
Statistics in CCR

Accuracy, Safety, and Reliability of
Novel Phase I Trial Designs
Heng Zhou1, Ying Yuan1, and Lei Nie2

Abstract

A number of novel model-based and model-assisted
designs have been proposed to find the MTD in phase I
clinical trials, but their differences and relative pros and
cons are not clear to many practitioners. We review three
model-based designs, including the continual reassessment
method (CRM), dose escalation with overdose control
(EWOC), and Bayesian logistic regression model (BLRM),
and three model-assisted designs, including the modified
toxicity probability interval (mTPI), Bayesian optimal
interval (BOIN), and keyboard (equivalently mTPI-2)
designs. We conduct numerical studies to assess their
accuracy, safety, and reliability and the practical implica-
tions of various empirical rules used in some designs, such
as skipping a dose and imposing overdose control. Our
results show that the CRM outperforms EWOC and BLRM

with higher accuracy of identifying the MTD. For the CRM,
skipping a dose is not recommended, as it substantially
increases the chance of overdosing patients while provid-
ing limited gain for identifying the MTD. EWOC and
BLRM appear excessively conservative. They are safe but
have relatively poor accuracy of finding the MTD. The
BOIN and keyboard (equivalently mTPI-2) designs have
similar operating characteristics, outperforming the mTPI,
but the BOIN is more intuitive and transparent. The BOIN
yields competitive performance comparable with the
CRM but is simpler to implement and free of the issue
of irrational dose assignment caused by model misspeci-
fication, thereby providing an attractive approach for
designing phase I trials. Clin Cancer Res; 24(18); 4357–64.
�2018 AACR.

Introduction
Most phase I oncology clinical trials are designed to identify

the MTD of a new drug, which is defined as the dose with a
dose-limiting toxicity (DLT) probability that is closest to the
target DLT probability. Due to its simplicity, the 3 þ 3 design
(1) has been dominant in phase I clinical trials for decades
despite its poor ability to identify the MTD and tendency to
treat patients at low doses that are potentially subtherapeutic
(2). The 3 þ 3 design and its variations are called "algorithm-
based designs" because they use simple, prespecified rules to
guide dose escalation.

Novel phase I trial designs that have been proposed to
improve the efficiency of identifying the MTD include mod-
el-based designs and model-assisted designs. The continual
reassessment method (CRM) is a typical example of a
model-based design that assumes a parametric model for the
dose–toxicity curve and then based on the accumulating trial
data, continuously updates the estimate of the curve to guide
the dose assignment and MTD selection (3). Various extensions
of the CRM have been proposed, including dose escalation with

overdose control (EWOC; ref. 4), the Bayesian logistic regres-
sion model (BLRM; ref. 5), the time-to-event CRM (6), and the
Bayesian model averaging CRM (7), among others. The CRM
has better operating characteristics than algorithm-based
designs (2, 8); however, its use in practice has been limited
probably due to its requirement of repeated model fitting, its
conceptual and computational complexity, and its nontrans-
parent approach to decision-making.

Model-assisted designs are a relatively new class of designs that
combine the superior performance of model-based designs with
the simplicity of algorithm-based designs (9, 10). Such designs
use a model for efficient decision-making like model-based
designs, whereas their dose-escalation and de-escalation rules
can be tabulated before the onset of a trial, as with algorithm-
based designs. Examples of model-assisted designs are the mod-
ified toxicity probability interval (mTPI) design (11) and its
variation, mTPI-2 (12), the Bayesian optimal interval (BOIN)
design (13, 14), and the keyboard design (9). Because of their
good performance and simplicity, model-assisted designs have
been increasingly used in practice.

The development of these novel designs provides practitioners
with an array of tools for conducting more flexible and efficient
phase I trials. We seek to compare these designs to determine their
differences and relative pros and cons. In addition, some designs
(e.g., CRMandBLRM) suggest optional empirical rules to regulate
dose escalation, such as whether dose skipping should be allowed
or an overdose control rule should be applied. On the basis of our
experience with phase I trials at the FDA and The University of
Texas MD Anderson Cancer Center (Houston, TX), we observe
that some protocols impose these empirical rules, whereas
others do not. The practical implications of these empirical
rules are not clear. To fill these knowledge gaps, we reviewed
several novel phase I designs, including the model-based CRM,
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EWOC, and BLRM designs, and model-assisted mTPI, BOIN, and
keyboard designs, and conducted aMonte Carlo experiment (i.e.,
computer simulations) to compare their operating characteristics.
We note that mTPI-2 ends up with the same design as the
keyboard design, thus the results for the keyboard design also
apply to mTPI-2.

An important issue that we examined that is largely over-
looked in the existing literature is the reliability of the design,
which is defined as the likelihood of extreme problematic trial
behavior occurring under a design (13), for example, the
likelihood of a design overdosing more than 50% of the
patients and the likelihood of a design failing to de-escalate
the dose when 2/3 or �3/6 patients had DLTs at that dose. The
incidence of such extreme behavior in a trial design may be low
but is of serious practical concern when it occurs. Our study
reveals some new, intriguing design behaviors that have impor-
tant practical implications. For example, two designs may have
similar performance in some commonly used metrics (e.g., the
average number of patients treated above the MTD) but rather
different likelihood of overdosing more than 50% of the
patients and failing to de-escalate the dose when 2/3 or �3/
6 patients had DLTs.

Materials and Methods
Review of Bayesian designs
CRM.TheCRM is amodel-baseddesign that assumes aparametric
model for the dose–toxicity curve. Let pj denote the true DLT
probability of dose level j, and � denote the target DLT proba-
bility, for example,�¼0.2 or 0.3. A commonly usedmodel for the
CRM is the power model:

pj ¼ aexp að Þ
j ; for j ¼ 1; . . . ; J;

where a is the unknown parameter, and 0 < a1 < . . .< aJ <1 are
prior guesses for the DLT probability at each dose (i.e., the initial
estimate of the dose–toxicity curve), usually elicited from clin-
icians. Thismodel links the true dose–toxicity curve (i.e., pj 0s)with
its prior estimate (i.e., aj 0s). After each patient cohort is treated, the
CRMupdates the estimate of the dose–toxicity curve based on the
accumulating DLT data across all dose levels and assigns the next
cohort of patients to the "optimal" dose, defined as the dose
whose posteriormean estimate of theDLT probability is closest to
the target �. Through this continuously updating process, the
CRM seamlessly incorporates the newly observed DLT data into
the estimation of pj and the decision of dose escalation and de-
escalation. As illustrated in Fig. 1A, the observation of DLTs tends
to lift the dose–toxicity curve, leading to dose de-escalation, and
the observation of no DLT tends to lower the dose–toxicity curve,
leading to dose escalation. The trial continues in thismanner until
the prespecified sample size is exhausted. At that point, theMTD is
selected as thedosewith an estimatedDLTprobability closest to�.
In the original CRM, new patients are always assigned to the
currently estimated "optimal" dose, which may lead to skipping
untried doses. In practice, many trials impose a rule that forbids
skipping doses and restricts dose escalation and de-escalation to
one level at a time. In addition, a safety stopping rule is often used:
Stop the trial if the posterior probability that the DLT probability
of the lowest dose is greater than � exceeds a certain threshold,
such as 0.95, that is, Pr(p1 > �jdataÞ >0:95.

EWOC. The EWOC is a modification of the CRM (4). The EWOC
employs a two-parameter logistic regression model to provide
extra flexibility to model the dose–toxicity curve:

logit pj
� � ¼ b0 þ b1dj;

where b0 and b1 are the unknown intercept and slope para-
meters, and dj is the dosage of dose level j. Similar to the CRM,
the EWOC continuously updates the estimate of the dose–
toxicity curve based on the accumulating data and assigns the
next cohort of patients to the currently estimated "optimal"
dose. The difference is that the EWOC uses a different definition
of the optimal dose to actively control the risk of overdosing.
The EWOC defines the optimal dose as the highest dose whose
posterior probability of being higher than the MTD is equal to
or less than a prespecified threshold a, with the recommended
value of a ¼ 25%. In the EWOC, dose skipping is not allowed,
and dose escalation and de-escalation are restricted to one level
at a time. A detailed description of EWOC is provided in
Supplementary Appendix SA3.

BLRM. The BLRM is another modification of the CRM. The BLRM
uses the similar two-parameter logistic regression model as the
EWOC (5). Similar to the CRM and EWOC, the BLRM also
continuously updates the estimate of the dose–toxicity curve
based on the accumulating data and assigns the next cohort of
patients to the currently estimated "optimal" dose. The BLRMuses
a slightly different definition for the "optimal" dose from theCRM
and EWOC. Specifically, let (d1; d2Þ denote the proper dosing
interval, which means that any dose with the DLT probability
within that interval can be approximately accepted as the MTD.
For example, given target � ¼ 0.25, the interval (0.2, 0.3) may be
defined as the proper dosing interval. The BLRM defines the
"optimal" dose as the dose that has the highest posterior prob-
ability of being within (d1; d2Þ. The BLRM typically imposes an
overdose control rule similar to the EWOC, which says that if the
observed data suggest that there is 25% or higher (posterior)
probability that the DLT rate of a dose is greater than d2, that is, Pr
(pj > d2jdataÞ �0:25, that dose is overdosing and cannot be used
to treat patients. This overdose control rule naturally leads to the
following safety stopping rule: Stop the trial if the lowest dose is
overdosing. In the BLRM, dose skipping is not allowed. A detailed
description of the BLRM is provided in Supplementary Appendix
SA4.

mTPI design. The mTPI design is a model-assisted design. It starts
from the specification of three intervals: the proper dosing interval
(d1; d2), the underdosing interval ð0; d1Þ, and the overdosing
interval (d2; 1). Unlike the CRM, which assumes a parametric
model to specify the whole dose–toxicity curve, the mTPI uses a
beta-binomial model locally to describe the toxicities at the
current dose only and makes the decision of dose escalation and
de-escalation based on the unit probability mass (UPM) of the
three intervals. Let pcur denote the DLT probability of the current
dose. The UPM of an interval is defined as the posterior proba-
bility that pcur is within the interval divided by the length of the
interval. Graphically, the UPM of an interval is the area under the
posterior distribution curve of pcur within the interval divided by
the interval length (see Fig. 1B). Let UPM1, UPM2, and UPM3
denote the UPM for the underdosing, proper dosing, and
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overdosing intervals, respectively. The mTPI design determines
dose escalation/de-escalation as follows:

* If UPM1 is the maximum of the three UPMs, escalate to the
next higher dose;

* If UPM2 is themaximumof the threeUPMs, stay at the current
dose;

* If UPM3 is themaximumof the three UPMs, de-escalate to the
next lower dose.

Because the UPM can be calculated given the number of treated
patients and the observed number of toxicities, dose escalation
and de-escalation can be determined before the onset of the trial,
which makes the mTPI design user-friendly for practitioners. The
trial continues in this manner until the prespecified sample size is
exhausted. At that point, theMTD is selected as the dose for which
the isotonic estimate (15) of the DLT probability is closest to �. In
themTPI design, a dose exclusion/early stopping rule is included:
If the observed data suggest that the posterior probability that the
DLT rate of the current dose is greater than the target � exceeds
0.95, that is, Pr(pcur > �jdataÞ > 0.95, the current dose and higher

doses are excluded from the trial; if the lowest dose is excluded, the
trial is terminated.

Keyboard design. Yan and colleagues proposed the keyboard
design to improve the performance of the mTPI design, noting
that the latter has a high risk of overdosing patients due to the use
of the UPM to guide dose escalation (9). Unlike the mTPI, which
specifies three unequal-width dosing intervals, the keyboard
design constructs a series of equal-width dosing intervals, referred
to as keys, to guide dose escalation andde-escalation (see Fig. 1D).
The keyboard design starts by eliciting the proper dosing interval
(referred to as the target key) from clinicians, and then forms a
series of equal-width keys on both sides of the target key. For
example, in Fig. 1D, after specifying the target key as (0.2, 0.3), we
then form two keys with the width of 0.1 on the left side of the
target key, including (0, 0.1) and (0.1, 0.2), and seven keys with
the width of 0.1 on the right side of the target key, including (0.3,
0.4), . . ., (0.9, 1). The keyboard designmakes the decision of dose
escalation and de-escalation based on the location of the "stron-
gest" key, defined as the key that has the largest area under the
posterior distribution curve of pcur (see Fig. 1D), which can be

© 2018 American Association for Cancer Research
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Figure 1.

Decision of dose escalation and de-escalation under the CRM/EWOC/BLRM, mTPI, BOIN, and keyboard designs. A, CRM/EWOC/BLRM uses the estimated dose–
toxicity curve that is continuously updated on the basis of accumulative data; the curve labeled "Initial" is the initial estimate of the dose–toxicity curve before
the first cohort is treated; and curve labels "0/3," "1/3," and "2/3" represent the updated estimate of the dose–toxicity curve when 0/3 and 1/3 and 2/3 patients had
DLTs, respectively. B, mTPI calculates and compares the UPMs of the underdosing, proper dosing, and overdosing intervals. C, BOIN compares the observed
DLT rate at the current dose with the prespecified dose-escalation boundary le and de-escalation boundary ld . D, The keyboard design forms a series of equal-
width keys and bases the decision on the position of the strongest key with respect to the target key.
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easily obtained using the beta-binomial model, as with themTPI.
Statistically, the strongest key represents the interval in which pcur
ismost likely located. For example, if the strongest key is (0.3, 0.4),
this means that the DLT probability of the current dose is most
likely in (0.3, 0.4). Therefore, if the strongest key is on the left side
of (i.e., smaller than) the target key, it means that the current dose
is underdosing patients, and if the strongest key is on the right side
of (i.e., greater than) the target key, it means that the current dose
is overdosing patients. This intuitive interpretation of the stron-
gest key naturally leads to the following keyboard dose escalation
and de-escalation rule:

* If the strongest key is on the left side of the target key, escalate
to the next higher dose;

* If the strongest key is the target key, stay at the current dose
level;

* If the strongest key is on the right side of the target key,
de-escalate to the next lower dose.

The trial continues until the prespecified sample size is
exhausted and the MTD is selected as the dose for which the
isotonic estimate (15) of the DLT probability is closest to �. The
keyboard imposes the same dose exclusion/early stopping rule as
follows: If Pr(pcur > �jdataÞ>0.95 andat least 3 patients have been
treated, the current and higher doses are eliminated from the trial.
The trial is terminated if the lowest dose is eliminated.

BOIN design. Compared with the mTPI and keyboard designs,
which require calculating the posterior distribution of pcur , the
BOIN design is more straightforward and transparent. Let p̂cur
denote the observedDLT rate at the current dose, defined as p̂cur ¼
(the number of patients who experienced DLTs at the current
dose)/(the number of patients treated at the current dose). The
BOIN design makes the decision of dose escalation and de-
escalation simply by comparing the observed DLT rate p̂cur with
a pair of fixed, predetermined dose escalation and de-escalation
boundaries (denoted by le and ld, respectively) as follows
(see Fig. 1C):

* If p̂cur � le, escalate to the next higher dose;
* If p̂cur � ld, de-escalate to the next lower dose;
* Otherwise, stay at the current dose.

Table 1 provides the values of le and ld for some commonly
used target DLT probabilities. The trial continues in this manner
until the prespecified sample size is exhausted. At that point,
the MTD is selected on the basis of the isotonic estimates of
the DLT probabilities as described before. The BOIN design
imposes a dose elimination/early stopping rule as follows: If Pr
(pcur > �jdataÞ > 0.95 and at least 3 patients have been treated, the
current and higher doses are eliminated from the trial. The trial is
terminated if the lowest dose is eliminated.

The respective dose escalation and de-escalation boundaries le
and ld are derived from a pair of prespecified toxicity probability
thresholds �1 and �2, where �1 is the highest DLT probability that
is deemed to be underdosing such that dose escalation is needed;

�2 is the lowest DLT probability that is deemed to be overdosing
such that dose de-escalation is needed. Liu and Yuan (13) pro-
vided general guidance to specify �1 and �2 with recommended
default values of �1 ¼ 0:6� and �2 ¼ 1:4�, and the formula to
calculate le and ld based on �1 and �2. As �1 and �2 represent the
unacceptable DLT probabilities such that dose escalation and de-
escalation are required, they are different from the proper dosing
interval (d1; d2) specified in the BLRM, mTPI, and keyboard
designs. In general, �1 < d1 and �2 > d2.

As the observed DLT rate p̂cur is the most intuitive and also
optimal (i.e., the maximum likelihood) estimate of the true DLT
probability at the current dose, using p̂cur to determine dose
escalation and de-escalation makes the BOIN particularly trans-
parent and assessable for nonstatisticians. Specifically, because
the BOIN design guarantees de-escalating the dose when p̂cur is
higher than the de-escalation boundary ld, clinicians and regu-
latory agents can easily assess the safety of the trial. For example,
given a targetDLT rate� ¼0.25,weknow a priori that aphase I trial
using the BOIN design guarantees de-escalating the dose if the
observed DLT rate is higher than ld ¼ 0.298 (i.e., the default de-
escalation boundary). Accordingly, the BOIN design also allows
users to easily calibrate the design to satisfy a specific safety
requirement mandated by regulatory agents through choosing
an appropriate target DLT rate �. For example, suppose that for a
phase I trial with a new compound, the regulatory agentmandates
that if the observed toxicity rate is higher than 0.25, the dosemust
be de-escalated. We can easily fulfill that requirement by setting
the target DLT rate � ¼ 0.21, under which the BOIN design
automatically guarantees de-escalating the dose if the observed
DLT rate p̂cur > ld ¼ 0.25. Such flexibility and transparency are an
important practical advantage of the BOIN design.

Monte Carlo experiment
Simulation settings. We conducted a Monte Carlo experiment to
compare the performance of the CRM, EWOC, BLRM, mTPI,
BOIN, and keyboard designs with respect to the 3 þ 3 design.
We considered three target DLT probabilities � ¼ 0.20, 0.25, and
0.30, with six dose levels and a maximum sample size of 36. The
starting dose level is 1. We considered five model-based designs:
CRM (forbids dose skipping), CRM-DS (allows dose skipping),
BLRM (with the overdose control rule), BLRM-NOC (with no
overdose control rule), and EWOC. The detailed configurations
for these designs are provided in Supplementary Appendix SA.We
set the proper dosing interval (d1; d2Þ ¼ (�� 0:05, �þ 0:05) for
the mTPI, keyboard, BLRM, and BLRM-NOC designs, and
�1 ¼ 0:6� and �2 ¼ 1:4� for BOIN, as recommended by these
designs. The 3 þ 3 design often completes (e.g., when 2/3 or 2/6
had DLTs) before reaching its maximum sample size. For com-
parability, after the 3 þ 3 design selects the MTD, an expansion
cohort is treated at theMTD to reach the total sample size of 36. To
avoid cherry-picking and inadvertent selection biases, we ran-
domly generated 1,000 true dose–toxicity scenarios (or curves)
using the pseudouniform algorithm (16) for comparing the
designs. Under each scenario, we conducted 2,000 simulated
trials. Supplementary Fig. S1 (in Supplementary Appendix SB)
shows 25 randomly selected scenarios that display various shapes
of the dose–toxicity curve, and Supplementary Appendix SC
shows eight representative scenarios with the corresponding
simulation results. We considered cohort sizes of 3 and 1 for all
designs except the 3þ3design. As the results are generally similar,
below we focus on the cohort size of 3 with the target DLT

Table 1. Dose escalation and de-escalation boundaries of the BOIN design

Target DLT probability (f)

Boundary 0.15 0.2 0.25 0.3 0.35 0.4
le 0.118 0.157 0.197 0.236 0.276 0.316
ld 0.179 0.238 0.298 0.358 0.419 0.479
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probability of 0.25. The results for cohort size 1 (Supplementary
Appendix SD) and target DLT probabilities of 0.20 (Supplemen-
tary Appendix SE) and 0.30 (Supplementary Appendix SF) are
provided in the Supplementary Appendix.

Performance metrics.
* Accuracy

1. The percentage of correct selection (PCS), which is
defined as the percentage of simulated trials in which the
target dose is correctly selected as the MTD. When all the
dose levels are above theMTD(i.e., theDLTprobability of
the lowest dose > � þ 0.1), PCS is defined as the
percentage of early termination of trials.

2. The averagepercentage of patientswhoare assigned to the
MTD across the simulated trials. When all the dose levels
are above theMTD (i.e., theDLT probability of the lowest
dose > �þ 0.1), we use the average percentage of patients
not enrolled into the trial for this metric.

* Safety
3. The percentage of simulated trials in which a toxic dose

with the true DLT probability �33% is selected as the
MTD.

4. The average percentage of patients assigned to the toxic
doses with true DLT probability � 33%.

* Reliability
5. The risk of overdosing, defined as the percentage of

simulated trials with more than x% of patients treated
at doses above the MTD. In our simulation study, we set
x% ¼ 50%, that is, measuring the likelihood of a design
assigning more than half of the patients to doses above
the MTD.

6. The risk of poor allocation, defined as the percentage of
simulated trials in which fewer than 6 patients are treated
at the MTD.

7. The risk of irrational dose assignment, defined as the
percentage of times that the design fails to de-escalate the
dose when 2/3 or �3/6 patients had DLTs at a dose.

Metrics 5 to 7measure the likelihoodof a design demonstrating
extreme problematic behaviors (e.g., treating 50% or more
patients at toxic doses, or fewer than 6 patients at the MTD), that
is, the reliability of the design. Although these metrics are of great
practical importance, they are largely overlooked in the existing
literature. Note that these reliability metrics are not covered by
other metrics. For example, the percentage of patients overdosed
(i.e.,metric 4) does not cover the risk of overdosing (i.e.,metric 5).
Two designs can have a similar percentage of patients overdosed
but rather different risks of overdosing 50% of the patients (see
"Results"). Statistically, metric 4 measures the mean of overdos-
ing, whereas metric 5 measures the tail probability of overdosing.
To compare the relative performance of the designs, we used the 3
þ 3 design as a benchmark and report the difference between each
of the designs and the 3 þ 3 design for each metric. For example,
the PCS for the CRM is reported as (the PCS of the CRM) – (the
PCS of the 3 þ 3 design).

Results
Accuracy

Figure 2A and B shows distributions of the PCS and the average
percentage of patients treated at the MTD, respectively, for the

investigational designs relative to the 3 þ 3 design across 1,000
scenarios. As each dose–toxicity scenario generates a value of the
performance metric (e.g., PCS), we obtained a total of 1,000
values for each of the metrics across the 1,000 scenarios. The
boxplot reflects the distribution of the metric across the 1,000
scenarios. In terms of the accuracy of correctly selecting the MTD,
the CRM, mTPI, BOIN, and keyboard designs are comparable,
although notable difference is observed when target DLT prob-
ability is 0.2 (see Supplementary Appendix SE), and substantially
outperform the 3 þ 3 design. The BLRM and EWOC perform the
worst, with the average PCS similar to that of the 3þ 3 design. The
EWOC also has the largest variation in the PCS. The poor accuracy
of the BLRM can be addressed by removing the overdose control
rule; the BLRM-NOC has the highest average PCS. However, by
doing so, the resulting BLRM-NOCbecomes overly aggressive and
treats a large percentage of patients above the MTD (as shown
later). The CRM-DS, which allows dose skipping, has a slightly
higher PCS than the CRM but at the cost of increasing the risk of
overdosing patients (shown later). The results for the number of
patients treated at the MTD are similar to those for the PCS. The
CRM, mTPI, BOIN, and keyboard designs are generally compa-
rable and substantially outperform the 3 þ 3 design. The mTPI
and CRM designs allocate slightly more patients to the MTD than
the BOIN and keyboard designs, but the latter two designs are less
variable, as shown by the shorter boxes in the boxplot (Fig. 2B).
The BLRM and EWOC perform the worst, and BLRM-NOC and
CRM-DS perform well, with the highest average percentage of
patients treated at the MTD. The EWOC is the most variable
method in terms of treating patients at the MTD. To illustrate the
performance of the designs under certain specific dose–toxicity
curves, Supplementary Appendix SC shows the results under eight
representative scenarios. The results are generally similar to Fig. 2.

Safety
As shown in Fig. 2C, the CRM, mTPI, BOIN, and keyboard

designs are comparable in terms of the percentage of selecting a
toxic dose (with DLT probability �33%) as the MTD, but CRM
andmTPI are slightly more variable than the BOIN and keyboard
designs. BLRM-NOCnot only has the highest chance of selecting a
toxic dose as theMTDbut also is themost variable. The BLRMand
EWOCdesigns are themost conservative and least likely to select a
toxic dose as the MTD. In terms of the percentage of patients
treated at a toxic dose with DLT probability �33%, BLRM-NOC
andCRM-DS stand out as themost aggressive designs, see Fig. 2D.
These two designs treat substantially more patients at toxic doses
than the other designs and exhibit the largest variation. On
average, the CRM, mTPI, BOIN, and keyboard designs are com-
parable, but BOIN and keyboard show smaller variations.

Reliability
In terms of the risk of overdosing 50% or more of the patients

(Fig. 3A), the BLRM, BOIN, and keyboard designs perform the
best, and BLRM-NOC performs the worst, with significantly
higher (i.e., about 10% higher on average) risk. The performances
of the CRM andmTPI designs are similar and rank in between the
performances of these other designs. The EWOC has similar
averaged risk of overdosing patients as the BOIN and keyboard
designs but is much more variable. We note that the CRM, mTPI,
BOIN, and keyboard, on average, overdose similar percentages of
patients (Fig. 2D) but have different risks of overdosing 50% or
more of the patients (Fig. 3A). This indicates that the risk of

Accuracy, Safety, and Reliability of Novel Phase I Designs

www.aacrjournals.org Clin Cancer Res; 24(18) September 15, 2018 4361

D
ow

nloaded from
 http://aacrjournals.org/clincancerres/article-pdf/24/18/4357/2047511/4357.pdf by guest on 27 August 2022



overdosing (50% ormore patients) and the average percentage of
patients overdosed indeed measure different aspects of a
design, and it is thus important to consider both metrics when
evaluating a design. Compared with the CRM, CRM-DS had
about 5% higher risk of overdosing 50% or more of the patients
on average due to its aggressive dose skipping. In terms of the
risk of poor allocation (i.e., treating fewer than 6 patients at the
MTD, see Fig. 3B), BLRM and EWOC perform the worst, with a
significantly higher risk than the other designs. The CRM, CRM-
DS, BLRM-NOC, BOIN, and keyboard designs have comparable
risks of poor allocation, and the keyboard design (thus mTPI-2
as well) improves the mTPI design.

In terms of the risk of irrational dose assignment (Fig. 3C), the
model-assisted designs outperform themodel-based designs. The
model-based designs (i.e., CRM, BLRM, and EWOC) have 8% to
55% chance of failing to de-escalate the dose when 2/3 or �3/6
patients had DLTs, whereas such irrational dose assignments
never occur in the mTPI, BOIN, and keyboard designs. To the
best of our knowledge, this result is new and no literature has
studied such in-trial behavior of designs. Our result discloses a
disturbing, yet unsurprising, behavior of model-based designs.
The model-based designs rely on the assumedmodel to make the
decision of dose assignment. When themodel is misspecified, the
estimates can be biased, and thus irrational dose assignment

© 2018 American Association for Cancer Research
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Figure 2.

Accuracy and safety of the eight designs with respect to the 3þ 3 design, including PCS of the MTD (A), percentage of patients treated at the MTD (B), percentage
of selecting doses with DLT probability �33% as the MTD (C), and percentage of patients treated at doses with DLT probability �33% (D). For A and B, a
larger value indicates better performance; positive value means that the design outperforms the 3 þ 3 design. For C and D, a smaller value indicates better
performance; negative value means that the design outperforms the 3 þ 3 design.
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arises. The model-assisted designs are free of that issue because
they do not impose any model assumption on the dose–toxicity
curve. For example, by its dose escalation/de-escalation rule, the
BOIN guarantees de-escalating the dose if the observed DLT rate
at the current dose is higher than 29.8% given the target DLT
rate of 25%.

Discussion
We evaluated the operating characteristics of some novel

Bayesian phase I trial designs in terms of accuracy, overdose
control, and reliability. Compared with the 3 þ 3 design, most
of these novel designs yield better accuracy for identifying the
MTD and allocate more patients to the MTD. Overall, CRM
performs well in most metrics. Allowing dose skipping slightly
improves the accuracy of identifying the MTD and the allocation

of patients to the MTD but at the cost of substantially increasing
the number of overdosed patients and decreasing the design
reliability (i.e., a higher risk of overdosing a large percentage
of patients). Thus, dose skipping in CRM is generally not recom-
mended, and we suggest restricting dose escalation and de-
escalation to one dose level at a time. The performance of BLRM
is mixed. BLRM (with the overdose control rule) is excessively
conservative and has poor accuracy to identify the MTD and
allocate patients to the MTD. Removing the overdose control
rule (i.e., BLRM-NOC) improves the accuracy to identify theMTD
and allocate patients to the MTD but at the cost of substantially
reduced safety (i.e., treating a high percentage of patients above
the MTD) and reliability (i.e., high risk of overdosing a large
percentage of patients). The overdose control rule commonly
used in BLRM seems to be too conservative, and a more appro-
priate overdose control rule may be needed to make BLRM work

© 2018 American Association for Cancer Research
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Reliability of the eight designswith respect to the 3þ 3 design, including risk of overdosing 50% or more patients (A), risk of treating <6 patients at the MTD (B), and
risk of irrational dose assignments (C). A smaller value indicates better performance; negative value means that the design outperforms the 3 þ 3 design.
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appropriately. The EWOC appears overly conservative; it is safe
but has poor accuracy to identify theMTD. The EWOChas similar
average performance as the BLRM but has larger variation. The
BOIN and keyboard model-assisted designs yield good perfor-
mance that is generally comparable with that of CRM in terms of
accuracy and safety while often providing smaller variation and
better reliability. The mTPI performs well in identifying the MTD
and allocating patients to the MTD when the target DLT proba-
bility is 0.25, but it has lower reliability with a higher risk of
overdosing a large percentage of patients and poor allocation of
patients to the MTD. The mTPI has a relatively low accuracy to
identify the MTD when the target DLT probability is 0.2 (see
Supplementary Appendix SE). Given that BOIN and keyboard are
more transparent and easy to implement, they provide attractive
approaches to designing phase I clinical trials. The BOIN and
keyboard designs have virtually the same performance in every
metric. As BOIN uses the observed DLT rate to determine dose
escalation and de-escalation, it ismore transparent and assessable
for nonstatisticians, and it is easier to calibrate to fit the design
goal. In addition, as noted by a referee, the BOIN has both
Bayesian and frequentist interpretations. Its decision rule is
equivalent to using the likelihood ratio test to determine dose
escalation/de-escalation (13), making it appealing to wider audi-
ences. In contrast, the mTPI/mTPI2 and keyboard designs have
only a Bayesian interpretation and require specification of the
prior and calculation of the posterior distribution.

In our Monte Carlo experiment, we used the default design
parameters recommended by the designs that are tailored to the
"noninformative" casewhere limited prior knowledge is available
on the toxicity profile of the investigational drug. This is appro-
priate for evaluating and comparing the general performance of
the designs across a variety of toxicity profiles, and for first-in-
human drug trials. For the "me-too" or same-family drugs with a
better known toxicity profile, the design parameters should be
calibrated on the basis of the available prior information to fit the
trial under consideration. For example, if the prior information

suggests that the investigational drug is relatively safe, we can
choose the design parameters that encourage more aggressive
dose escalation to find the MTD quickly.

The designs reviewed here focus on single-agent trials and
require that before enrolling the next cohort of new patients,
patients who were enrolled into the trial have completed their
DLT assessment. This requirement is troublesomewhen toxicity is
late onset or the accrual is fast. Extension of these novel designs
has been developed to address the late-onset toxicity, for example,
the TITE-CRM (6) and data augmentation CRM (17), and to
handle drug combination trials (18–20).
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