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ABSTRACT 

Background: Dimensionality reduction (DR) is an indispensable analytic 

component for many areas of single cell RNA sequencing (scRNAseq) data 

analysis. Proper DR can allow for effective noise removal and facilitate many 

downstream analyses that include cell clustering and lineage reconstruction. 

Unfortunately, despite the critical importance of DR in scRNAseq analysis and the 

vast number of DR methods developed for scRNAseq studies, however, few 

comprehensive comparison studies have been performed to evaluate the 

effectiveness of different DR methods in scRNAseq.  

Results: Here, we aim to fill this critical knowledge gap by providing a 

comparative evaluation of a variety of commonly used DR methods for scRNAseq 

studies. Specifically, we compared 18 different DR methods on 30 publicly 

available scRNAseq data sets that cover a range of sequencing techniques and 

sample sizes. We evaluated the performance of different DR methods for 

neighborhood preserving in terms of their ability to recover features of the original 

expression matrix, and for cell clustering and lineage reconstruction in terms of 

their accuracy and robustness. We also evaluated the computational scalability of 

different DR methods by recording their computational cost.  

Conclusions: Based on the comprehensive evaluation results, we provide 

important guidelines for choosing DR methods for scRNAseq data analysis. We 

also provide all analysis scripts used in the present study at 
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www.xzlab.org/reproduce.html. Together, we hope that our results will serve as 

an important practical reference for practitioners to choose DR methods in the 

field of scRNAseq analysis. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 23, 2019. ; https://doi.org/10.1101/641142doi: bioRxiv preprint 

https://doi.org/10.1101/641142
http://creativecommons.org/licenses/by/4.0/


INTRODUCTION 

Single-cell RNA sequencing (scRNAseq) is a rapidly growing and widely applying 

technology [1-3]. By measuring gene expression at single cell level, scRNAseq 

provides an unprecedented opportunity to investigate the cellular heterogeneity of 

complex tissues [4-8]. However, despite the popularity of scRNAseq, analyzing 

scRNAseq data remains a challenging task. Specifically, due to the low capture 

efficiency and low sequencing depth per cell in scRNAseq data, gene expression 

measurements obtained from scRNAseq are noisy: collected scRNAseq gene 

measurements are often in the form of low expression counts, and in studies not 

based on unique molecular identifiers, are also paired with an excessive number 

of zeros known as dropouts [9]. Subsequently, dimensionality reduction (DR) 

methods that transform the original high-dimensional noisy expression matrix into 

a low-dimensional subspace with enriched signals become an important data 

processing step for scRNAseq analysis [10]. Proper DR can allow for effective 

noise removal, facilitate data visualization, and enable efficient and effective 

downstream analysis of scRNAseq [11].  

DR is indispensable for many types of scRNAseq analysis. Because of the 

importance of DR in scRNAseq analysis, many DR methods have been 

developed and are routinely used in scRNAseq software tools that include, but not 

limited to, cell clustering tools [12, 13] and lineage reconstruction tools [14]. 

Indeed, most commonly used scRNAseq clustering methods rely on DR as the 

first analytic step [15]. For example, Seurat applies clustering algorithms directly 

on a low dimensional space inferred from principal component analysis (PCA) [16]. 

CIDR improves clustering by improving PCA through imputation [17]. SC3 

combines different ways of PCA for consensus clustering [18]. Besides PCA, 

other DR techniques are also commonly used for cell clustering. For example, 

nonnegative matrix factorization (NMF) is used in SOUP [19]. Partial least 

squares is used in scPLS [20]. Diffusion map is used in destiny [21]. 

Multidimensional scaling (MSD) is used in ascend [22]. Variational inference 

autoencoder is used in scVI [23]. In addition to cell clustering, most cell lineage 

reconstruction and developmental trajectory inference algorithms also rely on DR 

[14]. For example, TSCAN builds cell lineages using minimum spanning tree 

based on a low dimensional PCA space [24]. Waterfall performs k-means 

clustering in the PCA space to eventually produce linear trajectories [25]. SLICER 

uses locally linear embedding (LLE) to project the set of cells into a lower 

dimension space for reconstructing complex cellular trajectories [26]. Monocle 
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employs either independent components analysis (ICA) or uniform manifold 

approximation and projection (UMAP) for DR before building the trajectory [27, 

28]. Wishbone combines PCA and diffusion maps to allow for bifurcation 

trajectories [29]. 

Besides the generic DR methods mentioned in the above paragraph, many DR 

methods have also been developed recently that are specifically targeted for 

modeling scRNAseq data. These scRNAseq specific DR methods can account for 

either the count nature of scRNAseq data and/or the dropout events commonly 

encountered in scRNAseq studies. For example, ZIFA relies on a zero-inflation 

normal model to model dropout events [30]. pCMF models both dropout events 

and the mean-variance dependence resulting from the count nature of scRNAseq 

data [31]. ZINB-WaVE incorporates additional gene-level and sample-level 

covariates for more accurate DR [32]. Finally, several deep learning-based DR 

methods have recently been developed to enable scalable and effective 

computation in large-scale scRNAseq data, including data that are collected by 

10X Genomics techniques [33] and/or from large consortium studies such as 

Human Cell Atlas (HCA) [34, 35]. Common deep learning-based DR methods for 

scRNAseq include Dhaka [36], scScope [37], VASC [38], scvis [39], and DCA [40], 

to name a few.  

With all these different DR methods for scRNAseq data analysis, one naturally 

wonders which DR method one would prefer for different types of scRNAseq 

analysis. Unfortunately, despite the popularity of scRNAseq technique, the critical 

importance of DR in scRNAseq analysis, and the vast number of DR methods 

developed for scRNAseq studies, few comprehensive comparison studies have 

been performed to evaluate the effectiveness of different DR methods for practical 

applications. Here, we aim to fill this critical knowledge gap by providing a 

comprehensive comparative evaluation of a variety of commonly used DR 

methods for scRNAseq studies. Specifically, we compared 18 different DR 

methods on 30 publicly available scRNAseq data sets that cover a range of 

sequencing techniques and sample sizes [12, 14, 41]. We evaluated the 

performance of different DR methods for neighborhood preserving in terms of 

their ability to recover features of the original expression matrix, and for cell 

clustering and lineage reconstruction in terms of their accuracy and robustness 

using different metrics. We also evaluated the computational scalability of 

different DR methods by recording their computational time. Together, we hope 
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our results can serve as an important guideline for practitioners to choose DR 

methods in the field of scRNAseq analysis.  
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RESULTS 

We evaluated the performance of 18 DR methods (Table 1; Figure S1) on 30 

publicly available scRNAseq data sets (Tables S1-S2) and 2 simulated data sets. 

Details of these data sets are provided in Methods and Materials. Briefly, these 

data sets cover a wide variety of sequencing techniques that include Smart-Seq2 

(8 data sets), Smart-Seq (5 data sets), 10X genomics (6 data sets), inDrop (1 data 

set), RamDA-seq (1 data set), sci-RNA-seq3 (1 data set), SMARTer (5 data sets) 

and others (3 data sets). In addition, these data sets cover a range of sample 

sizes from a couple of hundred cells to over tens of thousands of cells. In each 

data set, we evaluated the ability of different DR methods in preserving the 

original feature of the expression matrix, and, more importantly, their 

effectiveness for two important single cell analytic tasks: cell clustering and 

lineage inference. In particular, we used 14 real data sets together with 2 

simulated data sets for DR method comparison in terms of cell clustering 

performance. We used the another a set of 14 real data sets for DR method 

comparison in terms of trajectory inference. We used yet two additional 

large-scale scRNAseq data sets to examine the effectiveness and scalability of 

different DR methods there. In addition, we measured the computing stability of 

different DR methods and recorded their computation time. An overview of the 

comparison workflow is shown in Figure 1. Because common tSNE software can 

only extract a small number low-dimensional components [42-44], we only 

included tSNE results based on two low-dimensional components extracted from 

the recently developed fast FIt-SNE R package [44] in all figures. All data and 

analysis scripts for reproducing the results in the paper is available at 

www.xzlab.org/reproduce.html or https://github.com/xzhoulab/DRComparison. 

Performance of DR methods for neighborhood preserving 

We first evaluated the performance of different DR methods in terms of preserving 

the original features of the gene expression matrix. To do so, we applied different 

DR methods to each of 30 scRNAseq data sets (28 real data and 2 simulated data; 

excluding the two large-scale data due to computing concerns) and evaluated the 

performance of these DR methods based on neighborhood preserving. 

Neighborhood preserving measures how the local neighborhood structure in the 

reduced dimensional space resembles that in the original space by computing a 

Jaccard index [45] (details in Methods and Materials). In the analysis, for each DR 

method and each scRNAseq data set, we applied the DR method to extract a 

fixed number of low-dimensional components (e.g. these are the principal 
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components in the case of PCA). We varied the number of low-dimensional 

components to examine their influence on local neighborhood preserving. 

Specifically, for each of 16 cell clustering data sets, we varied the number of low 

dimensional components to be either 2, 6, 14, or 20 when the data contains less 

than or equal to 300 cells, and we varied the number of low dimensional 

components to be either 0.5%, 1%, 2%, or 3% of the total number of cells when 

the data contains more than 300 cells. For each of the 14 trajectory inference data 

sets, we varied the number of low-dimensional components to be either 2, 6, 14, 

or 20 regardless of the number of cells. Finally, we also varied the number of 

neighborhood cells used in the Jaccard index to be either 10, 20, or 30. The 

evaluation results based on the Jaccard index of neighborhood preserving are 

summarized in Figures S2-S14.  

In the cell clustering data sets, we found that pCMF achieves the best 

performance of neighborhood preserving across all data sets and across all 

included low-dimensional components (Figures S2-S7). For example, with 30 

neighborhood cells and 0.5% of low-dimensional components, pCMF achieves a 

Jaccard index of 0.25. Its performance is followed by Poisson NMF (0.16), 

ZINB-WaVE (0.16), Diffusion Map (0.16), MDS (0.15), and tSNE (0.14). While the 

remaining two methods, scScope (0.1) and LTSA (0.06), do not fare well. 

Increasing number of neighborhood cells increases the absolute value of Jaccard 

index but does not influence the relative performance of DR methods (Figure S7). 

In addition, the relative performance of most DR methods remains largely similarly 

whether we focus on data sets with unique molecular identifiers (UMI) or data sets 

without UMI (Figure S8). However, we do notice two exceptions: the performance 

of pCMF decreases with increasing number of low-dimensional components in 

UMI data but increases in non-UMI data; the performance of scScope is higher in 

UMI data than its performance in non-UMI data. In the trajectory inference data 

sets, pCMF again achieves the best performance of neighborhood preserving 

across all data sets and across all included low-dimensional components (Figures 

S9-S14). Its performance is followed closely by scScope and Poisson NMF. For 

example, with 30 neighborhood cells and 20 low-dimensional components, the 

Jaccard index of pCMF, Poisson NMF, and scScope across all data sets are 0.3, 

0.28, and 0.26, respectively. Their performance is followed by ZINB-WaVE (0.19), 

FA (0.18), ZIFA (0.18), GLMPCA (0.18), and MDS (0.18). In contrast, LTSA also 

does not fare well across all included low-dimensional components (Figure S14). 

Again, increasing number of neighborhood cells increases the absolute value of 
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Jaccard index but does not influence the relative performance among DR 

methods (Figures S9-S14).  

We note that the measurement we used in this subsection, neighborhood 

preserving, is purely for measuring DR performance in terms of preserving the 

original gene expression matrix and may not be relevant for single cell analytic 

tasks that are the main focus of the present study: a DR method that preserves 

the original gene expression matrix may not be effective in extracting useful 

biological information from the expression matrix that is essential for key 

downstream single cell applications. Preserving the original gene expression 

matrix is rarely the sole purpose of DR methods for single cell applications: indeed, 

the original gene expression matrix (which is the best-preserved matrix of itself) is 

rarely, if ever, used directly in any downstream single cell applications including 

clustering and lineage inference, even though it is computationally easy to do so. 

Therefore, we will focus our main comparison in two important downstream single 

cell applications listed below.  

Performance of DR methods for cell clustering  

As our main comparison, we first evaluated the performance of different DR 

methods for cell clustering applications. To do so, we obtained 14 publicly 

available scRNAseq data sets and simulated two additional scRNAseq data sets 

using the Splatter package (Table S1). Each of the 14 real scRNAseq data sets 

contains known cell clustering information while each of the 2 simulated data sets 

contains 4 or 8 known cell types. For each DR method and each data set, we 

applied DR to extract a fixed number of low-dimensional components (e.g., these 

are the principal components in the case of PCA). We again varied the number of 

low-dimensional components as in the previous section to examine their influence 

on cell clustering analysis. We then applied either the hierarchical clustering 

method, the k-means clustering method, or Louvain clustering method [46] to 

obtain the inferred cluster labels. We used both normalized mutual information 

(NMI) and adjusted rand index (ARI) values for comparing the true cell labels and 

inferred cell labels obtained by clustering methods based on the low-dimensional 

components. 

Cell clustering with different clustering methods 

The evaluation results on DR methods based on clustering analysis using the 

k-means clustering algorithm are summarized in Figure 2 (for NMI criterion) and 

Figure S15 (for ARI criterion). Because the results based on either of the two 

criteria are similar, we will mainly explain the results based on the NMI criteria in 
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Figure 2. For easy visualization, we also display the results averaged across data 

sets in Figure S16. A few patterns are noticeable. First, as one would expect, 

clustering accuracy depends on the number of low-dimensional components that 

are used for clustering. Specifically, accuracy is relatively low when the number of 

included low-dimensional components is very small (e.g. 2 or 0.5%) and generally 

increases with the number of included components. In addition, accuracy usually 

saturates once a sufficient number of components is included, though the 

saturation number of components can vary across data sets and across methods. 

For example, the average NMI across all data sets and across all methods are 

0.61, 0.66, 0.67 and 0.67 for increasingly large number of components, 

respectively. Second, when conditional on using a low number of components, 

scRNAseq specific DR method ZINB-WaVE and generic DR methods ICA and 

MDS often outperform the other methods. For example, with the lowest number of 

components, the average NMI across all data sets for MDS, ICA and ZINB-WaVE 

are 0.82, 0.77 and 0.76, respectively (Figure S16A). The performance of MDS, 

ICA and ZINB-WaVE is followed by LLE (0.75), Diffusion Map (0.71), ZIFA (0.69), 

PCA (0.68), FA (0.68), tSNE (0.68), NMF (0.59) and DCA (0.57). While the 

remaining four methods, Poisson NMF (0.42), pCMF (0.41), scScope (0.26), and 

LTSA (0.12), do not fare well with a low number of components. Third, with 

increasing number of low-dimensional components, generic methods such as FA, 

ICA, MDS and PCA are often comparable with scRNAseq specific methods such 

as ZINB-WaVE. For example, with the highest number of low-dimensional 

components, the average NMI across all data sets for FA, ICA, PCA, ZINB-WaVE, 

LLE and MDS are 0.85, 0.84, 0.83, 0.83, 0.82 and 0.82, respectively. Their 

performance is followed by ZIFA (0.79), NMF (0.73), and DCA (0.69). The same 

four methods, pCMF (0.55), Poisson NMF (0.31), scScope (0.31), and LTSA (0.06) 

again do not fare well with a large number of low-dimensional components (Figure 

S16A). The comparable results of generic DR methods with scRNAseq specific 

DR methods with a high number of low-dimensional components are also 

consistent some of the previous observations; for example, the original 

ZINB-WaVE paper observed that PCA can generally yield comparable results 

with scRNAseq specific DR methods in real data [32].  

Besides the k-means clustering algorithm, we also used the hierarchical 

clustering algorithm to evaluate the performance of different DR methods (Figures 

S17-S19). In this comparison, we had to exclude one DR method, scScope, as 

hierarchical clustering does not work on the extracted low-dimensional 

components from scScope. Consistent with the k-means clustering results, we 
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found that the clustering accuracy measured by hierarchical clustering is relatively 

low when the number of low-dimensional components is very small (e.g. 2 or 

0.5%), but generally increases with the number of included components. In 

addition, consistent with the k-means clustering results, we found that generic DR 

methods often yield results comparable to or better than scRNAseq specific DR 

methods (Figures S17-S19). In particular, with a low number of low-dimensional 

components, MDS achieves the best performance (Figure S19). With a moderate 

or high number of low-dimensional components, two generic DR methods, FA and 

NMF, often outperform various other DR methods across a range of settings. For 

example, when the number of low-dimensional components is moderate (6 or 1%), 

both FA and NMF achieve an average NMI value of 0.80 across data sets (Figure 

S19A). In this case, their performance is followed by PCA (0.72), Poisson NMF 

(0.71), ZINB-WaVE (0.71), Diffusion Map (0.70), LLE (0.70), ICA (0.69), ZIFA 

(0.68), pCMF (0.65), and DCA (0.63). tSNE (0.31) does not fare well, either 

because it only extracts two-dimensional components or because it does not pair 

well with hierarchical clustering. We note, however, that the clustering results 

obtained by hierarchical clustering are often slightly worse than that obtained by 

k-means clustering across settings (e.g., Figure S16 vs Figure S19), consistent 

with the fact that many scRNAseq clustering methods use k-means as a key 

ingredient [18, 25]. 

Finally, besides the k-means and hierarchical clustering methods, we also 

performed clustering analysis based on a community detection algorithm Louvain 

clustering method [46]. Unlike the k-means and hierarchical clustering methods, 

Louvain method does not require a pre-defined number of clusters and can infer 

the number of clusters in an automatic fashion. Following software 

recommendation [28, 46], we set the k-nearest neighbor parameter in Louvain 

method to be 50 for graph building in the analysis. We measured DR performance 

again by either average NMI (Figure S20) or ARI (Figure S21). Consistent with the 

k-means clustering results, we found that the clustering accuracy measured by 

Louvain method is relatively low when the number of low-dimensional 

components is very small (e.g. 2 or 0.5%), but generally increases with the 

number of included components. With a low number of low-dimensional 

components, ZINB-WaVE (0.72) achieves the best performance (Figures 

S20-S22). With a moderate or high number of low-dimensional components, two 

generic DR methods, FA and MDS, often outperform various other DR methods 

across a range of settings (Figures S20-S22). For example, when the number of 

low-dimensional components is high (6 or 1%), FA achieves an average NMI 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 23, 2019. ; https://doi.org/10.1101/641142doi: bioRxiv preprint 

https://doi.org/10.1101/641142
http://creativecommons.org/licenses/by/4.0/


value of 0.77 across data sets (Figure S22A). In this case, its performance is 

followed by NMF (0.76), MDS (0.75), GLMPCA (0.74), LLE (0.74), PCA (0.73), 

ICA (0.73), ZIFA (0.72), and ZINB-WaVE (0.72). Again consistent with the 

k-means clustering results, scScope (0.32) and LTSA (0.21) do not fare well. We 

also note that the clustering results obtained by Louvain method are often slightly 

worse than that obtained by k-means clustering and slightly better than that 

obtained by hierarchical clustering across settings (e.g., Figure S16 vs Figure S19 

vs Figure S22).  

Normalization does not influence the performance of DR methods 

While some DR methods (e.g. Poisson NMF, ZINB-WaVE, pCMF and DCA) 

directly model count data, many DR methods (e.g. PCA, ICA, FA, NMF, MDS, 

LLE, LTSA, Isomap, Diffusion Map, UMAP, and tSNE) require normalized data. 

The performance of DR methods that use normalized data may depend on how 

data are normalized. Therefore, we investigated how different normalization 

approaches impact on the performance of the aforementioned DR methods that 

use normalized data. We examined two alternative data transformation 

approaches, log2 CPM (count per million; 11 DR methods) and z-score (10 DR 

methods), in addition to the log2 count we used in the previous results 

(transformation details are provided in Methods and Materials). The evaluation 

results are summarized in Figures S23-S30 and are generally insensitive to the 

transformation approach deployed. For example, with the k-means clustering 

algorithm, when the number of low-dimensional components is small (1%), PCA 

achieves an NMI value of 0.82, 0.82 and 0.81, for log2 count transformation, log2 

CPM transformation, and z-score transformation, respectively (Figures S16A, 

S26A, and S30A). Similar results hold for the hierarchical clustering algorithm 

(Figures S16B, S26B, and S30B) and Louvain clustering method (Figures S16C, 

S26C, and S30C). Therefore, different data transformation approaches do not 

appear to substantially influence the performance of DR methods.  

Performance of DR methods in UMI vs non-UMI based data sets 

scRNAseq data generated from UMI-based technologies (e.g., 10X genomics) 

are often of large scale, come with almost no amplification bias, do not display 

apparent dropout events, and can be accounted for by over-dispersed Poisson 

distributions. In contrast, data generated from non UMI-based techniques (e.g., 

Smart-Seq2) are often of small scale, have high capture rate, and come with 

excessive dropout events. Subsequently, the unwanted variation from these two 

types of dataset can be quite different. To investigate how different DR methods 
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perform in these two different types of data sets, we grouped 14 cell clustering 

data sets into a UMI-based group (7 data sets) and a non UMI-based group (7 

data sets). In the UMI-based data sets, we found that many DR methods perform 

reasonably well and their performance is relatively stable across a range of 

included low-dimensional components (Figure S31A). For example, with the 

lowest number of low-dimensional components, the average NMI of PCA, ICA, FA, 

NMF, GLMPCA, ZINB-WaVE, and MDS are 0.73, 0.73, 0.73, 0.73, 0.74, and 0.75, 

respectively. Their performance remains similar with increasing number of 

low-dimensional components. However, a few DR methods, including Poisson 

NMF, pCMF, scScope, and LTSA, all have extremely low performance across 

settings. In the non UMI-based data sets, the same set of DR methods perform 

reasonably well though their performance can vary with respect to the number of 

low-dimensional components (Figure S31B). For example, with a low number of 

low-dimensional components, five DR methods, MDS, UMAP, ZINB-WaVE, ICA, 

and tSNE, perform reasonably well. The average NMI of these methods are 0.83, 

0.81, 0.80, 0.78, and 0.77, respectively. With increasing number of 

low-dimensional components, four additional DR methods, PCA, ICA, FA, and 

ZINB-WaVE, also start to catchup. However, a similar set of DR methods, 

including GLMPCA, Poisson NMF, scScope, LTSA, and occasionally pCMF, also 

do not perform well in these non-UMI data sets.  

Visualization of clustering results 

We visualized the cell clustering results in two example data sets: the Kumar data 

which is non-UMI based and the PBMC3k data which is UMI based. The Kumar 

data consists of mouse embryonic stem cells cultured in three different media 

while the PBMC3k data consists of 11 blood cell types (data details in the 

Supplementary Information). Here, we extracted 20 low-dimensional components 

in the Kumar data and 32 low low-dimensional components in the PBMC3k data 

with different DR methods. We then performed tSNE analysis on these 

low-dimensional components to extract the two tSNE components for 

visualization (Figures S32-S33). Importantly, we found that the tSNE visualization 

results are not always consistent with clustering performance for different DR 

methods. For example, in the Kumar data, the low dimensional space constructed 

by FA, pCMF and MDS often yield clear clustering visualization with distinguish 

clusters (Figure S32), consistent with their good performance in clustering (Figure 

2). However, the low dimensional space constructed by PCA, ICA, and ZIFA often 

do not yield clear clustering visualization (Figure S32), even though these 
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methods all achieve high cell clustering performance (Figure 2). Similarly, in the 

PBMC3k data set, FA and MDS perform well in clustering visualization (Figure 

S33), which is consistent with their good performance in clustering analysis 

(Figure 2). However, PCA and ICA do not fare well in clustering visualization 

(Figure S33), even though both of them achieve high clustering performance 

(Figure 2). The inconsistency between cluster visualization and clustering 

performance highlights the difference in the analytic goal of these two analyses: 

cluster visualization emphasizes on extracting as much information as possible 

using only the top two-dimensional components, while clustering analysis often 

requires a much larger number of low-dimensional components to achieve 

accurate performance. Subsequently, DR methods for data visualization may not 

fare well for cell clustering, and DR methods for cell clustering may not fare well 

for data visualization [20].  

Rare cell type identification 

So far, we have focused on clustering performance in terms of assigning all cells 

to cell types without distinguishing whether the cells belong to a rare population or 

a non-rare population. Identifying rare cell populations can be of significant 

interest in certain applications and performance of rare cell type identification may 

not always be in line with general clustering performance [47, 48]. Here, we 

examine the effectiveness of different DR methods in facilitating the detection of 

rare cell populations. To do so, we focused on the PBMC3k data from 10x 

Genomics [33]. The PBMC3k data were measured on 3,205 cells with 11 cell 

types. We considered CD34+ cell type (17 cells) as the rare cell population. We 

paired the rare cell population with either CD19+ B cells (406 cells) or 

CD4+/CD25 T Reg cells (198) cells to construct two data sets with different rare 

cell proportions. We name these two data sets PBMC3k1Rare1 and 

PBMC3k1Rare2, respectively. We then applied different DR methods to each 

data and used F-measure to measure the performance of rare-cell type detection 

following [49, 50] (details in Methods and Materials). The results are summarized 

in Figures S34-S35.  

Overall, we found that Isomap achieves the best performance for rare cell type 

detection across a range of low-dimensional components in both data sets with 

different rare cell type proportions. As expected, the ability to detect rare cell 

population increases with increasing rare cell proportions. In the PBMC3k1Rare1 

data, the F-measure by Isomap with four different number of low-dimensional 

components (0.5%, 1%, 2%, and 3%) are 0.74, 0.79, 0.79, and 0.79, respectively 
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(Figure S34). The performance of Isomap is followed by ZIFA (0.74, 0.74, 0.74, 

and 0.74) and GLMPCA (0.74, 0.74, 0.73, and 0.74). In the PBMC3k1Rare2 data, 

the F-measure by Isomap with four different number of low-dimensional 

components (0.5%, 1%, 2%, and 3%) are 0.79, 0.79, 0.79, and 0.79, respectively 

(Figure S35). The performance of Isomap is also followed by ZIFA (0.74, 0.74, 

0.74, and 0.74) and GLMPCA (0.74, 0.74, 0.74, and 0.74). Among the remaining 

methods, Poisson NMF, pCMF, scScope, and LTSA do not fare well for rare cell 

type detection. We note that many DR methods in conjunction with Louvain 

clustering method often yield an F-measure of zero when the rare cell type 

proportion is low (Figure S34C; PBMC3kRare1, 4.0% CD34+ cells) and only 

become reasonable with increasingly large rare cell type proportions (Figure 

S35C; PBMC3kRare2, 7.9% CD34+ cells). The poor performance of the Louvain 

clustering method for rare cell type detection is likely because its automatic way of 

determining cell cluster number does not fare well in the presence of 

uneven/un-balanced cell type proportions. 

Stability analysis across data splits 

Finally, we investigated the stability and robustness of different DR methods. To 

do so, we randomly split the Kumar data into two subsets with an equal number of 

cells for each cell type in the two subsets. We applied each DR method to the two 

subsets and measured the clustering performance in each subset separately. We 

repeated the procedure 10 times to capture the potential stochasticity during the 

data split. We visualized the clustering performance of different DR methods in 

the two subsets separately. Such visualization allows us to check the 

effectiveness of DR methods with respective to reduced sample size in the subset, 

as well as the stability/variability of DR methods across different split replicates 

(Figure S36). The results show that six DR methods, PCA, ICA, FA, ZINB-WaVE, 

MDS, and UMAP often achieve both accurate clustering performance and highly 

stable and consistent results across the subsets. The accurate and stable 

performance of ICA, ZINB-WaVE, MDS, and UMAP is notable even with a 

relatively small number of low-dimensional components. For example, with very 

small number of low-dimensional components, ICA, ZINB-WaVE, MDS, and 

UMAP achieve an average NMI value of 0.98 across the two subsets, with 

virtually no performance variability across data splits (Figure S36). 

Overall, the results suggest that, in terms of downstream clustering analysis 

accuracy and stability, PCA, FA, NMF, and ICA are preferable across a range of 

data sets examined here. In addition, scRNAseq specific DR methods such as 
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ZINB-WaVE, GLMPCA, and UMAP are also preferable if one is interested in 

extracting a small number of low-dimensional components, while generic methods 

such as PCA or FA are also preferred when one is interested in extracting a large 

number of low-dimensional components.  

Performance of DR methods for trajectory inference 

We evaluated the performance of different DR methods for lineage inference 

applications (details in Methods and Materials). To do so, we obtained 14 publicly 

available scRNAseq data sets, each of which contains known lineage information 

(Table S2). The known lineage in all these data are linear, without bifurcation or 

multifurcation patterns. For each data set, we applied one DR method at a time to 

extract a fixed number of low-dimensional components. In the process, we varied 

the number of low-dimensional components from 2, 6, 14 to 20 to examine their 

influence for downstream analysis. With the extracted low-dimensional 

components, we applied two commonly used trajectory inference methods: 

Slingshot [51] and Monocle3 [28, 52]. Slingshot is a clustering dependent 

trajectory inference method, which requires additional cell label information. We 

therefore first used either k-means clustering algorithm, hierarchical clustering or 

Louvain method to obtain cell type labels, where the number of cell types in the 

clustering was set to be the known truth. Afterwards, we supplied the 

low-dimensional components and cell type labels to the Slingshot to infer the 

lineage. Monocle3 is a clustering free trajectory inference method, which only 

requires low-dimensional components and trajectory starting state as inputs. We 

set the trajectory starting state as the known truth for Monocle3. Following [51], 

we evaluated the performance of DR methods by Kendall correlation coefficient 

(details in Methods and Materials) that compares the true lineage and inferred 

lineage obtained based on the low-dimensional components. In this comparison, 

we also excluded one DR method, scScope, which is not compatible with 

Slingshot. The lineage inference results for the remaining DR methods are 

summarized in Figures 3 and S37-S54.  

Trajectory inference by Slingshot 

We first focused on the comparison results obtained from Slingshot. Different from 

the clustering results where accuracy generally increases with increasing number 

of included low-dimensional components, the lineage tracing results from 

Slingshot do not show a clear increasing pattern with respect to the number of 

low-dimensional components, especially when we used k-means clustering as the 

initial step (Figures 3 and S39A). For example, the average Kendall correlation 
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across all data sets and across all methods are 0.35, 0.36, 0.37 and 0.37 for 

increasingly large number of components, respectively. When we used 

hierarchical clustering algorithm as the initial step, the lineage tracing results in 

the case of a small number of low-dimensional components are slightly inferior as 

compared to the results obtained using a large number of low-dimensional 

components (Figures S37 and S39B). However, we do note that the lineage 

tracing results obtained using k-means are better than that obtained using 

hierarchical clustering as the initial step. In addition, perhaps somewhat 

surprisingly, the lineage tracing results obtained using Louvain clustering method 

are slightly better that the results obtained using k-means clustering (Figures S38 

and S39C) – even though the clustering results from k-means are generally better 

than that from Louvain. For example, the average Kendall correlation obtained 

using Louvain method across all data sets and across all methods are 0.36, 0.38, 

0.40 and 0.40 for increasingly large number of components, respectively. 

Therefore, Louvain method is recommended as the initial step for lineage 

inference and a small number of low-dimensional components there is often 

sufficient for accurate results. When conducting lineage inference based on a low 

number of components with Louvain method, we found that four DR methods, 

PCA, FA, ZINB-WaVE and UMAP, all perform well for lineage inference across 

varying number of low-dimension components (Figure S39C). For example, with 

the lowest number of components, the average Kendall correlation across data 

sets for PCA, FA, UMAP, and ZINB-WaVE are 0.44, 0.43, 0.40, and 0.43, 

respectively. Their performance is followed by ICA (0.37), ZIFA (0.36), tSNE (0.33) 

and Diffusion Map (0.38). While pCMF (0.26), Poisson NMF (0.26) and LTSA 

(0.12) do not fare well.  

Trajectory inference by Monocle3 

We next examined the comparison results based on Monocle3 (Figures S40-S41). 

Similar to Slingshot, we found that the lineage tracing results from Monocle3 also 

do not show a clear increasing pattern with respect to the number of 

low-dimensional components (Figure S41). For example, the average Kendall 

correlation across all data sets and across all methods are 0.37, 0.37, 0.38 and 

0.37 for increasingly large number of components, respectively. Therefore, similar 

with Slingshot, we also recommend the use of a small number of low-dimensional 

components with Monocle3. In terms of DR method performance, we found that 

five DR methods, FA, MDS, GLMPCA, ZINB-WaVE and UMAP, all perform well 

for lineage inference. Their performance is often followed by NMF and DCA. 

While Poisson NMF, pCMF, LLE and LTSA do not fare well. The DR comparison 
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results based on Monocle3 are in line with those recommendation by Monocle3 

software, which uses UMAP as the default DR method [28]. In addition, the set of 

five top DR methods for Monocle3 are largely consistent with the set of top five 

DR methods for Slingshot, with only one method difference between the two 

(GLMPCA in place of PCA). The similarity of top DR methods based on different 

lineage inference methods suggests that a similar set of DR methods are likely 

suitable for lineage inference in general.  

Visualization of inferred lineages 

We visualized the reduced low-dimensional components from different DR 

methods in one trajectory data set, the ZhangBeta data. The ZhangBeta data 

consists of expression measurements on mouse pancreatic � cells collected at 

seven different developmental stages. These seven different cell stages include 

E17.5, P0, P3, P9, P15, P18 and P60. We applied different DR methods to the 

data to extract the first two dimensional components. Afterwards, we performed 

lineage inference and visualization using Monocle3. The inferred tracking paths 

are shown in Figure S42. Consistent with Kendall correlation (Figure 3), all top DR 

methods are able to infer the correct lineage path. For example, the trajectory 

from GLMPCA and UMAP completely matches the truth. The trajectory inferred 

from FA, NMF, or ZINB-WaVE largely matches the truth with small bifurcations. In 

contrast, the trajectory inferred from either Poisson NMF or LTSA displays 

unexpected radical patterns (Figure S42), again consistent with the poor 

performance of these two methods in lineage inference.  

Normalization does not influence the performance of DR methods 

For DR methods that require normalized data, we further examined the influence 

of different data transformation approaches on their performance (Figures 

S43-S53). Like in the clustering comparison, we found that different 

transformations do not influence the performance results for most DR methods in 

lineage inference. For example, in Slingshot with the k-means clustering algorithm 

as the initial step, when the number of low-dimensional components is small, 

UMAP achieves a Kendall correlation of 0.42, 0.43 and 0.40, for log2 count 

transformation, log2 CPM transformation, and z-score transformation, 

respectively (Figures S39A, S46A, and S50A). Similar results hold for the 

hierarchical clustering algorithm (Figures S39B, S46B, and S50B) and Louvain 

method (Figures S39B, S46B, and S50B). However, some notable exceptions 

exist. For example, with log2 CPM transformation but not the other 

transformations, the performance of Diffusion Map increases with increasing 
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number of included components when k-means clustering was used as the initial 

step: the average Kendall correlation across different low-dimensional 

components are 0.37, 0.42, 0.44, and 0.47, respectively (Figures S43 and S46A). 

As another example, with z-score transformation but not with the other 

transformations, FA achieves the highest performance among all DR methods 

across different number of low-dimensional components (Figure S50A). Similarly, 

in Monocle3, different transformations (log2 count transformation, log2 CPM 

transformation and z-score transformation) do not influence the performance of 

DR methods. For example, with the lowest number of low-dimensional 

components, UMAP achieves a Kendall correlation of 0.49, 0.47 and 0.47, for 

log2 count transformation, log2 CPM transformation, and z-score transformation, 

respectively (Figures S41, S53A and S53B). 

Stability analysis across data splits 

We also investigated the stability and robustness of different DR methods by data 

split in the Hayashi data. We applied each DR method to the two subsets and 

measured the lineage inference performance in the two subsets separately. We 

again visualize the clustering performance of different DR methods in the two 

subsets, separately. Such visualization allows us to check the effectiveness of DR 

methods with respective to reduced sample size in the subset, as well as the 

stability/variability of DR methods across different split replicates (Figure S54). 

The results show that four of the DR methods, FA, Diffusion Map, ZINB-WaVE, 

and MDS often achieve both accurate performance and highly stable and 

consistent results across the subsets. The accurate and stable performance of 

these is notable even with a relatively small number of low-dimensional 

components. For example, with very small number of low-dimensional 

components, FA, Diffusion Map, ZINB-WaVE and MDS achieve Kendall 

correlation of 0.75, 0.77, 0.77, and 0.78 averaged across the two subsets, 

respectively, and again with virtually no performance variability across data splits 

(Figure S54). 

Overall, the results suggest that, in terms of downstream lineage inference 

accuracy and stability, the scRNAseq non-specific DR method FA, PCA, and NMF 

are preferable across a range of data sets examined here. The scRNAseq 

specific DR methods ZINB-WaVE as well as the scRNAseq non-specific DR 

method NMF are also preferable if one is interested in extracting a small number 

of low-dimensional components for lineage inference. In addition, the scRNAseq 

specific DR method Diffusion Map and scRNAseq non-specific DR method MDS 
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may also be preferable if one is interested in extracting a large number of 

low-dimensional components for lineage inference. 

Large-scale scRNAseq data applications  

Finally, we evaluated the performance of different DR methods in two large-scale 

scRNAseq data sets. The first data is Guo et al. [53], which consists of 12,346 

single cells collected through a non-UMI based sequencing technique. Guo et al. 

data contains known cell cluster information and is thus used for DR method 

comparison based on cell clustering analysis. The second data is Cao et al. [28], 

which consists of approximately 2 million single cells collected through a 

UMI-based sequencing technique. Cao et al. data contains known lineage 

information and is thus used for DR method comparison based on trajectory 

inference. Since many DR methods are not scalable to these large-scale data 

sets, in addition to applying DR methods to the two data directly, we also coupled 

them with a recently developed sub-sampling procedure dropClust to make all DR 

methods applicable to large data [54] (details in Methods and Materials). We 

focus our comparison in the large-scale data using the k-means clustering method. 

We also used log2 count transformation for DR methods that require normalized 

data.  

The comparison results when we directly applied DR methods to the Guo et al. 

data are shown in Figure S55. Among the methods that are directly applicable to 

large-scale data sets, we found that UMAP consistently outperforms the 

remaining DR methods across a range of low-dimensional components by a large 

margin. For example, the average NMI of UMAP across different number of 

low-dimensional components (0.5%, 1%, 2%, and 3%) are in the range between 

0.60 and 0.61 (Figure S55A). In contrast, the average NMI for the other methods 

are in the range of 0.15-0.51. In the case of a small number of low-dimensional 

components, we found that the performance of both FA and NMF are reasonable 

and follow right after UMAP. With the subsampling procedure, we can scale all 

DR methods relatively easily to this large-scale data (Figure S56). As a result, 

several DR methods, most notably FA, can achieve similar or better performance 

as compared to UMAP. However, we do notice an appreciable performance loss 

for many DR methods through the subsampling procedure. For example, the NMI 

of UMAP in the sub-sampling based procedure is only 0.26, representing an 

approximately 56% performance loss compared to the direct application of UMAP 

without sub-sampling (Figure S56 vs Figure S55). Therefore, we caution the use 

of sub-sampling procedure and recommend users to careful examine the 
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performance of DR methods before and after sub-sampling to decide whether 

sub-sampling procedure is acceptable for their own applications.  

For lineage inference in the Cao et al. data, due to computational constraint, we 

randomly obtained 10,000 cells from each of the five different developmental 

stages (i.e., E9.5, E10.5, E11.5, E12.5 and E13.5) and applied different DR 

methods to analyze the final set of 50,000 cells. Because most DR methods are 

not scalable even to these 50,000 cells, we only examined the performance of DR 

methods when paired with the sub-sampling procedure (Figure S57). With the 

small number of low-dimensional components, three DR methods, GLMPCA, 

DCA and Isomap, all achieve better performance than the other DR methods. For 

example, with the lowest number of low-dimensional components, the average 

absolute Kendall correlation of GLMPCA, DCA and Isomap are 0.13, 0.28, and 

0.17, respectively. In contrast, the average absolute Kendall correlation of the 

other DR methods are in the range of 0.01-0.12. With a higher number of 

low-dimensional components, Isomap and UMAP show better performance. For 

example, with 3% low-dimensional components, the average absolute Kendall 

correlation of Isomap and UMAP increase to 0.17 and 0.30, respectively. Their 

performance is followed by Diffusion Map (0.15), ZINB-WaVE (0.14), and LLE 

(0.12); while the remaining methods are in the range of 0.04-0.07.  

Computation time 

We recorded and compared computing time for different DR methods on 

simulated data sets. Here, we also examined how computation time for different 

DR methods varies with respect to the number of low-dimensional components 

extracted (Figure 4A) as well as with respect to the number of cells contained in 

the data (Figure 4B). Overall, the computational cost of three methods, 

ZINB-WaVE, ZIFA, and pCMF, is substantially heavier than the remaining 

methods. Their computation time increase substantially with both increasingly 

large number of low-dimensional components and increasingly large number of 

cells in the data. Specifically, when the sample size equals 500 and the desired 

number of low dimensional components equals 22, the computing time for 

ZINB-WaVE, ZIFA, and pCMF to analyze 10,000 genes are 2.15, 1.33, and 1.95 

hours, respectively (Figure 4A). When the sample size increases to 10,000, the 

computing time for ZINB-WaVE, ZIFA, and pCMF increases to 12.49, 20.50, and 

15.95 hours, respectively (Figure 4B). Similarly, when the number of 

low-dimensional components increases to 52, the computing time for ZINB-WaVE, 

ZIFA, and pCMF increases to 4.56, 4.27, and 4.62 hours, respectively. Besides 
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these three methods, the computing cost of ICA, GLMPCA, and Poisson NMF can 

also increase noticeably with increasingly large number of low-dimensional 

components. The computing cost of ICA, but to a lesser extent of GLMPCA, LLE, 

LTSA and Poisson NMF, also increases substantially with increasingly large 

number of cells. In contrast, PCA, FA, Diffusion Map, UMAP, and the two deep 

learning-based methods (DCA and scScope) are computationally efficient. In 

particular, the computation time for these six methods are stable and do not show 

substantial dependence on the sample size or the number of low-dimensional 

components. Certainly, we expect that the computation time of all DR methods 

will further increase as the sample size of the scRNAseq data sets increases in 

magnitude. Overall, in terms of computing time, PCA, FA, Diffusion Map, UMAP, 

DCA, and scScope are preferable.   

Practical guidelines 

In summary, our comparison analysis shows that different DR methods can have 

different merits for different tasks. Subsequently, it is not straightforward to 

identify a single DR method that strives the best in all data sets and for all 

downstream analyses. Instead, we provide a relatively comprehensive practical 

guideline for choosing DR methods in scRNAseq analysis in Figure 5. Our 

guideline is based on the accuracy and effectiveness of DR methods in terms of 

the downstream analysis, the robustness and stability of DR methods in terms of 

replicability and consistency across data splits, as well as their performance in 

large-scale data applications, data visualization, as well as computational 

scalability for large scRNAseq data sets. Briefly, for cell clustering analysis, PCA, 

ICA, FA, NMF, and ZINB-WaVE are recommended for small data where 

computation is not a concern. PCA, ICA, FA, NMF are also recommended for 

large data where computation is a concern. For lineage inference analysis, FA, 

PCA, NMF, UMAP and ZINB-WaVE are all recommended for small data. A subset 

of these methods, FA, PCA, NMF and UMAP are also recommended for large 

scRNAseq data. In addition, for very large scRNAseq data sets (e.g. >100,000 

samples), DCA and UMAP perhaps are the only feasible approach for both 

downstream analyses with UMAP being the preferred choice. We also recognize 

that PCA, ICA, FA and NMF can be useful options in very large data sets when 

paired with a sub-sampling procedure [54], though care need to be taken to 

examine the effectiveness of the sub-sampling procedure itself. Finally, besides 

these general recommendations, we note that some methods have additional 

features that are desirable for practitioners. For example, ZINB-WaVE can include 

sample-level and gene-level covariates, thus allowing us to easily control for 
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batch effects or size factors. We provide our detailed recommendations in Figure 

5. 
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DISCUSSION 

We have presented a comprehensive comparison of different dimensionality 

reduction methods for scRNAseq analysis. We hope the summary of these 

state-of-the-art DR methods, the detailed comparison results, and the 

recommendations and guidelines for choosing DR methods can assist 

researchers in the analysis of their own scRNAseq data. 

In the present study, we have primarily focused on three clustering methods 

(k-means, hierarchical clustering, and Louvain method) to evaluate the 

performance of different DR methods for downstream clustering analysis. We 

have also primarily focused on two lineage inference methods (Slingshot and 

Monocle3) to evaluate the performance of different DR methods for downstream 

lineage inference. In our analysis, we found that the performance of DR methods 

measured based on different clustering methods are often consistent with each 

other. Similarly, the performance of DR methods measured based on different 

lineage inference methods are also consistent with each other. However, it is 

possible that some DR methods may work well with certain clustering approaches 

and/or with certain lineage inference approaches. Subsequently, future 

comparative analysis using other clustering methods and other lineage inference 

methods as comparison criteria may have added benefits. In addition, besides cell 

clustering and trajectory inference, we note that DR methods are also used for 

many other analytic tasks in scRNAseq studies. For example, factor models for 

DR is an important modeling part for multiple scRNAseq data sets alignment [16], 

for integrative analysis of multiple omics data sets [55, 56], as well as for 

deconvoluting bulk RNAseq data using cell type specific gene expression 

measurements from scRNAseq [57, 58]. In addition, cell classification in 

scRNAseq also relies on a low-dimensional structure inferred from original 

scRNAseq through DR [59, 60]. Therefore, the comparative results obtained from 

the present study can provide important insights into these different scRNAseq 

analytic tasks. In addition, investigating the performance of DR methods in these 

different scRNAseq downstream analyses is an important future research 

direction.  

We mostly focused on evaluating feature extraction methods for DR. Another 

important category of DR method is the feature selection method, which aims to 

select a subset of features/genes directly from the original feature space. The 

feature section methods rely on different criteria to select important genes and are 

also commonly used in the preprocessing step of scRNAseq data analysis [61]. 
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For example, M3Drop relies on dropout events in scRNAseq data to identify 

informative genes [62]. Seurat uses gene expression variance to select highly 

variable genes [16]. Evaluating the benefits of different methods and criteria for 

selecting informative genes for different downstream tasks is another important 

future direction. 

With the advance of scRNAseq technologies and with the increase collaborations 

across scientific groups, new consortium projects such as the Human Cell Atlas 

(HCA) will generate scRNAseq data sets that contain millions of cells [34]. The 

large data at this scale poses critical computational and statistical challenges to 

many current DR methods. Many existing DR methods, in particular those that 

require the computation and memory storage of a covariance or distance matrix 

among cells, will no longer be applicable there. We have examined a particular 

sub-sampling strategy to scale all DR methods to large data sets. However, while 

the sub-sampling strategy is computationally efficient, it unfortunately reduces the 

performance of many DR methods by a substantial margin. Therefore, new 

algorithmic innovations and new efficient computational approximations will likely 

be needed to effectively scale many of the existing DR methods to millions of 

cells.  
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METHODS AND MATERIALS 

ScRNAseq data sets 

We obtained a total of 30 scRNAseq data sets from public domains for 

benchmarking DR methods. All data sets were retrieved from the Gene 

Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/) or the 

10X genomics website 

(https://support.10xgenomics.com/single-cell-gene-expression/datasets). These 

data sets cover a wide variety of sequencing techniques that include Smart-Seq2 

(8 data sets), 10X genomics (6 data sets), Smart-Seq (5 data sets), inDrop (1 data 

set), RamDA-seq (1 data set), sci-RNA-seq3 (1 data set), SMARTer (5 data sets) 

and others (3 data sets). In addition, these data cover a range of sample sizes 

from a couple hundred cells to tens of thousands of cells measured in either 

human (19 data sets) or mouse (11 data sets). In each data set, we evaluated the 

effectiveness of different DR methods for one of the two important downstream 

analysis tasks: cell clustering and lineage inference. In particular, 15 data sets 

were used for cell clustering evaluation while another 15 data sets were used for 

lineage inference evaluation. For cell clustering, we followed the same criteria 

listed in [12, 41] to select these datasets. In particular, the selected data sets need 

to contain true cell clustering information which is to be treated as the ground truth 

in the comparative analysis. In our case, 11 of the 15 data sets were obtained by 

mixing cells from different cell types either pre-determined by fluorescence 

activated cell sorting (FACS) or cultured on different conditions. Therefore, these 

11 studies contain the true cell type labels for all cells. The remaining 4 data sets 

contain cell labels that were determined in the original study and we simply 

treated them as truth though we do acknowledge that such “true” clustering 

information may not be accurate. For lineage inference, we followed the same 

criteria listed in [14] to select these datasets. In particular, the selected data sets 

need to contain true linear lineage information which is to be treated as the 

ground truth in the comparative analysis. In our case, 4 of the 15 data sets were 

obtained by mixing cells from different cell types pre-determined by FACS. These 

different cell types are at different developmental stages of a single linear lineage; 

thus these 4 studies contain the true lineage information for all cells. The 

remaining 11 data sets contain cells that were collected at multiple time points 

during the development process. For these data, we simply treated cells at these 

different time points as part of a single linear lineage, though we do acknowledge 

that different cells collected at the same time point may represent different 

developmental trajectories from an early time point if the cells at the early time are 
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heterogeneous. In either case, the true lineage in all these 15 data sets are 

treated as linear, without any bifurcation or multifurcation patterns.  

A detailed list of the selected scRNAseq datasets with corresponding data 

features is provided in Tables S1-S2. In each of the above 30 data sets, we 

removed genes that are expressed in less than five cells. For methods modeling 

normalized data, we transformed the raw counts data into continuous data with 

the normalize function implemented in scater (R package v1.12.0). We then 

applied log2 transformation on the normalized counts by adding one to avoid log 

transforming zero values. We simply term this normalization as log2 count 

transformation, though we do acknowledge that such transformation does take 

into account of cell size factor etc. through the scater software. In addition to log2 

count transformation, we also explored the utility of two additional data 

transformation: log2 CPM transformation and z-score transformation. In the log2 

CPM transformation, we first computed counts per million reads (CPM) and then 

performed log2 transformation on the resulted CPM value by adding a constant of 

one to avoid log transformation of zero quantities. In the z-score transformation, 

for each gene in turn, we standardized CPM values to achieve a mean of zero and 

variance of one across cells using Seurat package (v2.3).  

Besides the above 30 real scRNAseq data sets, we also simulated 2 additional 

scRNAseq data sets for cell clustering evaluation. In the simulations, we used all 

94 cells from one cell type (v6.5 mouse 2i+LIF) in the Kumar data as input. We 

simulated scRNAseq data with 500 cells and a known number of cell types, which 

were set to be either 4 or 8, using the Splatter package v1.2.0. All parameters 

used in the Splatter (e.g., mean rate, shape, dropout rate, etc.) were set to be 

approximately those estimated from the real data. In the case of 4 cell types, we 

set the group parameter in Splatter as 4. We set the percentage of cells in each 

group as 0.1, 0.15, 0.5 and 0.25, respectively. We set the proportion of the 

differentially expressed genes in each group as 0.02, 0.03, 0.05 and 0.1, 

respectively. In the case of 8 cell types, we set group/cell type parameter as 8. We 

set the percentage of cells in each group as 0.12, 0.08, 0.1, 0.05, 0.3, 0.1, 0.2 and 

0.05, respectively. We set the proportion of the differentially expressed genes in 

each group as 0.03, 0.03, 0.03, 0.1, 0.05, 0.07, 0.08, and 0.1, respectively. 

Compared dimensionality reduction methods 

DR methods aim to transform an originally high-dimensional feature space into a 

low-dimensional representation with a much-reduced number of components. 

These components are in the form of a linear or non-linear combination of the 
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original features (known as feature extraction DR methods) [63] and in the 

extreme case are themselves a subset of the original features (known as feature 

selection DR methods) [64]. In the present study, we have collected and compiled 

a list of 18 popular and widely used DR methods in the field of scRNAseq analysis. 

These DR methods include factor analysis (FA; R package psych, v1.8.12), 

principal component analysis (PCA; R package stats, v3.6.0), independent 

component analysis (ICA; R package ica, v1.0.2), Diffusion Map (Diffusion Map; R 

package destiny, v2.14.0), nonnegative matrix factorization (NMF; R package 

NNLM, v1.0.0), Kullback-Leibler divergence-based NMF (Poisson NMF; R 

package NNLM, v1.0.0), zero-inflated factor analysis (ZIFA; Python package 

ZIFA), zero-inflated negative binomial based wanted variation extraction 

(ZINB-WaVE; R package zinbwave, v1.6.0), probabilistic count matrix 

factorization (pCMF; R package pCMF, v1.0.0), deep count autoencoder network 

(DCA; Python package dca), a scalable deep-learning-based approach (scScope; 

Python package scscope), generalized linear model principal component analysis 

(GLMPCA; R package on github), multidimensional scaling (MDS; Rdimtools R 

package v.0.4.2), locally linear embedding (LLE; Rdimtools R packge v.0.4.2), 

local tangent space alignment (LTSA; Rdimtools R package v.0.4.2), Isomap 

(Rdimtools R package v.0.4.2), t-distributed stochastic neighbor embedding 

(tSNE; FIt-SNE, fftRtnse R function), and uniform manifold approximation and 

projection (UMAP; Python package). One of these methods, tSNE, can only 

extract a maximum of two or three low-dimensional components [42-44]. 

Therefore, we only included tSNE results based on two low-dimensional 

components extracted from the recently developed fast FIt-SNE R package [44] in 

all figures. An overview of these 18 DR methods with their corresponding 

modeling characteristics is provided in Table 1.  

Assess the performance of dimensionality reduction methods 

We first evaluated the performance of DR methods by neighborhood preserving 

that aims to access whether the reduced dimensional space resembles the 

original gene expression matrix. To do so, we first identified the k-nearest 

neighbors for each single cell in the original space (denoted as a set A) and in the 

reduced space (denoted as a set B). We set k = 10, 20, or 30 in our study. We 

then computed the Jaccard index (JI) [45] to measure the neighborhood similarity 

between the original space and the reduced space: �� � |���|
|���|, where |·| denotes 

the cardinality of a set. We finally obtained the averaged Jaccard index (AJI) 

across all cells to serve as the measurement for neighborhood preserving. We 
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note, however, that neighborhood preserving is primarily used to measure the 

effectiveness of pure dimensionality reduction in terms of preserving the original 

space and may not be relevant for single cell analytic tasks that are the main 

focus of the present study: a DR method that preserve the original gene 

expression matrix effectively may not be effective in extracting useful biological 

information from the expression matrix that are essential for key downstream 

single cell applications. Preserving the original gene expression matrix is rarely 

the purpose of DR methods for single cell applications: indeed, the original gene 

expression matrix (which is the best-preserved matrix of itself) is rarely, if ever, 

used directly in any downstream single cell applications including cell clustering 

and lineage inference, even though it is computationally easy to do so. 

Therefore, more importantly, we also evaluated the performance of DR methods 

by evaluating how effective the low-dimensional components extracted from DR 

methods are for downstream single cell analysis. We evaluated either of the two 

commonly applied downstream analysis, clustering analysis and lineage 

reconstruction analysis, in the 32 data sets described above. In the analysis, we 

varied the number of low-dimensional components extracted from these DR 

methods. Specifically, for cell clustering data sets, in a data with less than or 

equal to 300 cells, we varied the number of low dimensional components to be 

either 2, 6, 14, or 20. In a data with more than 300 cells, we varied the number of 

low dimensional components to be either 0.5%, 1%, 2%, or 3% of the total 

number of cells. For lineage inference data sets, we varied the number of low 

dimensional components to be either 2, 6, 14, or 20 for all data sets, since 

common lineage inference methods prefer a relatively small number of 

components.  

For clustering analysis, after DR with these DR methods, we used three different 

clustering methods, the hierarchical clustering (R function hclust; stats v3.5.3), 

k-means clustering (R function kmeans; stats v3.6.0), or Louvain method (R 

function clusterCells; monocle v2.12.0) to perform clustering on the reduced 

feature space. The k-means clustering is a key ingredient of commonly applied 

scRNAseq clustering methods such as SC3 [18] and Waterfall [25]. The 

hierarchical clustering is a key ingredient of commonly applied scRNAseq 

clustering methods such as CIDR [17] and CHETAH [65]. The Louvain method is 

also a commonly used clustering method for common single cell analysis software 

such as Seurat [16] and Monocle [27, 66]. In all these clustering methods, we set 

the number of clusters k to be the known number of cell types in the data. We 
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compared the cell clusters inferred using the low dimensional components to the 

true cell cluster and evaluated clustering accuracy by two criteria: the adjusted 

rand index (ARI) [67] and the normalized mutual information (NMI) [68]. The ARI 

and NMI are defined as: 

�	�
�, � � ∑ ����

	 
�,� ��∑ ��

	 
� ∑ ���
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���������, 
where � � 
��, �	, � , ����  denotes the inferred cell type cluster labels from 

clustering analysis while  � 
��, �	, � , ����  denotes the known true cell type 

labels for �  samples in the data;  �  and �  enumerate the clusters, with 

� � 1, � , � and � � 1, � , � where � and � are the number of inferred cell type 

clusters and the number of true cell type clusters, respectively; ��� � ∑ �
�� �� 

����� � �� is the number of times where the i’th cell belongs to the cluster � in 

the inferred cluster labeling and j’th cell belongs to the cluster � in the true cluster 

labeling; note that ��� is an entry of contingency table which effectively measures 

the number of cells that are in common between � and , with �
·� being an 

indicator function; �� � ∑ ����  is the sum of the �th column of the contingency 

table; and �� � ∑ ����  is the sum of the �th row of the contingency table;�··  

denotes a binomial coefficient; ��
�, � � ∑ ∑ ���

�� �!" # ���

�
����

��

$�  is the mutual 

information between two cluster labels; %
�� � & ∑ �

�� �!" ��

�   is the entropy 

function for inferred cell type labeling; and %
� � & ∑ ��
�� �!" ���

�   is the entropy 

function for true cell type labeling. We used the compare function in the igraph R 

package (v1.0.0) to compute both ARI and NMI criteria. For rare cell type 

identification, we used the '-measure, that is commonly used for quantifying rare 

cell type identification performance [49, 50]. The F-measure is the harmonic mean 

of the clustering’s precision and recall, and is formulated as: 

' & measure � 2 �!"
��". 

where �  represents the precision for identifying the rare cluster, with � �
�#$% �'��(�)%

�#$% �'��(�)%�*��% �'��(�)% ; while 	  represents the recall for identifying the rare 

cluster, with 	 � �#$% �'��(�)%
�#$% �'��(�)%�*��% +%,(�)%. For each data set, we repeated the 

above procedure five times and report the averaged results to avoid the influence 

of the stochasticity embedded in some DR methods and/or the clustering 

algorithm.  
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While it is straightforward to apply different DR methods to most scRNAseq data 

sets, we found that many DR methods are not computationally scalable and 

cannot be directly applied for clustering analysis in two large-scale scRNAseq 

data sets we examined in the present study. For these non-scalable DR methods, 

we made use of a recently developed subsampling procedure described in 

dropClust to scale them to large data [54]. In particular, we first applied dropClust 

to the original large-scale data to infer rare cell populations. We then created a 

small data by combining all cells in the rare cell populations along with a subset 

set of cells in the remaining cell populations. The subset of cells in the non-rare 

populations are obtained through subsampling using the structure preserving 

sampling procedure (details in [54]). Afterwards, we applied different DR methods 

to the small data and performed clustering analysis there. The cells in the small 

data are then directly assigned with their clustering label after clustering analysis. 

For each cell that is not in the small data, we computed the Pearson correlation 

between the cell and each of the cluster centers inferred in the small data. We 

assigned the cell to the cluster with the closest cluster center in the small data as 

the cluster assignment.  

For trajectory inference, after DR with these DR methods, we used Slingshot [51] 

(R package, v1.2.0) and Monocle3 [28] (R package, v0.1.2). The Slingshot 

software is the recommended lineage inference method based on a recent 

comparative study [14]. Monocle3 is one of the most recent lineage inference 

methods. Slingshot takes two input data: the low-dimensional components 

extracted from DR methods and a vector of cluster labels predicted by clustering 

algorithms. Monocle3 also takes two input data: the low-dimensional components 

extracted by DR methods and starting state which is to the beginning of the 

lineage. For the cluster labels, we used either k-means, hierarchical clustering 

algorithm or Louvain method on the extracted low-dimensional components to 

obtain cluster labels. For the starting state, we supplied with the true beginning 

state of the lineage in the data. After obtaining the two types of input through the 

slingshot function, we used the getLineages function to fit a minimum spanning 

tree (MST) to identify lineage. The final output from Slingshot is an object of class 

SlingshotDataSet that contains the inferred lineage information. We follow the 

original Slingshot paper [51] to evaluate the accuracy of the inferred lineage using 

the Kendall rank correlation coefficient. To do so, for each data, we first ranked 

genes based on their position on the true lineage. We ordered all m genes based 

on this rank order and denoted the corresponding rank in ascending order for 

these genes as /0�, � , 0-1, where 0� 2 0���. Note that the true lineage is linear 
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without any bifurcation or multifurcation patterns, while the inferred lineage may 

contain multiple ending points in addition to the single starting point. Therefore, for 

each inferred lineage, we examined one trajectory at a time, where each 

trajectory consists of the starting point and one of the ending points. In each 

trajectory, we ranked genes in order based on their position in the trajectory. We 

denote the corresponding rank order in the inferred trajectory for all m genes as 

/3�, � , 3-1, where we set 3� as missing if l’th gene is not included in the inferred 

trajectory. For each pair of non-missing genes, we labeled the gene pair (i, j) as a 

concordant pair if their relative rank in the inferred lineage are consistent with their 

relative rank in the true lineage; that is, either 
0� 4 0  & 3� 4 3 �  or 
0� 6
0  & 3� 6 3 �. Otherwise, we labeled the gene pair (i, j) as discordant. We denoted 

7 as the number of concordant pairs, 8 as the number of discordant pairs, and 

9 as the total number of non-missing genes. The Kendell correlation coefficient is 

then computed as   

: �  7 & 8
9
9 & 1� 2⁄ . 

Afterwards, we obtained the maximum absolute : over all these trajectories as 

the final Kendall correlation score to evaluate the similarity between the inferred 

lineage and the true lineage. For each data set, we repeated the above procedure 

five times and report the averaged results to avoid the influence of the 

stochasticity embedded in some DR methods and/or the lineage inference 

algorithm. For the large-scale data application to Cao et al., we also applied the 

sub-sampling approach dropClust to scale different DR methods for lineage 

inference. 

We investigated the stability and robustness of different DR methods in both cell 

clustering and lineage inference applications through data splitting. Here, we 

focused on two representative scRNAseq data sets, the Kumar data set for cell 

clustering and the Hayashi data set for lineage inference. For each data, we 

randomly split the data into two subsets with an equal number of cells in each cell 

type in the two subsets. We repeated the split procedure 10 times to capture the 

potential stochasticity during the data split. In each split replicate, we applied 

different DR methods to analyze each subset separately. We used k-means 

clustering algorithm to infer the clustering labels in each subset. We used NMI to 

measure cell clustering accuracy and used Kendall correlation to measure lineage 

inference accuracy.  
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Finally, to summarize the performance of the evaluated DR methods across the 

range of criteria in Figure 5, we consider either “good”, “intermediate” or “poor” to 

categorize the DR methods for each criterion. For UMI and non-UMI in cell 

clustering, we evaluated the performance of different DR methods based on 0.5% 

low-dimensional components in Figures S31A and S31B: average NMI 4 0.73 

(good); 0.64 2 average NMI < 0.73 (intermediate); average NMI < 0.64 (poor). 

For Trajectory Inference, we evaluated the performance of different DR methods 

based on 2 low-dimensional components in Figure S39A: average Kendall 4 

0.41 (good); 0.35 2 average Kendall < 0.41 (intermediate); average Kendall < 

0.35 (poor). For Rare Cell Detection, we evaluated the performance of different 

DR methods based on 0.5% low-dimensional components in Figure S35A: 

F-measure 4 0.74 (good); 0.69 2 F-measure < 0.74 (intermediate); F-measure 

< 0.69 (poor). For Neighborhood Preserving, we evaluated the performance of 

different DR methods based on 0.5% low-dimensional components in Figure S7A: 

average Jaccard index 4 0.15 (good); 0.12 2 average Jaccard index < 0.15 

(intermediate); average Jaccard index < 0.12 (poor). For Scalability, we evaluated 

the performance of different DR methods when sample size is 10,000 in Figure 4B: 

computation time 2 0.25h (good); 0.25h 2 computation time < 10 (intermediate); 

computation time 4 10h (poor). For Consistency, we evaluated the performance 

of different DR methods based on the absolute mean value of the difference of 

average NMI between two splits from Figures S36 and S54: difference of average 

NMI 2 0.005 (good); 0.005 2 difference of average NMI < 0.01 (intermediate); 

difference of average NMI 4 0.01 (poor). For Success Rate, since both scScope 

and LTSA do not work for most trajectory inference data sets, we set as poor; 

NMF, ICA, tSNE, and GLMPCA do not work for some of data sets, we set as 

intermediate; the rest of DR methods are all good.  
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Figure 1. Overview of the evaluation workflow for dimensionality reduction 
methods. We obtained a total of 30 publicly available scRNAseq data from GEO 
and 10x Genomics website. We also simulated two addition simulation data sets. 
For each of the 32 data sets in turn, we applied 18 dimensionality reduction (DR) 
methods to extract the low-dimensional components. Afterwards, we evaluated 
the performance of DR methods by evaluating how effective the low-dimensional 
components extracted from DR methods are for downstream analysis. We did so 
by evaluating the two commonly applied downstream analysis: clustering analysis 
and lineage reconstruction analysis. In the analysis, we varied the number of 
low-dimensional components extracted from these DR methods. The 
performance of each DR method is qualified by Jaccard index for neighborhood 
preserving, normalized mutual information (NMI) and adjusted rand index (ARI) 
for cell clustering analysis, and Kendall correlation coefficient for trajectory 
inference. We also recorded the stability of each DR method across data splits 
and recorded the computation time for each DR method. Through the 
comprehensive evaluation, we eventually provide practical guidelines for 
practitioners to choose DR methods for scRNAseq data analysis. 
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Figure 2. DR method performance evaluated by k-means clustering based 
on NMI in downstream cell clustering analysis. We compared 18 DR methods 
(columns), including factor analysis (FA), principal component analysis (PCA), 
independent component analysis (ICA), Diffusion Map, nonnegative matrix 
factorization (NMF), Poisson NMF, zero-inflated factor analysis (ZIFA), 
zero-inflated negative binomial based wanted variation extraction (ZINB-WaVE), 
probabilistic count matrix factorization (pCMF), deep count autoencoder network 
(DCA), scScope, generalized linear model principal component analysis 
(GLMPCA), multidimensional scaling (MDS), locally linear embedding (LLE), local 
tangent space alignment (LTSA), Isomap, uniform manifold approximation and 
projection (UMAP), and t-distributed stochastic neighbor embedding (tSNE). We 
evaluated their performance on 14 real scRNAseq data sets (UMI-based data are 
labeled as purple; non-UMI based data are labeled as blue) and 2 simulated data 
sets (rows). The simulated data based on Kumar data is labeled with #. The 
performance of each DR method is measured by normalized mutual information 
(NMI). For each data set, we compared the four different number of 
low-dimensional components. The four numbers equal to 0.5%, 1%, 2%, and 3% 
of the total number of cells in big data and equal to 2, 6, 14, and 20 in small data 
(which are labeled with *). For convenience, we only listed 0.5%, 1%, 2%, and 3% 
on x-axis. No results for ICA are shown in the table (grey fills) because ICA cannot 
handle the large number of features in that data. No results for LTSA are shown 
(grey fills) because error occurred when we applied the clustering method on 
LTSA extracted low-dimensional components there. Note that, for tSNE, we only 
extracted two low-dimensional components due to the limitation of the tSNE 
software. 
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Figure 3. DR method performance evaluated by Kendall correlation in the 
downstream trajectory inference analysis. We compared 17 DR methods 
(columns), including factor analysis (FA), principal component analysis (PCA), 
independent component analysis (ICA), Diffusion Map, nonnegative matrix 
factorization (NMF), Poisson NMF, zero-inflated factor analysis (ZIFA), 
zero-inflated negative binomial based wanted variation extraction (ZINB-WaVE), 
probabilistic count matrix factorization (pCMF), deep count autoencoder network 
(DCA), generalized linear model principal component analysis (GLMPCA), 
multidimensional scaling (MDS), locally linear embedding (LLE), local tangent 
space alignment (LTSA), Isomap, uniform manifold approximation and projection 
(UMAP), and t-distributed stochastic neighbor embedding (tSNE). We evaluated 
their performance on 14 real scRNAseq data sets (rows) in terms of lineage 
inference accuracy. We used Slingshot with k-means as the initial step for lineage 
inference. The performance of each DR method is measured by Kendall 
correlation. For each data set, we compared four different number of 
low-dimensional components (2, 6, 14, and 20; four sub-columns under each 
column). Grey fills in the table represents missing results where Slingshot gave 
out errors when we supplied the extracted low-dimensional components from the 
corresponding DR method. Note that, for tSNE, we only extracted two 
low-dimensional components due to the limitation of the tSNE software. 
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Figure 4. The computation time (in hours) for different DR methods. We 
recorded computing time for 18 DR methods on simulated data sets with varying 
number of low-dimensional components and varying number of sample sizes. 
Compared DR methods include: factor analysis (FA; light green), principal 
component analysis (PCA; light blue), independent component analysis (ICA; 
blue), Diffusion Map (pink), nonnegative matrix factorization (NMF; green), 
Poisson NMF(light orange), zero-inflated factor analysis (ZIFA; light pink), 
zero-inflated negative binomial based wanted variation extraction (ZINB-WaVE; 
orange), probabilistic count matrix factorization (pCMF; light purple), deep count 
autoencoder network (DCA; yellow), scScope (purple), generalized linear model 
principal component analysis (GLMPCA; red), multidimensional scaling (MDS; 
cyan), locally linear embedding (LLE; blue green), local tangent space alignment 
(LTSA; teal blue), Isomap (grey), uniform manifold approximation and projection 
(UMAP; brown), and t-distributed stochastic neighbor embedding (tSNE; dark red).  
(A) Computation time for different DR methods (y-axis) changes with respect to 
an increasing number of low-dimensional components (x-axis). The number of 
cells is fixed to be 500 and the number of genes is fixed to be 10,000 in this set of 
simulations. Three methods (ZINB-WaVE, pCMF, and ZIFA) become noticeably 
computationally more expensive than the remaining methods with increasing 
number of low-dimensional components. (B) Computation time for different DR 
methods (y-axis) changes with respect to an increasing sample size (i.e. the 
number of cells) in the data. Computing time is recorded on a single thread of an 
Intel Xeon E5-2683 2.00 GHz processor. The number of low-dimensional 
components is fixed to be 22 in this set of simulations for most methods, except 
for tSNE which used two low-dimensional components due to the limitation of the 
tSNE software. Note that some methods are implemented with parallelization 
capability (e.g. ZINB-WaVE and pCMF) though we tested them on a single thread 

for fair comparison across methods. Note that PCA is similar to ICA in (A) and 

scScope is similar to several other efficient methods in (B); thus their lines may 
appear to be missing. Overall, three methods (ZIFA, pCMF, and ZINB-WaVE) 
become noticeably computationally more expensive than the remaining methods 
with increasing number of cells in the data. 
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Figure 5. Practical guideline for choosing DR methods in scRNAseq 
analysis. Compared DR methods include: factor analysis (FA), principal 
component analysis (PCA), independent component analysis (ICA), Diffusion 
Map, nonnegative matrix factorization (NMF), Poisson NMF, zero-inflated factor 
analysis (ZIFA), zero-inflated negative binomial based wanted variation extraction 
(ZINB-WaVE), probabilistic count matrix factorization (pCMF), deep count 
autoencoder network (DCA), scScope, generalized linear model principal 
component analysis (GLMPCA), multidimensional scaling (MDS), locally linear 
embedding (LLE), local tangent space alignment (LTSA), Isomap, uniform 
manifold approximation and projection (UMAP), and t-distributed stochastic 
neighbor embedding (tSNE). The count-based methods are colored in purple 
while non count-based methods are colored in blue. Methods are ranked by their 
average performance across the criteria from left to right. The performance is 
colored and numerically coded: good performance = 2 (sky-blue), intermediate 
performance = 1 (orange), and poor performance = 0 (grey).  
 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 23, 2019. ; https://doi.org/10.1101/641142doi: bioRxiv preprint 

https://doi.org/10.1101/641142
http://creativecommons.org/licenses/by/4.0/


Table 1. List of compared dimensionality reduction methods. We list standard modeling properties for each of 

compared dimensionality reduction methods. These properties include whether it models count data (3rd column), whether 

it accounts for zero inflation (4th column), whether it is a linear DR method (5th column), its computation efficiency (6th 

column), implementation language (7th column), year of publication (8th column), and reference (9th column). FA: factor 

analysis; PCA: principal component analysis; ICA: independent component analysis; NMF: nonnegative matrix 

factorization; Poisson NMF: Kullback-Leibler divergence-based NMF; ZIFA: zero-inflated factor analysis; ZINB-WaVE: 

zero-inflated negative binomial based wanted variation extraction; pCMF: probabilistic count matrix factorization; DCA: 

deep count autoencoder network; GLMPCA: generalized linear model principal component analysis; Diffusion Map; MDS: 

multidimensional scaling; LLE: locally linear embedding, LTSA: local tangent space alignment; Isomap; UMAP: uniform 

manifold approximation and projection; tSNE: t-distributed stochastic neighbor embedding. 
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No. Methods Modeling 

Counts 

Modeling 

Zero Inflation 

Non-Linear 

Projection 

Computation 

Efficiency 

Implementation 

Language 

Year of 

Publication 

Reference 

1 PCA No No No Yes R 1901 [69] 

2 ICA No No No No R 1994 [70] 

3 FA No No No Yes R 1952 [71] 

4 NMF No No No Yes R 1999 [72] 

5 Poisson NMF Yes No No Yes R 1999 [72] 

6 Diffusion Map No No Yes Yes R 2005 [73] 

7 ZIFA No Yes No No Python 2016 [30] 

8 ZINB-WaVE Yes Yes No No R 2018 [32] 

9 GLMPCA Yes No No No R 2019 [74] 

10 pCMF Yes Yes No No R 2019 [31] 

11 scScope No Yes Yes Yes Python 2019 [37] 

12 DCA Yes Yes Yes Yes Python 2018 [40] 

13 tSNE No No Yes No R 2008 [44] 

14 MDS No No No Yes R 1958 [75] 

15 LLE No No Yes Yes R 2000 [76] 

16 LTSA No No Yes No R 2004 [77] 

17 Isomap No No Yes Yes R 2000 [11] 

18 UMAP No No Yes Yes Python 2019 [78] 
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