S19), consistent with the fact that many

scRNA-seq clustering methods use k-means as a key

ingredient [18, 25].

Fig. 2 Dimensionality reduction method performance evaluated by k-means clustering based on NMI in downstream cell clustering analysis. We

compared 18 dimensionality reduction methods (columns), including factor analysis (FA), principal component analysis (PCA), independent

component analysis (ICA), Diffusion Map, nonnegative matrix factorization (NMF), Poisson NMF, zero-inflated factor analysis (ZIFA), zero-inflated

negative binomial based wanted variation extraction (ZINB-WaVE), probabilistic count matrix factorization (pCMF), deep count autoencoder

network (DCA), scScope, generalized linear model principal component analysis (GLMPCA), multidimensional scaling (MDS), locally linear embedding

(LLE), local tangent space alignment (LTSA), Isomap, uniform manifold approximation and projection (UMAP), and t-distributed stochastic neighbor

embedding (tSNE). We evaluated their performance on 14 real scRNA-seq data sets (UMI-based data are labeled as purple; non-UMI-based data are

labeled as blue) and 2 simulated data sets (rows). The simulated data based on Kumar data is labeled with #. The performance of each dimensionality

reduction method is measured by normalized mutual information (NMI). For each data set, we compared the four different numbers of low-

dimensional components. The four numbers equal to 0.5%, 1%, 2%, and 3% of the total number of cells in big data and equal to 2, 6, 14, and 20 in

small data (which are labeled with*). For convenience, we only listed 0.5%, 1%, 2%, and 3% on x-axis. No results for ICA are shown in the table (gray

fills) because ICA cannot handle the large number of features in that data. No results for LTSA are shown (gray fills) because error occurred when we

applied the clustering method on LTSA extracted low-dimensional components there. Note that, for tSNE, we only extracted two low-dimensional

components due to the limitation of the tSNE software
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Finally, besides the k-means and hierarchical clustering

methods, we also performed clustering analysis based on

a community detection algorithm Louvain clustering

method [61]. Unlike the k-means and hierarchical clus-

tering methods, Louvain method does not require a pre-

defined number of clusters and can infer the number of

clusters in an automatic fashion. Following software

recommendation [28, 61], we set the k-nearest neighbor

parameter in Louvain method to be 50 for graph building

in the analysis. We measured dimensionality reduction

performance again by either average NMI (Additional file 1:

Figure S20) or ARI (Additional file 1: Figure S21). Consist-

ent with the k-means clustering results, we found that the

clustering accuracy measured by Louvain method is rela-

tively low when the number of low-dimensional compo-

nents is very small (e.g., 2 or 0.5%), but generally increases

with the number of included components. With a low

number of low-dimensional components, ZINB-WaVE

(0.72) achieves the best performance (Additional file 1:

Figure S20-S22). With a moderate or high number of low-

dimensional components, two generic dimensionality

reduction methods, FA and MDS, often outperform vari-

ous other dimensionality reduction methods across a range

of settings (Additional file 1: Figure S20-S22). For example,

when the number of low-dimensional components is high

(6 or 1%), FA achieves an average NMI value of 0.77 across

data sets (Additional file 1: Figure S22A). In this case, its

performance is followed by NMF (0.76), MDS (0.75),

GLMPCA (0.74), LLE (0.74), PCA (0.73), ICA (0.73), ZIFA

(0.72), and ZINB-WaVE (0.72). Again consistent with the

k-means clustering results, scScope (0.32) and LTSA (0.21)

do not fare well. We also note that the clustering results

obtained by Louvain method are often slightly worse than

that obtained by k-means clustering and slightly better

than that obtained by hierarchical clustering across settings

(e.g., Additional file 1: Figure S16 vs Additional file 1:

Figure S19 vs Additional file 1: Figure S22).

Normalization does not influence the performance of

dimensionality reduction methods

While some dimensionality reduction methods (e.g.,

Poisson NMF, ZINB-WaVE, pCMF, and DCA) directly

model count data, many dimensionality reduction

methods (e.g., PCA, ICA, FA, NMF, MDS, LLE, LTSA,

Isomap, Diffusion Map, UMAP, and tSNE) require nor-

malized data. The performance of dimensionality reduc-

tion methods that use normalized data may depend on

how data are normalized. Therefore, we investigated

how different normalization approaches impact on the

performance of the aforementioned dimensionality re-

duction methods that use normalized data. We exam-

ined two alternative data transformation approaches,

log2 CPM (count per million; 11 dimensionality reduc-

tion methods), and z-score (10 dimensionality reduction

methods), in addition to the log2 count we used in the

previous results (transformation details are provided in

“Methods and Materials”). The evaluation results are

summarized in Additional file 1: Figure S23-S30 and are

generally insensitive to the transformation approach

deployed. For example, with the k-means clustering

algorithm, when the number of low-dimensional com-

ponents is small (1%), PCA achieves an NMI value of

0.82, 0.82, and 0.81, for log2 count transformation,

log2 CPM transformation, and z-score transformation,

respectively (Additional file 1: Figure S16A, S26A, and

S30A). Similar results hold for the hierarchical

clustering algorithm (Additional file 1: Figure S16B,

S26B, and S30B) and Louvain clustering method

(Additional file 1: Figure S16C, S26C, and S30C).

Therefore, different data transformation approaches

do not appear to substantially influence the perform-

ance of dimensionality reduction methods.

Performance of dimensionality reduction methods in UMI vs

non-UMI-based data sets

scRNA-seq data generated from UMI-based technologies

(e.g., 10X Genomics) are often of large scale, come with

almost no amplification bias, do not display apparent

dropout events, and can be accounted for by over-

dispersed Poisson distributions. In contrast, data gener-

ated from non-UMI-based techniques (e.g., Smart-Seq2)

are often of small scale, have high capture rate, and come

with excessive dropout events. Subsequently, the unwanted

variation from these two types of dataset can be quite dif-

ferent. To investigate how different dimensionality reduc-

tion methods perform in these two different types of data

sets, we grouped 14 cell clustering data sets into a UMI-

based group (7 data sets) and a non-UMI-based group (7

data sets). In the UMI-based data sets, we found that many

dimensionality reduction methods perform reasonably well

and their performance is relatively stable across a range of

included low-dimensional components (Additional file 1:

Figure S31A). For example, with the lowest number of

low-dimensional components, the average NMI of PCA,

ICA, FA, NMF, GLMPCA, ZINB-WaVE, and MDS are

0.73, 0.73, 0.73, 0.73, 0.74, and 0.75, respectively. Their per-

formance remains similar with increasing number of low-

dimensional components. However, a few dimensionality

reduction methods, including Poisson NMF, pCMF,

scScope, and LTSA, all have extremely low performance

across settings. In the non-UMI-based data sets, the same

set of dimensionality reduction methods perform reason-

ably well though their performance can vary with respect

to the number of low-dimensional components (Add-

itional file 1: Figure S31B). For example, with a low number

of low-dimensional components, five dimensionality reduc-

tion methods, MDS, UMAP, ZINB-WaVE, ICA, and tSNE,

perform reasonably well. The average NMI of these
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methods are 0.83, 0.81, 0.80, 0.78, and 0.77, respectively.

With increasing number of low-dimensional components,

four additional dimensionality reduction methods, PCA,

ICA, FA, and ZINB-WaVE, also start to catch up. How-

ever, a similar set of dimensionality reduction methods, in-

cluding GLMPCA, Poisson NMF, scScope, LTSA, and

occasionally pCMF, also do not perform well in these non-

UMI data sets.

Visualization of clustering results

We visualized the cell clustering results in two example

data sets: the Kumar data which is non-UMI based and

the PBMC3k data which is UMI based. The Kumar data

consists of mouse embryonic stem cells cultured in three

different media while the PBMC3k data consists of 11

blood cell types (data details in the Additional file 1).

Here, we extracted 20 low-dimensional components in

the Kumar data and 32 low low-dimensional compo-

nents in the PBMC3k data with different dimensionality

reduction methods. We then performed tSNE analysis

on these low-dimensional components to extract the

two tSNE components for visualization (Additional file 1:

Figure S32-S33). Importantly, we found that the tSNE

visualization results are not always consistent with clus-

tering performance for different dimensionality reduc-

tion methods. For example, in the Kumar data, the low-

dimensional space constructed by FA, pCMF, and MDS

often yield clear clustering visualization with distinguish

clusters (Additional file 1: Figure S32), consistent with

their good performance in clustering (Fig. 2). However,

the low-dimensional space constructed by PCA, ICA,

and ZIFA often do not yield clear clustering visualization

(Additional file 1: Figure S32), even though these

methods all achieve high cell clustering performance

(Fig. 2). Similarly, in the PBMC3k data set, FA and MDS

perform well in clustering visualization (Additional file 1:

Figure S33), which is consistent with their good per-

formance in clustering analysis (Fig. 2). However, PCA

and ICA do not fare well in clustering visualization

(Additional file 1: Figure S33), even though both of them

achieve high clustering performance (Fig. 2). The in-

consistency between cluster visualization and cluster-

ing performance highlights the difference in the

analytic goal of these two analyses: cluster visualization

emphasizes on extracting as much information as pos-

sible using only the top two-dimensional components,

while clustering analysis often requires a much larger

number of low-dimensional components to achieve

accurate performance. Subsequently, dimensionality

reduction methods for data visualization may not fare

well for cell clustering, and dimensionality reduction

methods for cell clustering may not fare well for data

visualization [20].

Rare cell type identification

So far, we have focused on clustering performance in terms

of assigning all cells to cell types without distinguishing

whether the cells belong to a rare population or a non-rare

population. Identifying rare cell populations can be of sig-

nificant interest in certain applications and performance of

rare cell type identification may not always be in line with

general clustering performance [62, 63]. Here, we examine

the effectiveness of different dimensionality reduction

methods in facilitating the detection of rare cell popula-

tions. To do so, we focused on the PBMC3k data from 10X

Genomics [33]. The PBMC3k data were measured on 3205

cells with 11 cell types. We considered CD34+ cell type (17

cells) as the rare cell population. We paired the rare cell

population with either CD19+ B cells (406 cells) or CD4+/

CD25 T Reg cells (198) cells to construct two data sets with

different rare cell proportions. We named these two data

sets PBMC3k1Rare1 and PBMC3k1Rare2, respectively. We

then applied different dimensionality reduction methods to

each data and used F-measure to measure the performance

of rare cell type detection following [64, 65] (details in

“Methods and Materials”). The results are summarized in

Additional file 1: Figure S34-S35.

Overall, we found that Isomap achieves the best per-

formance for rare cell type detection across a range of

low-dimensional components in both data sets with dif-

ferent rare cell type proportions. As expected, the ability

to detect rare cell population increases with increasing

rare cell proportions. In the PBMC3k1Rare1 data, the F-

measure by Isomap with four different number of low-

dimensional components (0.5%, 1%, 2%, and 3%) are

0.74, 0.79, 0.79, and 0.79, respectively (Additional file 1:

Figure S34). The performance of Isomap is followed by

ZIFA (0.74, 0.74, 0.74, and 0.74) and GLMPCA (0.74,

0.74, 0.73, and 0.74). In the PBMC3k1Rare2 data, the F-

measure by Isomap with four different numbers of low-

dimensional components (0.5%, 1%, 2%, and 3%) are

0.79, 0.79, 0.79, and 0.79, respectively (Additional file 1:

Figure S35). The performance of Isomap is also followed

by ZIFA (0.74, 0.74, 0.74, and 0.74) and GLMPCA (0.74,

0.74, 0.74, and 0.74). Among the remaining methods,

Poisson NMF, pCMF, scScope, and LTSA do not fare

well for rare cell type detection. We note that many di-

mensionality reduction methods in conjunction with

Louvain clustering method often yield an F-measure of

zero when the rare cell type proportion is low (Add-

itional file 1: Figure S34C; PBMC3kRare1, 4.0% CD34+

cells) and only become reasonable with increasingly

large rare cell type proportions (Additional file 1: Figure

S35C; PBMC3kRare2, 7.9% CD34+ cells). The poor per-

formance of the Louvain clustering method for rare cell

type detection is likely because its automatic way of de-

termining cell cluster number does not fare well in the

presence of uneven/un-balanced cell type proportions.
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Stability analysis across data splits

Finally, we investigated the stability and robustness of

different dimensionality reduction methods. To do so,

we randomly split the Kumar data into two subsets with

an equal number of cells for each cell type in the two

subsets. We applied each dimensionality reduction

method to the two subsets and measured the clustering

performance in each subset separately. We repeated the

procedure 10 times to capture the potential stochasticity

during the data split. We visualized the clustering per-

formance of different dimensionality reduction methods

in the two subsets separately. Such visualization allows

us to check the effectiveness of dimensionality reduction

methods with respect to reduced sample size in the sub-

set, as well as the stability/variability of dimensionality

reduction methods across different split replicates (Add-

itional file 1: Figure S36). The results show that six di-

mensionality reduction methods, PCA, ICA, FA, ZINB-

WaVE, MDS, and UMAP, often achieve both accurate

clustering performance and highly stable and consistent

results across the subsets. The accurate and stable per-

formance of ICA, ZINB-WaVE, MDS, and UMAP is

notable even with a relatively small number of low-

dimensional components. For example, with very small

number of low-dimensional components, ICA, ZINB-

WaVE, MDS, and UMAP achieve an average NMI value

of 0.98 across the two subsets, with virtually no perform-

ance variability across data splits (Additional file 1: Fig-

ure S36).

Overall, the results suggest that, in terms of down-

stream clustering analysis accuracy and stability, PCA,

FA, NMF, and ICA are preferable across a range of data

sets examined here. In addition, scRNA-seq-specific di-

mensionality reduction methods such as ZINB-WaVE,

GLMPCA, and UMAP are also preferable if one is inter-

ested in extracting a small number of low-dimensional

components, while generic methods such as PCA or FA

are also preferred when one is interested in extracting a

large number of low-dimensional components.

Performance of dimensionality reduction methods for

trajectory inference

We evaluated the performance of different dimensional-

ity reduction methods for lineage inference applications

(details in “Methods and Materials”). To do so, we ob-

tained 14 publicly available scRNA-seq data sets, each of

which contains known lineage information (Add-

itional file 1: Table S2). The known lineages in all these

data are linear, without bifurcation or multifurcation

patterns. For each data set, we applied one dimensional-

ity reduction method at a time to extract a fixed number

of low-dimensional components. In the process, we var-

ied the number of low-dimensional components from 2,

6, 14, to 20 to examine their influence for downstream

analysis. With the extracted low-dimensional compo-

nents, we applied two commonly used trajectory infer-

ence methods: Slingshot [66] and Monocle3 [28, 67].

Slingshot is a clustering-dependent trajectory inference

method, which requires additional cell label information.

We therefore first used either k-means clustering algo-

rithm, hierarchical clustering, or Louvain method to

obtain cell type labels, where the number of cell types in

the clustering was set to be the known truth. Afterwards,

we supplied the low-dimensional components and cell

type labels to the Slingshot to infer the lineage. Mon-

ocle3 is a clustering free trajectory inference method,

which only requires low-dimensional components and

trajectory starting state as inputs. We set the trajectory

starting state as the known truth for Monocle3. Follow-

ing [66], we evaluated the performance of dimensionality

reduction methods by Kendall correlation coefficient

(details in “Methods and Materials”) that compares the

true lineage and inferred lineage obtained based on the

low-dimensional components. In this comparison, we

also excluded one dimensionality reduction method,

scScope, which is not compatible with Slingshot. The

lineage inference results for the remaining dimensional-

ity reduction methods are summarized in Fig. 3 and

Additional file 1: Figure S37-S54.

Trajectory inference by Slingshot

We first focused on the comparison results obtained

from Slingshot. Different from the clustering results

where accuracy generally increases with increasing num-

ber of included low-dimensional components, the

lineage tracing results from Slingshot do not show a

clear increasing pattern with respect to the number of

low-dimensional components, especially when we used

k-means clustering as the initial step (Fig. 3 and Add-

itional file 1: Figure S39A). For example, the average

Kendall correlations across all data sets and across all

methods are 0.35, 0.36, 0.37, and 0.37 for increasingly

large number of components, respectively. When we

used hierarchical clustering algorithm as the initial step,

the lineage tracing results in the case of a small number

of low-dimensional components are slightly inferior as

compared to the results obtained using a large number

of low-dimensional components (Additional file 1:

Figure S37 and S39B). However, we do note that the

lineage tracing results obtained using k-means are better

than that obtained using hierarchical clustering as the

initial step. In addition, perhaps somewhat surprisingly,

the lineage tracing results obtained using Louvain clus-

tering method are slightly better that the results ob-

tained using k-means clustering (Additional file 1: Figure

S38 and S39C)—even though the clustering results from

k-means are generally better than that from Louvain. For

example, the average Kendall correlations obtained using
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Louvain method across all data sets and across all

methods are 0.36, 0.38, 0.40, and 0.40 for increasingly

large number of components, respectively. Therefore,

Louvain method is recommended as the initial step for

lineage inference and a small number of low-

dimensional components there is often sufficient for ac-

curate results. When conducting lineage inference based

on a low number of components with Louvain method,

we found that four dimensionality reduction methods,

PCA, FA, ZINB-WaVE, and UMAP, all perform well for

lineage inference across varying number of low-

dimension components (Additional file 1: Figure S39C).

For example, with the lowest number of components,

the average Kendall correlations across data sets for

PCA, FA, UMAP, and ZINB-WaVE are 0.44, 0.43, 0.40,

and 0.43, respectively. Their performance is followed by

ICA (0.37), ZIFA (0.36), tSNE (0.33), and Diffusion Map

(0.38), while pCMF (0.26), Poisson NMF (0.26), and

LTSA (0.12) do not fare well.

Trajectory inference by Monocle3

We next examined the comparison results based on

Monocle3 (Additional file 1: Figure S40-S41). Similar to

Slingshot, we found that the lineage tracing results from

Monocle3 also do not show a clear increasing pattern

with respect to the number of low-dimensional compo-

nents (Additional file 1: Figure S41). For example, the

average Kendall correlations across all data sets and

across all methods are 0.37, 0.37, 0.38, and 0.37 for an

increasingly large number of components, respectively.

Therefore, similar with Slingshot, we also recommend

the use of a small number of low-dimensional

Fig. 3 Dimensionality reduction method performance evaluated by Kendall correlation in the downstream trajectory inference analysis. We compared 17

dimensionality reduction methods (columns), including factor analysis (FA), principal component analysis (PCA), independent component analysis (ICA), Diffusion

Map, nonnegative matrix factorization (NMF), Poisson NMF, zero-inflated factor analysis (ZIFA), zero-inflated negative binomial-based wanted variation extraction

(ZINB-WaVE), probabilistic count matrix factorization (pCMF), deep count autoencoder network (DCA), generalized linear model principal component analysis

(GLMPCA), multidimensional scaling (MDS), locally linear embedding (LLE), local tangent space alignment (LTSA), Isomap, uniform manifold approximation and

projection (UMAP), and t-distributed stochastic neighbor embedding (tSNE). We evaluated their performance on 14 real scRNA-seq data sets (rows) in terms of

lineage inference accuracy. We used Slingshot with k-means as the initial step for lineage inference. The performance of each dimensionality reduction method is

measured by Kendall correlation. For each data set, we compared four different numbers of low-dimensional components (2, 6, 14, and 20; four sub-columns

under each column). Gray fills in the table represents missing results where Slingshot gave out errors when we supplied the extracted low-dimensional

components from the corresponding dimensionality reduction method. Note that, for tSNE, we only extracted two low-dimensional components due to the

limitation of the tSNE software
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components with Monocle3. In terms of dimensionality

reduction method performance, we found that five di-

mensionality reduction methods, FA, MDS, GLMPCA,

ZINB-WaVE, and UMAP, all perform well for lineage

inference. Their performance is often followed by NMF

and DCA, while Poisson NMF, pCMF, LLE, and LTSA

do not fare well. The dimensionality reduction compari-

son results based on Monocle3 are in line with those

recommendations by Monocle3 software, which uses

UMAP as the default dimensionality reduction method

[28]. In addition, the set of five top dimensionality re-

duction methods for Monocle3 are largely consistent

with the set of top five dimensionality reduction

methods for Slingshot, with only one method difference

between the two (GLMPCA in place of PCA). The simi-

larity of top dimensionality reduction methods based on

different lineage inference methods suggests that a simi-

lar set of dimensionality reduction methods are likely

suitable for lineage inference in general.

Visualization of inferred lineages

We visualized the reduced low-dimensional components

from different dimensionality reduction methods in one

trajectory data set, the ZhangBeta data. The ZhangBeta

data consists of expression measurements on mouse

pancreatic β cells collected at seven different develop-

mental stages. These seven different cell stages include

E17.5, P0, P3, P9, P15, P18, and P60. We applied differ-

ent dimensionality reduction methods to the data to

extract the first two-dimensional components. After-

wards, we performed lineage inference and visualization

using Monocle3. The inferred tracking paths are shown

in Additional file 1: Figure S42. Consistent with Kendall

correlation (Fig. 3), all top dimensionality reduction

methods are able to infer the correct lineage path. For

example, the trajectory from GLMPCA and UMAP com-

pletely matches the truth. The trajectory inferred from

FA, NMF, or ZINB-WaVE largely matches the truth

with small bifurcations. In contrast, the trajectory

inferred from either Poisson NMF or LTSA displays un-

expected radical patterns (Additional file 1: Figure S42),

again consistent with the poor performance of these two

methods in lineage inference.

Normalization does not influence the performance of

dimensionality reduction methods

For dimensionality reduction methods that require nor-

malized data, we further examined the influence of differ-

ent data transformation approaches on their performance

(Additional file 1: Figure S43-S53). Like in the clustering

comparison, we found that different transformations do

not influence the performance results for most dimension-

ality reduction methods in lineage inference. For example,

in Slingshot with the k-means clustering algorithm as

the initial step, when the number of low-dimensional

components is small, UMAP achieves a Kendall cor-

relation of 0.42, 0.43, and 0.40, for log2 count trans-

formation, log2 CPM transformation, and z-score

transformation, respectively (Additional file 1: Figure

S39A, S46A, and S50A). Similar results hold for the

hierarchical clustering algorithm (Additional file 1:

Figure S39B, S46B, and S50B) and Louvain method

(Additional file 1: Figure S39B, S46B, and S50B).

However, some notable exceptions exist. For example,

with log2 CPM transformation but not the other

transformations, the performance of Diffusion Map

increases with increasing number of included compo-

nents when k-means clustering was used as the initial

step: the average Kendall correlations across different low-

dimensional components are 0.37, 0.42, 0.44, and 0.47, re-

spectively (Additional file 1: Figure S43 and S46A). As an-

other example, with z-score transformation but not with

the other transformations, FA achieves the highest per-

formance among all dimensionality reduction methods

across different number of low-dimensional components

(Additional file 1: Figure S50A). Similarly, in Monocle3, dif-

ferent transformations (log2 count transformation, log2

CPM transformation, and z-score transformation) do not

influence the performance of dimensionality reduction

methods. For example, with the lowest number of low-

dimensional components, UMAP achieves a Kendall correl-

ation of 0.49, 0.47, and 0.47, for log2 count transformation,

log2 CPM transformation, and z-score transformation, re-

spectively (Additional file 1: Figure S41, S53A, and S53B).

Stability analysis across data splits

We also investigated the stability and robustness of

different dimensionality reduction methods by data split

in the Hayashi data. We applied each dimensionality re-

duction method to the two subsets and measured the

lineage inference performance in the two subsets separ-

ately. We again visualized the clustering performance of

different dimensionality reduction methods in the two

subsets, separately. Such visualization allows us to check

the effectiveness of dimensionality reduction methods

with respective to reduced sample size in the subset, as

well as the stability/variability of dimensionality reduc-

tion methods across different split replicates (Add-

itional file 1: Figure S54). The results show that four of

the dimensionality reduction methods, FA, Diffusion

Map, ZINB-WaVE, and MDS often achieve both accur-

ate performance and highly stable and consistent re-

sults across the subsets. The accurate and stable

performance of these is notable even with a relatively

small number of low-dimensional components. For ex-

ample, with a very small number of low-dimensional

components, FA, Diffusion Map, ZINB-WaVE, and
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MDS achieve a Kendall correlation of 0.75, 0.77, 0.77,

and 0.78 averaged across the two subsets, respectively,

and again with virtually no performance variability

across data splits (Additional file 1: Figure S54).

Overall, the results suggest that, in terms of downstream

lineage inference accuracy and stability, the scRNA-seq

non-specific dimensionality reduction method FA, PCA,

and NMF are preferable across a range of data sets exam-

ined here. The scRNA-seq-specific dimensionality reduc-

tion methods ZINB-WaVE as well as the scRNA-seq non-

specific dimensionality reduction method NMF are also

preferable if one is interested in extracting a small number

of low-dimensional components for lineage inference. In

addition, the scRNA-seq-specific dimensionality reduction

method Diffusion Map and scRNA-seq non-specific di-

mensionality reduction method MDS may also be prefera-

ble if one is interested in extracting a large number of

low-dimensional components for lineage inference.

Large-scale scRNA-seq data applications

Finally, we evaluated the performance of different di-

mensionality reduction methods in two large-scale

scRNA-seq data sets. The first data is Guo et al. [68],

which consists of 12,346 single cells collected through a

non-UMI-based sequencing technique. Guo et al. data

contains known cell cluster information and is thus used

for dimensionality reduction method comparison based

on cell clustering analysis. The second data is Cao et al.

[28], which consists of approximately 2 million single

cells collected through a UMI-based sequencing tech-

nique. Cao et al. data contains known lineage informa-

tion and is thus used for dimensionality reduction

method comparison based on trajectory inference. Since

many dimensionality reduction methods are not scalable

to these large-scale data sets, in addition to applying

dimensionality reduction methods to the two data dir-

ectly, we also coupled them with a recently developed

sub-sampling procedure dropClust to make all dimen-

sionality reduction methods applicable to large data [69]

(details in “Methods and Materials”). We focus our

comparison in the large-scale data using the k-means

clustering method. We also used log2 count trans-

formation for dimensionality reduction methods that

require normalized data.

The comparison results when we directly applied di-

mensionality reduction methods to the Guo et al. data

are shown in Additional file 1: Figure S55. Among the

methods that are directly applicable to large-scale data

sets, we found that UMAP consistently outperforms the

remaining dimensionality reduction methods across a

range of low-dimensional components by a large margin.

For example, the average NMI of UMAP across different

number of low-dimensional components (0.5%, 1%, 2%,

and 3%) are in the range between 0.60 and 0.61

(Additional file 1: Figure S55A). In contrast, the average

NMI for the other methods are in the range of 0.15–

0.51. In the case of a small number of low-dimensional

components, we found that the performance of both FA

and NMF are reasonable and follow right after UMAP.

With the sub-sampling procedure, we can scale all di-

mensionality reduction methods relatively easily to this

large-scale data (Additional file 1: Figure S56). As a re-

sult, several dimensionality reduction methods, most

notably FA, can achieve similar or better performance as

compared to UMAP. However, we do notice an appre-

ciable performance loss for many dimensionality reduc-

tion methods through the sub-sampling procedure. For

example, the NMI of UMAP in the sub-sampling-based

procedure is only 0.26, representing an approximately

56% performance loss compared to the direct application

of UMAP without sub-sampling (Additional file 1:

Figure S56 vs Figure S55). Therefore, we caution the use

of sub-sampling procedure and recommend users to

careful examine the performance of dimensionality

reduction methods before and after sub-sampling to

decide whether sub-sampling procedure is acceptable for

their own applications.

For lineage inference in the Cao et al. data, due to

computational constraint, we randomly obtained 10,000

cells from each of the five different developmental stages

(i.e., E9.5, E10.5, E11.5, E12.5, and E13.5) and applied

different dimensionality reduction methods to analyze

the final set of 50,000 cells. Because most dimensionality

reduction methods are not scalable even to these 50,000

cells, we only examined the performance of dimensional-

ity reduction methods when paired with the sub-

sampling procedure (Additional file 1: Figure S57). With

the small number of low-dimensional components, three

dimensionality reduction methods, GLMPCA, DCA, and

Isomap, all achieve better performance than the other

dimensionality reduction methods. For example, with

the lowest number of low-dimensional components, the

average absolute Kendall correlations of GLMPCA,

DCA, and Isomap are 0.13, 0.28, and 0.17, respectively.

In contrast, the average absolute Kendall correlations of

the other dimensionality reduction methods are in the

range of 0.01–0.12. With a higher number of low-

dimensional components, Isomap and UMAP show bet-

ter performance. For example, with 3% low-dimensional

components, the average absolute Kendall correlations

of Isomap and UMAP increase to 0.17 and 0.30, respect-

ively. Their performance is followed by Diffusion Map

(0.15), ZINB-WaVE (0.14), and LLE (0.12), while the

remaining methods are in the range of 0.04–0.07.

Computation time

We recorded and compared computing time for different

dimensionality reduction methods on simulated data sets.
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Here, we also examined how computation time for differ-

ent dimensionality reduction methods varies with respect

to the number of low-dimensional components extracted

(Fig. 4a) as well as with respect to the number of cells con-

tained in the data (Fig. 4b). Overall, the computational

cost of three methods, ZINB-WaVE, ZIFA, and pCMF, is

substantially heavier than that of the remaining methods.

Their computation time increases substantially with both

increasingly large number of low-dimensional compo-

nents and increasingly large number of cells in the data.

Specifically, when the sample size equals 500 and the de-

sired number of low-dimensional components equals 22,

the computing time for ZINB-WaVE, ZIFA, and pCMF to

analyze 10,000 genes are 2.15, 1.33, and 1.95 h, respect-

ively (Fig. 4a). When the sample size increases to 10,000,

the computing time for ZINB-WaVE, ZIFA, and pCMF

increases to 12.49, 20.50, and 15.95 h, respectively (Fig. 4b).

Similarly, when the number of low-dimensional compo-

nents increases to 52, the computing time for ZINB-

WaVE, ZIFA, and pCMF increases to 4.56, 4.27, and

4.62 h, respectively. Besides these three methods, the

computing cost of ICA, GLMPCA, and Poisson NMF

can also increase noticeably with increasingly large

number of low-dimensional components. The comput-

ing cost of ICA, but to a lesser extent of GLMPCA,

LLE, LTSA, and Poisson NMF, also increases substan-

tially with increasingly large number of cells. In con-

trast, PCA, FA, Diffusion Map, UMAP, and the two

deep-learning-based methods (DCA and scScope) are

computationally efficient. In particular, the computa-

tion times for these six methods are stable and do not

show substantial dependence on the sample size or the

number of low-dimensional components. Certainly, we

expect that the computation time of all dimensionality

Fig. 4 The computation time (in hours) for different dimensionality reduction methods. We recorded computing time for 18 dimensionality reduction

methods on simulated data sets with a varying number of low-dimensional components and a varying number of sample sizes. Compared dimensionality

reduction methods include factor analysis (FA; light green), principal component analysis (PCA; light blue), independent component analysis (ICA; blue),

Diffusion Map (pink), nonnegative matrix factorization (NMF; green), Poisson NMF(light orange), zero-inflated factor analysis (ZIFA; light pink), zero-inflated

negative binomial based wanted variation extraction (ZINB-WaVE; orange), probabilistic count matrix factorization (pCMF; light purple), deep count

autoencoder network (DCA; yellow), scScope (purple), generalized linear model principal component analysis (GLMPCA; red), multidimensional scaling

(MDS; cyan), locally linear embedding (LLE; blue green), local tangent space alignment (LTSA; teal blue), Isomap (gray), uniform manifold approximation

and projection (UMAP; brown), and t-distributed stochastic neighbor embedding (tSNE; dark red). a Computation time for different dimensionality

reduction methods (y-axis) changes with respect to an increasing number of low-dimensional components (x-axis). The number of cells is fixed to be 500

and the number of genes is fixed to be 10,000 in this set of simulations. Three methods (ZINB-WaVE, pCMF, and ZIFA) become noticeably computationally

more expensive than the remaining methods with increasing number of low-dimensional components. b Computation time for different dimensionality

reduction methods (y-axis) changes with respect to an increasing sample size (i.e., the number of cells) in the data. Computing time is recorded on a single

thread of an Intel Xeon E5-2683 2.00-GHz processor. The number of low-dimensional components is fixed to be 22 in this set of simulations for most

methods, except for tSNE which used two low-dimensional components due to the limitation of the tSNE software. Note that some methods are

implemented with parallelization capability (e.g., ZINB-WaVE and pCMF) though we tested them on a single thread for fair comparison across methods.

Note that PCA is similar to ICA in a and scScope is similar to several other efficient methods in b; thus, their lines may appear to be missing. Overall, three

methods (ZIFA, pCMF, and ZINB-WaVE) become noticeably computationally more expensive than the remaining methods with increasing number of cells

in the data
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reduction methods will further increase as the sample

size of the scRNA-seq data sets increases in magnitude.

Overall, in terms of computing time, PCA, FA, Diffu-

sion Map, UMAP, DCA, and scScope are preferable.

Practical guidelines

In summary, our comparison analysis shows that different

dimensionality reduction methods can have different merits

for different tasks. Subsequently, it is not straightforward to

identify a single dimensionality reduction method that

strives the best in all data sets and for all downstream ana-

lyses. Instead, we provide a relatively comprehensive prac-

tical guideline for choosing dimensionality reduction

methods in scRNA-seq analysis in Fig. 5. Our guideline is

based on the accuracy and effectiveness of dimensionality

reduction methods in terms of the downstream analysis,

the robustness and stability of dimensionality reduction

methods in terms of replicability and consistency across

data splits, as well as their performance in large-scale data

applications, data visualization, and computational scalabil-

ity for large scRNA-seq data sets. Briefly, for cell clustering

analysis, PCA, ICA, FA, NMF, and ZINB-WaVE are recom-

mended for small data where computation is not a concern.

PCA, ICA, FA, and NMF are also recommended for large

data where computation is a concern. For lineage inference

analysis, FA, PCA, NMF, UMAP, and ZINB-WaVE are all

recommended for small data. A subset of these methods,

FA, PCA, NMF, and UMAP are also recommended for

large scRNA-seq data. In addition, for very large scRNA-

seq data sets (e.g., > 100,000 samples), DCA and UMAP

perhaps are the only feasible approach for both down-

stream analyses with UMAP being the preferred choice.

We also recognize that PCA, ICA, FA, and NMF can be

useful options in very large data sets when paired with a

sub-sampling procedure [69], though care needs to be

taken to examine the effectiveness of the sub-sampling pro-

cedure itself. Finally, besides these general recommenda-

tions, we note that some methods have additional features

that are desirable for practitioners. For example, both

ZINB-WaVE and GLMPCA can include sample-level and

gene-level covariates, thus allowing us to easily control for

batch effects or size factors. We provide our detailed rec-

ommendations in Fig. 5.

Discussion
We have presented a comprehensive comparison of dif-

ferent dimensionality reduction methods for scRNA-seq

analysis. We hope the summary of these state-of-the-art

Fig. 5 Practical guideline for choosing dimensionality reduction methods in scRNA-seq analysis. Compared dimensionality reduction methods include

factor analysis (FA), principal component analysis (PCA), independent component analysis (ICA), Diffusion Map, nonnegative matrix factorization (NMF),

Poisson NMF, zero-inflated factor analysis (ZIFA), zero-inflated negative binomial-based wanted variation extraction (ZINB-WaVE), probabilistic count

matrix factorization (pCMF), deep count autoencoder network (DCA), scScope, generalized linear model principal component analysis (GLMPCA),

multidimensional scaling (MDS), locally linear embedding (LLE), local tangent space alignment (LTSA), Isomap, uniform manifold approximation and

projection (UMAP), and t-distributed stochastic neighbor embedding (tSNE). The count-based methods are colored in purple while non-count-based

methods are colored in blue. Methods are ranked by their average performance across the criteria from left to right. The performance is colored and

numerically coded: good performance = 2 (sky blue), intermediate performance = 1 (orange), and poor performance = 0 (gray)
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dimensionality reduction methods, the detailed compari-

son results, and the recommendations and guidelines for

choosing dimensionality reduction methods can assist

researchers in the analysis of their own scRNA-seq data.

In the present study, we have primarily focused on

three clustering methods (k-means, hierarchical cluster-

ing, and Louvain method) to evaluate the performance

of different dimensionality reduction methods for down-

stream clustering analysis. We have also primarily

focused on two lineage inference methods (Slingshot

and Monocle3) to evaluate the performance of different

dimensionality reduction methods for downstream

lineage inference. In our analysis, we found that the per-

formance of dimensionality reduction methods mea-

sured based on different clustering methods is often

consistent with each other. Similarly, the performance of

dimensionality reduction methods measured based on

different lineage inference methods is also consistent

with each other. However, it is possible that some di-

mensionality reduction methods may work well with

certain clustering approaches and/or with certain lineage

inference approaches. Subsequently, future comparative

analysis using other clustering methods and other

lineage inference methods as comparison criteria may

have added benefits. In addition, besides cell clustering

and trajectory inference, we note that dimensionality re-

duction methods are also used for many other analytic

tasks in scRNA-seq studies. For example, factor models

for dimensionality reduction is an important modeling

part for multiple scRNA-seq data set alignment [16], for

integrative analysis of multiple omics data sets [70, 71], as

well as for deconvoluting bulk RNA-seq data using cell

type-specific gene expression measurements from scRNA-

seq [72, 73]. In addition, cell classification in scRNA-seq

also relies on a low-dimensional structure inferred from

original scRNA-seq through dimensionality reduction [74,

75]. Therefore, the comparative results obtained from the

present study can provide important insights into these

different scRNA-seq analytic tasks. In addition, investigat-

ing the performance of dimensionality reduction methods

in these different scRNA-seq downstream analyses is an

important future research direction.

We mostly focused on evaluating feature extraction

methods for dimensionality reduction. Another important

category of dimensionality reduction method is the feature

selection method, which aims to select a subset of fea-

tures/genes directly from the original feature space. The

feature section methods rely on different criteria to select

important genes and are also commonly used in the pre-

processing step of scRNA-seq data analysis [76]. For ex-

ample, M3Drop relies on dropout events in scRNA-seq

data to identify informative genes [77]. Seurat uses gene

expression variance to select highly variable genes [16].

Evaluating the benefits of different methods and criteria

for selecting informative genes for different downstream

tasks is another important future direction.

We have primarily focused on using the default soft-

ware settings when applying different dimensionality re-

duction methods. We note, however, that modifying the

software setting for certain methods on certain data

types may help improve performance. For example, a re-

cent study shows that the quasi-UMI approach paired

with GLMPCA may help improve the performance of

GLMPCA on non-UMI data sets [78]. In addition, we

have relied on a relatively simple gene filtering step by

removing lowly expressed genes. Sophisticated gene

filtering approaches prior to running dimensionality

reduction may help improve the performance of

certain dimensionality reduction methods. In addition,

alternative, more stringent gene filtering approaches

may likely result in a smaller subset of genes for per-

forming dimensionality reduction, making it easier to

apply some of the slow dimensionality reduction

methods to large data sets. Exploring how different

software settings and gene filtering procedures influ-

ence the performance of different dimensionality re-

duction methods on different data sets will help us

better understand the utility of these methods.

With the advance of scRNA-seq technologies and with

the increase collaborations across scientific groups, new

consortium projects such as the Human Cell Atlas (HCA)

will generate scRNA-seq data sets that contain millions of

cells [34]. The large data at this scale poses critical compu-

tational and statistical challenges to many current dimen-

sionality reduction methods. Many existing dimensionality

reduction methods, in particular those that require the

computation and memory storage of a covariance or dis-

tance matrix among cells, will no longer be applicable

there. We have examined a particular sub-sampling strat-

egy to scale all dimensionality reduction methods to large

data sets. However, while the sub-sampling strategy is

computationally efficient, it unfortunately reduces the per-

formance of many dimensionality reduction methods by a

substantial margin. Therefore, new algorithmic innova-

tions and new efficient computational approximations will

likely be needed to effectively scale many of the existing

dimensionality reduction methods to millions of cells.

Methods and materials
ScRNA-seq data sets

We obtained a total of 30 scRNA-seq data sets from

public domains for benchmarking dimensionality re-

duction methods. All data sets were retrieved from the

Gene Expression Omnibus (GEO) database (https://

www.ncbi.nlm.nih.gov/geo/) or the 10X Genomics web-

site (https://support.10xgenomics.com/single-cell-gene-

expression/datasets). These data sets cover a wide var-

iety of sequencing techniques that include Smart-Seq2
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(8 data sets), 10X Genomics (6 data sets), Smart-Seq (5

data sets), inDrop (1 data set), RamDA-seq (1 data set),

sci-RNA-seq3 (1 data set), SMARTer (5 data sets), and

others (3 data sets). In addition, these data cover a

range of sample sizes from a couple hundred cells to

tens of thousands of cells measured in either human

(19 data sets) or mouse (11 data sets). In each data set,

we evaluated the effectiveness of different dimensional-

ity reduction methods for one of the two important

downstream analysis tasks: cell clustering and lineage

inference. In particular, 15 data sets were used for cell

clustering evaluation while another 15 data sets were

used for lineage inference evaluation. For cell cluster-

ing, we followed the same criteria listed in [12, 41] to

select these datasets. In particular, the selected data sets

need to contain true cell clustering information which

is to be treated as the ground truth in the comparative

analysis. In our case, 11 of the 15 data sets were ob-

tained by mixing cells from different cell types either

pre-determined by fluorescence activated cell sorting

(FACS) or cultured on different conditions. Therefore,

these 11 studies contain the true cell type labels for all

cells. The remaining 4 data sets contain cell labels that

were determined in the original study and we simply

treated them as truth though we do acknowledge that

such “true” clustering information may not be accurate.

For lineage inference, we followed the same criteria

listed in [14] to select these datasets. In particular, the

selected data sets need to contain true linear lineage in-

formation which is to be treated as the ground truth in

the comparative analysis. In our case, 4 of the 15 data

sets were obtained by mixing cells from different cell

types pre-determined by FACS. These different cell

types are at different developmental stages of a single

linear lineage; thus, these 4 studies contain the true

lineage information for all cells. The remaining 11 data

sets contain cells that were collected at multiple time

points during the development process. For these data,

we simply treated cells at these different time points as

part of a single linear lineage, though we do acknow-

ledge that different cells collected at the same time

point may represent different developmental trajector-

ies from an early time point if the cells at the early time

are heterogeneous. In either case, the true lineages in

all these 15 data sets are treated as linear, without any

bifurcation or multifurcation patterns.

A detailed list of the selected scRNA-seq datasets with

corresponding data features is provided in Additional file 1:

Table S1-S2. In each of the above 30 data sets, we re-

moved genes that are expressed in less than five cells. For

methods modeling normalized data, we transformed the

raw counts data into continuous data with the normalize

function implemented in scater (R package v1.12.0). We

then applied log2 transformation on the normalized

counts by adding one to avoid log transforming zero

values. We simply term this normalization as log2 count

transformation, though we do acknowledge that such

transformation does take into account of cell size factor,

etc. through the scater software. In addition to log2 count

transformation, we also explored the utility of two add-

itional data transformation: log2 CPM transformation and

z-score transformation. In the log2 CPM transformation,

we first computed counts per million reads (CPM) and

then performed log2 transformation on the resulted CPM

value by adding a constant of one to avoid log transform-

ation of zero quantities. In the z-score transformation, for

each gene in turn, we standardized CPM values to achieve

a mean of zero and variance of one across cells using Seu-

rat package (v2.3).

Besides the above 30 real scRNA-seq data sets, we also

simulated 2 additional scRNA-seq data sets for cell clus-

tering evaluation. In the simulations, we used all 94 cells

from one cell type (v6.5 mouse 2i+LIF) in the Kumar

data as input. We simulated scRNA-seq data with 500

cells and a known number of cell types, which were set

to be either 4 or 8, using the Splatter package v1.2.0. All

parameters used in the Splatter (e.g., mean rate, shape,

dropout rate) were set to be approximately those esti-

mated from the real data. In the case of 4 cell types, we

set the group parameter in Splatter as 4. We set the per-

centage of cells in each group as 0.1, 0.15, 0.5, and 0.25,

respectively. We set the proportion of the differentially

expressed genes in each group as 0.02, 0.03, 0.05, and

0.1, respectively. In the case of 8 cell types, we set

group/cell type parameter as 8. We set the percentage of

cells in each group as 0.12, 0.08, 0.1, 0.05, 0.3, 0.1, 0.2,

and 0.05, respectively. We set the proportion of the dif-

ferentially expressed genes in each group as 0.03, 0.03,

0.03, 0.1, 0.05, 0.07, 0.08, and 0.1, respectively.

Compared dimensionality reduction methods

Dimensionality reduction methods aim to transform an

originally high-dimensional feature space into a low-

dimensional representation with a much-reduced number of

components. These components are in the form of a linear

or non-linear combination of the original features (known

as feature extraction dimensionality reduction methods) [79]

and in the extreme case are themselves a subset of the ori-

ginal features (known as feature selection dimensionality re-

duction methods) [80]. In the present study, we have

collected and compiled a list of 18 popular and widely used

dimensionality reduction methods in the field of scRNA-seq

analysis. These dimensionality reduction methods include

factor analysis (FA; R package psych, v1.8.12), principal com-

ponent analysis (PCA; R package stats, v3.6.0), independent

component analysis (ICA; R package ica, v1.0.2), Diffusion

Map (Diffusion Map; R package destiny, v2.14.0), nonnega-

tive matrix factorization (NMF; R package NNLM, v1.0.0),
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Kullback-Leibler divergence-based NMF (Poisson NMF; R

package NNLM, v1.0.0), zero-inflated factor analysis (ZIFA;

Python package ZIFA), zero-inflated negative binomial-

based wanted variation extraction (ZINB-WaVE; R package

zinbwave, v1.6.0), probabilistic count matrix factorization

(pCMF; R package pCMF, v1.0.0), deep count autoencoder

network (DCA; Python package dca), a scalable deep-

learning-based approach (scScope; Python package scscope),

generalized linear model principal component analysis

(GLMPCA; R package on github), multidimensional scaling

(MDS; Rdimtools R package v.0.4.2), locally linear embed-

ding (LLE; Rdimtools R packge v.0.4.2), local tangent space

alignment (LTSA; Rdimtools R package v.0.4.2), Isomap

(Rdimtools R package v.0.4.2), t-distributed stochastic neigh-

bor embedding (tSNE; FIt-SNE, fftRtnse R function), and

uniform manifold approximation and projection (UMAP;

Python package). One of these methods, tSNE, can only ex-

tract a maximum of two or three low-dimensional compo-

nents [48, 58, 59]. Therefore, we only included tSNE results

based on two low-dimensional components extracted from

the recently developed fast FIt-SNE R package [48] in all

figures. An overview of these 18 dimensionality reduction

methods with their corresponding modeling characteristics

is provided in Table 1.

Assess the performance of dimensionality reduction

methods

We first evaluated the performance of dimensionality re-

duction methods by neighborhood preserving that aims

to access whether the reduced dimensional space resem-

bles the original gene expression matrix. To do so, we

first identified the k-nearest neighbors for each single

cell in the original space (denoted as a set A) and in the

reduced space (denoted as a set B). We set k = 10, 20, or

30 in our study. We then computed the Jaccard index

(JI) [60] to measure the neighborhood similarity between

the original space and the reduced space: JI ¼ jA∩Bj
jA∪Bj ,

where |∙| denotes the cardinality of a set. We finally ob-

tained the averaged Jaccard index (AJI) across all cells to

serve as the measurement for neighborhood preserving.

We note, however, that neighborhood preserving is pri-

marily used to measure the effectiveness of pure dimen-

sionality reduction in terms of preserving the original

space and may not be relevant for single-cell analytic

tasks that are the main focus of the present study: a di-

mensionality reduction method that preserve the original

gene expression matrix effectively may not be effective

in extracting useful biological information from the ex-

pression matrix that are essential for key downstream

single-cell applications. Preserving the original gene ex-

pression matrix is rarely the purpose of dimensionality

reduction methods for single-cell applications: indeed,

the original gene expression matrix (which is the best-

preserved matrix of itself) is rarely, if ever, used directly

in any downstream single-cell applications including cell

clustering and lineage inference, even though it is com-

putationally easy to do so.

Therefore, more importantly, we also evaluated the

performance of dimensionality reduction methods by evalu-

ating how effective the low-dimensional components ex-

tracted from dimensionality reduction methods are for

downstream single-cell analysis. We evaluated either of the

two commonly applied downstream analysis, clustering

analysis, and lineage reconstruction analysis, in the 32 data

sets described above. In the analysis, we varied the number

of low-dimensional components extracted from these di-

mensionality reduction methods. Specifically, for cell clus-

tering data sets, in a data with less than or equal to 300

cells, we varied the number of low-dimensional compo-

nents to be either 2, 6, 14, or 20. In a data with more than

300 cells, we varied the number of low-dimensional com-

ponents to be either 0.5%, 1%, 2%, or 3% of the total num-

ber of cells. For lineage inference data sets, we varied the

number of low-dimensional components to be either 2, 6,

14, or 20 for all data sets, since common lineage inference

methods prefer a relatively small number of components.

For clustering analysis, after dimensionality reduction

with these dimensionality reduction methods, we used

three different clustering methods, the hierarchical clus-

tering (R function hclust; stats v3.5.3), k-means clustering

(R function kmeans; stats v3.6.0), or Louvain method (R

function clusterCells; monocle v2.12.0) to perform cluster-

ing on the reduced feature space. The k-means clustering

is a key ingredient of commonly applied scRNA-seq clus-

tering methods such as SC3 [18] and Waterfall [25]. The

hierarchical clustering is a key ingredient of commonly

applied scRNA-seq clustering methods such as CIDR [17]

and CHETAH [81]. The Louvain method is also a com-

monly used clustering method for common single-cell

analysis software such as Seurat [16] and Monocle [27,

82]. In all these clustering methods, we set the number of

clusters k to be the known number of cell types in the

data. We compared the cell clusters inferred using the

low-dimensional components to the true cell cluster and

evaluated clustering accuracy by two criteria: the adjusted

rand index (ARI) [83] and the normalized mutual infor-

mation (NMI) [84]. The ARI and NMI are defined as:
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and NMIðP;TÞ ¼ 2MIðP;TÞ
HðPÞþHðTÞ ;

where P = (p1, p2,⋯, pn)
T denotes the inferred cell type

cluster labels from clustering analysis while T = (t1, t2,

⋯, tn)
T denotes the known true cell type labels for n
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samples in the data; l and s enumerate the clusters, with

l = 1, ⋯, r and s = 1, ⋯, k where r and k are the number

of inferred cell type clusters and the number of true cell

type clusters, respectively; nls = ∑ijI(pi = l)I(tj = s) is the

number of times where the ith cell belongs to the cluster

l in the inferred cluster labeling and jth cell belongs to

the cluster s in the true cluster labeling; note that nls is

an entry of contingency table which effectively measures

the number of cells that are in common between P and

T, with I(∙) being an indicator function; al = ∑snls is the

sum of the sth column of the contingency table; and bs =

∑lnls is the sum of the lth row of the contingency table;

∙

∙

� �

denotes a binomial coefficient; MIðP;TÞ ¼
P

l

P

s

nls
n

logð
nls
n

bsal

n2

Þ is the mutual information between two cluster

labels; HðPÞ ¼ −
P

l
al
n
logðal

n
Þ is the entropy function for

inferred cell type labeling; and HðTÞ ¼ −
P

s
bs
n
logðbs

n
Þ is

the entropy function for true cell type labeling. We used

the compare function in the igraph R package (v1.0.0) to

compute both ARI and NMI criteria. For rare cell type

identification, we used the F-measure that is commonly

used for quantifying rare cell type identification perform-

ance [54, 55]. The F-measure is the harmonic mean of the

clustering’s precision and recall, and is formulated as:

F−measure ¼ 2
P�R

P þ R
:

where P represents the precision for identifying the rare

cluster, with P ¼ True Positive
True PositiveþFalse Positive

, while R repre-

sents the recall for identifying the rare cluster, with R

¼ True Positive
True PositiveþFalse Negative

. For each data set, we repeated

the above procedure five times and report the averaged

results to avoid the influence of the stochasticity embed-

ded in some dimensionality reduction methods and/or

the clustering algorithm.

While it is straightforward to apply different dimensional-

ity reduction methods to most scRNA-seq data sets, we

found that many dimensionality reduction methods are not

computationally scalable and cannot be directly applied for

clustering analysis in two large-scale scRNA-seq data sets

we examined in the present study. For these non-scalable

dimensionality reduction methods, we made use of a re-

cently developed sub-sampling procedure described in

dropClust to scale them to large data [59]. In particular, we

first applied dropClust to the original large-scale data to

infer rare cell populations. We then created a small data by

combining all cells in the rare cell populations along with a

subset set of cells in the remaining cell populations. The

subset of cells in the non-rare populations is obtained

through sub-sampling using the structure preserving sam-

pling procedure (details in [59]). Afterwards, we applied

different dimensionality reduction methods to the small

data and performed clustering analysis there. The cells in

the small data are then directly assigned with their cluster-

ing label after clustering analysis. For each cell that is not in

the small data, we computed the Pearson correlation be-

tween the cell and each of the cluster centers inferred in

the small data. We assigned the cell to the cluster with the

closest cluster center in the small data as the cluster

assignment.

For trajectory inference, after dimensionality reduction

with these dimensionality reduction methods, we used

Slingshot [56] (R package, v1.2.0) and Monocle3 [28] (R

package, v0.1.2). The Slingshot software is the recom-

mended lineage inference method based on a recent

comparative study [14]. Monocle3 is one of the most re-

cent lineage inference methods. Slingshot takes two in-

put data: the low-dimensional components extracted

from dimensionality reduction methods and a vector of

cluster labels predicted by clustering algorithms. Mon-

ocle3 also takes two input data: the low-dimensional

components extracted by dimensionality reduction

methods and starting state which is to the beginning of

the lineage. For the cluster labels, we used either k-

means, hierarchical clustering algorithm, or Louvain

method on the extracted low-dimensional components

to obtain cluster labels. For the starting state, we sup-

plied with the true beginning state of the lineage in the

data. After obtaining the two types of input through the

slingshot function, we used the getLineages function to

fit a minimum spanning tree (MST) to identify lineage.

The final output from Slingshot is an object of class

SlingshotDataSet that contains the inferred lineage infor-

mation. We follow the original Slingshot paper [56] to

evaluate the accuracy of the inferred lineage using the

Kendall rank correlation coefficient. To do so, for each

data, we first ranked genes based on their position on

the true lineage. We ordered all m genes based on this

rank order and denoted the corresponding rank in as-

cending order for these genes as {x1,⋯, xm}, where xi ≤

xi + 1. Note that the true lineage is linear without any bi-

furcation or multifurcation patterns, while the inferred

lineage may contain multiple ending points in addition

to the single starting point. Therefore, for each inferred

lineage, we examined one trajectory at a time, where

each trajectory consists of the starting point and one of

the ending points. In each trajectory, we ranked genes in

order based on their position in the trajectory. We de-

note the corresponding rank order in the inferred trajec-

tory for all m genes as {y1,⋯, ym}, where we set yl as

missing if lth gene is not included in the inferred trajec-

tory. For each pair of non-missing genes, we labeled the

gene pair (i, j) as a concordant pair if their relative rank

in the inferred lineage are consistent with their relative

rank in the true lineage; that is, either (xi ≥ xj& yi ≥ yj) or
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(xi < xj& yi < yj). Otherwise, we labeled the gene pair (i, j)

as discordant. We denoted C as the number of concord-

ant pairs, D as the number of discordant pairs, and U as

the total number of non-missing genes. The Kendell

correlation coefficient is then computed as

τ ¼
C−D

U U−1ð Þ=2
:

Afterwards, we obtained the maximum absolute τ over

all these trajectories as the final Kendall correlation

score to evaluate the similarity between the inferred

lineage and the true lineage. For each data set, we re-

peated the above procedure five times and report the av-

eraged results to avoid the influence of the stochasticity

embedded in some dimensionality reduction methods

and/or the lineage inference algorithm. For the large-

scale data application to Cao et al., we also applied the

sub-sampling approach dropClust to scale different di-

mensionality reduction methods for lineage inference.

We investigated the stability and robustness of differ-

ent dimensionality reduction methods in both cell clus-

tering and lineage inference applications through data

splitting. Here, we focused on two representative

scRNA-seq data sets, the Kumar data set for cell cluster-

ing, and the Hayashi data set for lineage inference. For

each data, we randomly split the data into two subsets

with an equal number of cells in each cell type in the

two subsets. We repeated the split procedure 10 times

to capture the potential stochasticity during the data

split. In each split replicate, we applied different dimen-

sionality reduction methods to analyze each subset sep-

arately. We used k-means clustering algorithm to infer

the clustering labels in each subset. We used NMI to

measure cell clustering accuracy and used Kendall cor-

relation to measure lineage inference accuracy.

Finally, to summarize the performance of the evalu-

ated dimensionality reduction methods across the range

of criteria in Fig. 5, we consider either “good,” “inter-

mediate,” or “poor” to categorize the dimensionality re-

duction methods for each criterion. For UMI and non-

UMI based data in cell clustering, we evaluated the per-

formance of different dimensionality reduction methods

based on 0.5% low-dimensional components in Add-

itional file 1: Figure S31A and S31B: average NMI ≥ 0.73

(good); 0.64 ≤ average NMI < 0.73 (intermediate); average

NMI < 0.64 (poor). For Trajectory Inference, we evalu-

ated the performance of different dimensionality reduc-

tion methods based on 2 low-dimensional components

in Additional file 1: Figure S39A: average Kendall ≥ 0.41

(good); 0.35 ≤ average Kendall < 0.41 (intermediate);

average Kendall < 0.35 (poor). For Rare Cell Detection,

we evaluated the performance of different dimensionality

reduction methods based on 0.5% low-dimensional

components in Additional file 1: Figure S35A: F-measure

≥ 0.74 (good); 0.69 ≤ F-measure < 0.74 (intermediate); F-

measure < 0.69 (poor). For Neighborhood Preserving, we

evaluated the performance of different dimensionality re-

duction methods based on 0.5% low-dimensional compo-

nents in Additional file 1: Figure S7A: average Jaccard

index ≥ 0.15 (good); 0.12 ≤ average Jaccard index < 0.15

(intermediate); average Jaccard index < 0.12 (poor). For

Scalability, we evaluated the performance of different di-

mensionality reduction methods when sample size is 10,

000 in Fig. 4b: computation time ≤ 0.25 h (good); 0.25

h ≤ computation time < 10 (intermediate); computation

time ≥ 10 h (poor). For Consistency, we evaluated the per-

formance of different dimensionality reduction methods

based on the absolute mean value of the difference of

average NMI between two splits from Additional file 1:

Figure S36 and S54: difference of average NMI ≤ 0.005

(good); 0.005 ≤ difference of average NMI < 0.01 (inter-

mediate); difference of average NMI ≥ 0.01 (poor). For

Success Rate, since both scScope and LTSA do not work

for most trajectory inference data sets, we set as poor;

NMF, ICA, tSNE, and GLMPCA do not work for some of

data sets, we set as intermediate; the rest of dimensionality

reduction methods are all good.
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