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ABSTRACT

The treatment of radiation transport in global circulation models (GCMs) is crucial for correctly describing Earth and exoplanet at-
mospheric dynamics processes. The two-stream approximation and correlated-k method are currently state-of-the-art approximations
applied in both Earth and hot Jupiter GCM radiation schemes to facilitate the rapid calculation of fluxes and heating rates. Their
accuracy have been tested extensively for Earth-like conditions, but verification of the methods’ applicability to hot Jupiter-like con-
ditions is lacking in the literature. We are adapting the UK Met Office GCM, the Unified Model (UM), for the study of hot Jupiters,
and present in this work the adaptation of the Edwards-Slingo radiation scheme based on the two-stream approximation and the
correlated-k method. We discuss the calculation of absorption coefficients from high-temperature line lists and highlight the large
uncertainty in the pressure-broadened line widths. We compare fluxes and heating rates obtained with our adapted scheme to more
accurate discrete ordinate (DO) line-by-line (LbL) calculations ignoring scattering effects. We find that, in most cases, errors stay
below 10% for both heating rates and fluxes using ∼10 k-coefficients in each band and a diffusivity factor D = 1.66. The two-stream
approximation and the correlated-k method both contribute non-negligibly to the total error. We also find that using band-averaged
absorption coefficients, which have previously been used in radiative-hydrodynamical simulations of a hot Jupiter, may yield errors
of ∼100%, and should thus be used with caution.
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1. Introduction

For Earth’s atmosphere, irradiation from the Sun is the primary
source of energy. Any model of the Earth’s atmosphere there-
fore needs a robust and accurate treatment of radiation transport.
Global circulation models (GCMs) of the Earth are used for both
weather prediction and climate research, and they include a dy-
namical core that solves some variant of the Navier-Stokes equa-
tions and a radiation scheme that calculates the radiative heat-
ing rate. The dynamical cores are tested using benchmarks (see
e.g. Held & Suarez 1994; Reed & Jablonowski 2011; Ullrich
et al. 2013), and both dynamical cores1 and radiation schemes
(Ellingson et al. 1991; Collins et al. 2006; Oreopoulos et al.
2012) are tested through intercomparison projects.

GCMs have also been successfully applied to other solar
system planets such as Jupiter, Saturn, Mars, and Venus (see
for example Yamazaki et al. 2004; Müller-Wodarg et al. 2006;
Hollingsworth & Kahre 2010; Lebonnois et al. 2011, respec-
tively). In the past decade, GCMs have been used to study large-
scale circulation on hot Jupiters (Showman & Guillot 2002;
Showman et al. 2009; Rauscher & Menou 2012; Cho et al.
2008; Thrastarson & Cho 2010; Dobbs-Dixon & Lin 2008),
a class of extrasolar planets which are approximately the size
of Jupiter but orbit less than 0.1 au from their parent star.
These planets, thought to have tidally locked circular orbits due
to strong tidal interactions between the planet and its parent
star (Baraffe et al. 2010), experience intense irradiation yield-
ing a significant temperature contrast between the (permanent)

1 See http://earthsystemcog.org/projects/dcmip-2012/

day-side and night-side. Winds in the atmosphere of these plan-
ets are therefore expected to transport heat from the day-side to
the night-side.

Atmospheric properties of hot Jupiters are obtained by vari-
ous observational techniques, mainly transmission spectroscopy
and secondary eclipse measurements. Brightness maps (Knutson
et al. 2007; Majeau et al. 2012) and wind velocities (Snellen
et al. 2010) are now accessible, and constraints on the com-
position are becoming available, but large uncertainties remain.
Observations indicate a hotspot shifted eastward of the substellar
point (Knutson et al. 2007; Majeau et al. 2012) and temperature
contrasts smaller than what is expected for these planets with-
out winds (Knutson et al. 2007, 2009), indicating transport
of heat from the day-side to the night-side (Watkins & Cho
2010; Perez-Becker & Showman 2013). HD 209458b appears to
have a temperature inversion in its upper atmosphere (Knutson
et al. 2008; Burrows et al. 2007) while HD 189733b does not
(Charbonneau et al. 2008; Barman 2008; Knutson et al. 2009),
indicating that, despite similar orbital properties, hot Jupiters
may have very different circulation patterns that still need to
be understood. GCMs are therefore very valuable when trying
to understand the increasing amount of observations of these
systems.

Benchmarking of the dynamical cores of GCMs applied
to hot Jupiters has been used to investigate stability of the
codes and discrepancies between them (Heng et al. 2011;
Menou & Rauscher 2009; Bending et al. 2013; Mayne et al.
2013, 2014; Polichtchouk et al. 2014). These benchmarks, and
early GCMs applied to hot Jupiters, used simple, parametrised
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radiation schemes termed “Newtonian cooling” or “tempera-
ture forcing”, where the temperature is relaxed towards assumed
equilibrium pressure−temperature (P–T ) profiles on a given
timescale (Showman & Guillot 2002). Pressure−temperature
profiles and timescales can be estimated using one-dimensional
time-dependent radiative transfer calculations (Iro et al. 2005),
though such an approach has flaws: (i) the equilibrium P–T pro-
files used in the forcing may have a limited accuracy; (ii) radia-
tive timescales may also have a limited accuracy and will vary in
a non-trivial way as a function of latitude, longitude and depth;
(iii) the forcing parametrisation itself may not be physically re-
alistic, though the use of time-averaged equilibrium states when
analysing model results may make this less of an issue; (iv) the
model flexibility is poor since for each new planet modelled, the
forcing must be changed.

Later studies used more complicated schemes such as flux-
limited diffusion (Dobbs-Dixon & Lin 2008) and the two-stream
approximation (Showman et al. 2009; Rauscher & Menou 2012;
Dobbs-Dixon & Agol 2013). For the opacity treatment, grey
schemes (Rauscher & Menou 2012), binning and averaging of
the absorption coefficients (Dobbs-Dixon & Agol 2013) and the
correlated-k method (Showman et al. 2009) have been used.
The correlated-k method has also been used for retrieval anal-
ysis and characterisation of hot Jupiter atmospheres (Irwin et al.
2008) and to model brown dwarf atmospheres (Burrows et al.
1997). Brown dwarfs atmospheres have many similarities with
hot Jupiter atmospheres (e.g. temperature range and composi-
tion), but local conditions are very different due to the strong ir-
radiation from the parent stars for hot Jupiters. There is a notable
lack of analysis of the accuracy of these schemes when applied
to hot Jupiter-like atmospheres and of details on how opacities
have been calculated from line lists, preventing rigorous com-
parison with results previously published in the literature. These
are serious shortcomings in a field of research which develops
quickly and will deliver more and more accurate data requiring
reliable tools for their interpretation.

Both the two-stream approximation and the correlated-k
method (see e.g. Thomas & Stamnes 2002) are widely used in
GCM simulations of the Earth, and the literature on the meth-
ods’ applicability to the Earth atmosphere and their accuracy is
extensive (see e.g. Toon et al. 1989; Meador & Weaver 1980;
Zdunkowski et al. 1980; Goody et al. 1989; Lacis & Oinas 1991;
Mlawer et al. 1997). They have both been found to yield results
with satisfactory accuracy when comparing to more accurate so-
lutions obtained from e.g. discrete ordinate (DO), line-by-line
(LbL) calculations and when different schemes are compared
through intercomparison projects (Ellingson et al. 1991; Collins
et al. 2006; Oreopoulos et al. 2012). They are, however, still un-
der investigation (Goldblatt et al. 2009) and are still one of the
limiting factors of the accuracy of both weather prediction and
climate modelling.

We are currently adapting the UK Met Office GCM, the
Unified Model (UM), to hot Jupiter-like conditions. The main
advantage of this model is its dynamical core, which solves the
full 3D Euler equations and is coupled to a radiation scheme
based on the correlated-k method and two-stream approxima-
tion. This GCM is state-of-the-art for both Earth and hot Jupiter
atmospheric dynamics modelling. In previous papers we have
tested and confirmed the dynamical core’s suitability to model
hot Jupiter-like atmospheres (Mayne et al. 2013, 2014). This pa-
per presents the adaptation of the radiation scheme, the Edwards-
Slingo (ES) radiation scheme (Edwards & Slingo 1996), to
conditions prevailing in hot Jupiter atmospheres. Opacities from
high-temperature line lists have been calculated for the dominant

absorbers in these atmospheres and the radiation scheme, using
k-coefficients calculated from these opacities, has been tested
against more accurate DO LbL calculations.

Observations of absorbing and scattering species in hot
Jupiter atmospheres have so far been limited to the detection
of molecular absorbers (Huitson et al. 2013; Wakeford et al.
2013; Tinetti et al. 2007), with some observations suggesting
Rayleigh/Mie scattering clouds (Pont et al. 2008; Sing et al.
2013). Due to the large uncertainties related to scatterers in
hot Jupiter atmospheres and the complexity it adds to radiation
transport, we limit the discussions in this paper to purely ab-
sorbing atmospheres and postpone the inclusion of scattering to
a future work.

The motivation for the present work is the lack of accurate
tests and analysis of these radiation schemes now widely used
by the community. This work will help in the implementation
of similar schemes in the future and provide some guidelines
for further progress. In Sect. 2 we first discuss our opacity data
including the high-temperature line lists we use and the calcula-
tion of cross-sections from these line lists by using estimates for
the line widths. In Sect. 3 we briefly summarise the implemen-
tation of the correlated-k method and two-stream approximation
in the UM and move on to testing this scheme for gradually more
complicated hot Jupiter-like atmospheres in Sect. 4. These tests
will be useful to other groups for comparison and benchmark
purposes. Our conclusions follow in Sect. 5. Combination of the
adapted dynamical core and radiation schemes is in progress and
will be presented in a future work, which will result in a state-
of-the-art GCM that can be applied to a variety of exoplanet
atmospheres.

2. Opacities

In this section we present the calculation of mass absorption co-
efficients from high-temperature line lists. We first discuss our
opacity data, including line lists and line broadening parameters,
and then provide details of our numerical implementation.

2.1. Opacity data

The dominant absorbers in hot Jupiter atmospheres with solar
metallicity are H2O, CO, CH4, NH3, TiO, VO and H2–H2 and
H2–He collision induced absorption (CIA; Burrows & Sharp
1999; Baraffe et al. 2010). References for the line lists and
partition functions we use are given in Table 1. Where avail-
able we used line lists from the ExoMol project (Tennyson &
Yurchenko 2012; H2O, named BT2, and NH3, named BYTe),
while HITEMP (Rothman et al. 2010; CO) and the CIA ex-
tension to HITRAN (Richard et al. 2012; H2–H2 and H2–He
CIA) are also used. For line lists from the ExoMol project, parti-
tion functions are calculated explicitly by summing up the en-
ergy levels. For CO we use the HITRAN partition functions
(Rothman et al. 2009), while for TiO and VO we use the polyno-
mial fits in Sauval & Tatum (1984) as recommended by B. Plez
(priv. comm.). We use isotopic abundances, Ia, from Asplund
et al. (2009).

Our methane line list is calculated using the Spherical Top
Data System (STDS; Wenger & Champion 1998) setting the cut-
off at J = 60. This line list has several flaws, e.g. important bands
in the absorption spectrum are missing. We are aware that a new
ExoMol CH4 line list should soon be released, but this will not
change the main conclusions of this paper. We use the 12CH4
partition function from Wenger et al. (2008), and 13CH4 partition
function from HITRAN (Rothman et al. 2009).

A59, page 2 of 16



D. S. Amundsen et al.: Accuracy tests of radiation schemes used in hot Jupiter global circulation models

Table 1. List of molecules included in our opacity database with associated line list and partition function sources.

Molecule Line list Partition function

H2O Barber et al. (2006) Barber et al. (2006)

CH4 Wenger & Champion (1998) Wenger et al. (2008) (12CH4)
Rothman et al. (2009) (13CH4)

CO Rothman et al. (2010) Rothman et al. (2009)
NH3 Yurchenko et al. (2011) Yurchenko et al. (2011)
TiO Plez (1998) Sauval & Tatum (1984)
VO B. Plez (priv. comm.) Sauval & Tatum (1984)
H2–H2 CIA Richard et al. (2012) N/A
H2–He CIA Richard et al. (2012) N/A

Due to the very large number of lines in these line lists, local
thermodynamic equilibrium (LTE) is assumed to calculate level
populations. Non-LTE effects could be important in the upper
part of irradiated planet atmospheres. Indeed some observational
works invoke non-LTE effects to explain the detection of strong
emission features in hot Jupiters (see e.g. Waldmann et al. 2012),
and there has been some work on modelling non-LTE effects
in these atmospheres (Schweitzer & Hauschildt 2004; Barman
et al. 2002). The significance of these effects still needs to be
proven, however, and it is beyond the scope of the present work
to consider non-LTE effects.

The line intensity for transition i can then be calculated by
using (Thomas & Stamnes 2002)

Si(T ) =
Ia

8πcν̃20

gue−El/kBT

Q(T )

(

1 − e−hcν̃0/kBT
)

Ai (1)

=
Iaπe2

mec2

e−El/kBT

Q(T )

(

1 − e−hcν̃0/kBT
)

gl flu, (2)

where T is the local temperature, c is the velocity of light, ν̃0 is
the wavenumber of the transition, gu is the degeneracy of the up-
per level, El is the energy of the lower level, kB is Boltzmann’s
constant, Q(T ) is the partition function evaluated at T , Ai is the
Einstein A-coefficient of the transition, e is the electron charge
in CGS-Gaussian units, me is the electron mass and gl flu is the
g f -value of the transition with gl and flu being the degeneracy
of the lower level and the oscillator strength, respectively. The
quantities ν̃0, gu, El and Ai, or alternatively gl flu, are given in
the line lists. For line lists in the HITRAN format, line intensi-
ties S i(T0) evaluated at a reference temperature T0 = 296 K are
given, and can be converted to any other temperature by using

Si(T ) = Si(T0)
Q(T0)
Q(T )

e−El/kBT

e−El/kBT0

(

1 − e−hcν̃0/kBT
)

(

1 − e−hcν̃0/kBT0
) , (3)

which follows from Eq. (1) by taking S i(T )/S i(T0). Both ionisa-
tion and molecular dissociation are ignored.

We calculate absorption coefficients including both Doppler
broadening and pressure broadening from collisions with H2 and
He, which are the dominant species in hot Jupiter atmospheres,
and ignore other broadening processes such as natural, self- and
turbulent broadening as they are relatively unimportant com-
pared to the former in hot Jupiter atmospheres. The pressure
broadened width αL depends on both pressure and temperature
in a complex way, but the relationship is often approximated as
(Thomas & Stamnes 2002; Sharp & Burrows 2007)

αz
L(Pz,T ) = αz

L(P0,T0)
(

T0

T

)nz Pz

P0
, (4)

where T0 and P0 are the reference pressure and temperature,
respectively, and z is the perturbing species with Pz the partial

pressure of species z. The total pressure broadened width is the
sum of the H2 and He broadened widths. Pressure broadening
parameters are, however, not included in the line lists and must
be estimated from other sources. Table 2 lists our pressure broad-
ened width data sources, which are mostly gathered from ex-
perimental data, and partly overlap with those used by Bailey
& Kedziora-Chudczer (2012). In these sources, αz

L(P0,T0) is
listed as a function of quantum numbers at a given temperature
and pressure. The temperature dependence exponent nz also de-
pends on the quantum numbers of the transition, but less so than
αz

L(P0,T0). We use the same nz for all transitions for a given
species and broadener, a mean of the values found in the rele-
vant paper(s) if more than one value is given. This approach is
similar to that used by Sharp & Burrows (2007).

In Fig. 1, we have plotted H2 broadened line widths as a
function of Jl, the total rotational quantum number of the lower
level of the transition, for the sources listed in Table 2. Since
we have αz

L(P0,T0) only for a small fraction of the transitions
in the line lists, we model it as a linear function of Jl using
least squares fits. This is similar to previous line width stud-
ies (Voronin et al. 2010; Burrows et al. 1997)2. Unfortunately
αz

L(P0,T0) has to be extrapolated to high Jl values, which we do
by keeping it constant at the value where data for the highest Jl is
available to avoid introducing additional complexity (see Fig. 1).
A different extrapolation scheme was tested, where widths were
decreased further before flattening out. The effect on the local
absorption coefficient was quite large, but averaging over many
lines yields negligible difference between the two extrapolation
schemes. Our final line widths as a function of Jl are shown in
Fig. 1 as solid lines.

Note that αz
L(P0,T0) and nz from the referenced papers have

been obtained at approximately room temperature and pressure,
while we are using Eq. (4) to extrapolate to both very high tem-
peratures and pressures. Unfortunately there is currently no vi-
able alternative. Any calculation of absorption coefficients in-
cluding pressure broadening has to extrapolate the line width
data, but we note that details on extrapolation schemes used in
the literature is sparse.

Having obtained both line intensities and widths, the
line profile cross section, ki

n(ν̃), and mass absorption coeffi-
cient, ki

ρ(ν̃), can be calculated using (Thomas & Stamnes 2002):

ki
n(ν̃) = Si

a

π3/2αD

∫ ∞

−∞

dy e−y
2

(v − y)2 + a2
≡ SiΦV(ν̃), (5)

ki
ρ(ν̃) =

ki
n(ν̃)

M̄z

(6)

2 Note that for CO the line width is approximately constant as a func-
tion of Jl, and we therefore use a simple mean instead of a linear fit, as
shown in Fig. 1.
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Table 2. Overview of our line width sources for pressure-induced broadening by hydrogen and helium.

Molecule Broadener αz
L(P0,T0) source nz source

H2O H2 Gamache et al. (1996) Gamache et al. (1996)He Solodov & Starikov (2009), Steyert et al. (2004)

CH4
H2 Pine (1992), Margolis (1993) Margolis (1993)
He Pine (1992) Varanasi & Chudamani (1990)

CO H2 Régalia-Jarlot et al. (2005) Le Moal & Severin (1986)
He BelBruno et al. (1982), Mantz et al. (2005) Mantz et al. (2005)

NH3
H2 Hadded et al. (2001), Pine et al. (1993) Nouri et al. (2004)
He Sharp & Burrows (2007)

TiO H2 Sharp & Burrows (2007), Eq. (15) Sharp & Burrows (2007)He

VO H2 Sharp & Burrows (2007), Eq. (15) Sharp & Burrows (2007)He
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Fig. 1. H2 pressure broadened line widths for H2O, CH4, CO and NH3

from the sources listed in Table 2 at PH2 = 105 Pa and T = 296 K.
Blue dots are the raw data points, the solid line is our fit and extrapola-
tion. Conversion to other temperatures and pressures are done by using
Eq. (4).

where M̄z is the mean molecular weight of molecule z in
kg/molecule and

v = (ν̃ − ν̃0)/αD, a =
αL

αD
, αD ≡

ν̃0

c

√

2kBT

M̄z

· (7)

Here, αD is the Doppler broadened width and ΦV(ν̃) is the Voigt
profile. The high velocity winds expected in the atmospheres of
these planets will induce small Doppler shifts of the line cen-
tres, ν̃0. Non-zero pressure will also cause a shift of the line
centres, but data on pressure-induced line-shifts is even more
spare than that on line widths. The net effect of both Doppler
and pressure-induced line shifts are uncertain, and we choose to
ignore both.

We calculate mass absorption coefficients by summing the
Voigt profiles,

kρ(ν̃) =
∑

i

ki
ρ(ν̃), (8)

on a fixed wavenumber grid using a grid spacing of
1 × 10−3 cm−1.

CIA is a continuous opacity source, and is consequently pro-
vided in a different format. In the HITRAN format, A–B CIA
data is tabulated as the absorption per density of species A per

density of species B as a function of temperature on a fixed
wavenumber grid with 1 cm−1 spacing. Here, A is always H2,
and we multiply the CIA data by the density of H2 to make it
consistent with the molecular line data.

2.2. Numerical considerations

The use of high-temperature line lists raises computational is-
sues due to their size. In the HITRAN 2012 database (Rothman
et al. 2013), the NH3 line list has about 4.6× 104 lines, while the
ExoMol NH3 line list, BYTe (Yurchenko et al. 2011), has about
1.1×109 lines. Consequently, calculating absorption coefficients
from high-temperature line lists is significantly more computa-
tionally expensive than using smaller line lists such as HITRAN.
In the literature this problem is often overcome by ignoring all
lines with line intensities smaller than some value, sometimes
evaluated at a fixed temperature (Sharp & Burrows 2007). The
line intensity is, however, a strong function of temperature, and
knowing where to apply the cut-off may be difficult.

A second cut-off has to be made, both for physical and com-
putational reasons. According to Eq. (6) lines are infinite in
extent and follow a Voigt profile. Unfortunately, real line pro-
files are not perfectly Voigtian (Thomas & Stamnes 2002). The
Voigt profile is fairly accurate provided interactions between
molecules are weak, but for stronger interactions effects such as
collisional narrowing may occur. Line wings are most affected,
and to avoid overestimating the line wing absorption, it is com-
mon practice to apply a cut-off at some distance d from the line
centre (Freedman et al. 2008; Sharp & Burrows 2007). This dis-
tance may be fixed or be a function of pressure and/or temper-
ature. In addition, evaluation of the Voigt profile is computa-
tionally expensive, and computing the line profiles to distances
where it can be neglected adds an unnecessary computational
cost.

To cope with these problems we have developed a scheme to
combine the line wing cut-offwith an elimination of unimportant
weak lines to decrease computation time. The cut-off distance d
is calculated on-the-fly by estimating when the line mass absorp-
tion coefficient has reached some value, kcut

ρ . This is done by ap-
proximating the line profile as Lorentzian with a width equal to
the sum of the Doppler and pressure broadened widths to facili-
tate analytical treatment and ensure that the profile width is not
underestimated. This yields the following formula for d:

d =

√

α̃max
(

Si

πkcut
ρ

− α̃, 0
)

, α̃ = αL + αD. (9)
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For very weak lines, Si/πk
cut
ρ − α̃ < 0, i.e. the value of the line

mass absorption coefficient at the line centre is smaller than kcut
ρ ,

and consequently the line can be ignored completely.
Lines are added one-by-one to the total mass absorption

coefficient spectrum. The value of kcut
ρ is chosen to be some

fraction fAK of the latest value of the total mass absorption
coefficient at the line centre as line profiles are summed up:
kcut
ρ = fAKklatest

ρ (ν̃0). We use the abbreviation AK (adaptive kcut
ρ )

to denote this cut-off method. Some lines can become unreal-
istically broad, however, so we include an upper limit on d of
100 cm−1. Note that this cut-off scheme cannot be used if the
water continuum is included since it requires a cut-off at a fixed
distance from the line centre (Clough et al. 1989).

The main motivation for using this scheme is computational
efficiency and not physical considerations, and the final absorp-
tion coefficient will depend slightly on the order in which lines
have been added up. The advantages are, however, that weak
lines can be discarded on-the-fly taking into account the line in-
tensity at the current temperature, making a simple cut-off in line
intensity unnecessary. It also ensures that strong lines are com-
puted to larger distances from the line centres than weaker lines.
The current lack of robust line broadening schemes for condi-
tions characteristic of hot Jupiters forces us to use such artificial
schemes.

We have, however, tried to limit the impact of our treatments
by testing other schemes used in the literature. We compare our
line profile cut-off scheme to two other schemes: (i) a cut-off
at a fixed distance dFW from the line centre (fixed width, FW)
and (ii) a cut-off at a distance from the line centre given by the
sum of the Doppler and pressure broadened widths multiplied by
some factor fFF (fixed factor, FF). The former scheme is similar
to that used when including the water continuum from Clough
et al. (1989), where all lines have to be cut-off 25 cm−1 from
the line centre, while the latter is similar to that used by Sharp
& Burrows (2007). Note that when using FF, we still apply the
upper limit of 100 cm−1 on d.

In Fig. 2, we show both the average absorption coefficient
between 1000 cm−1 and 1001 cm−1 at 105 Pa, 1500 K and the
computation time required for the three schemes as a function of
the cut-off parameters. The code has been parallelised and runs
using an Intel Xeon X5660 processor with 12 cores at 2.8 GHz.3

The three cut-off methods reach approximately the same av-
erage absorption coefficient for the largest values of the cut-off
distances (see Fig. 2). Comparing the levels in the left-hand pan-
els to the computation times in the right-hand panel, however,
clearly shows the advantage of the AK method. At fAK = 10−6,
this method reaches approximately the same level as FW at
dFW = 102 cm−1 and FF at fFF = 103. The computation time
is, however, more than two orders of magnitude smaller. Due to
the uncertainties in line widths and the significant decrease in
computation time, we have decided to adopt this scheme for all
our molecules using fAK = 10−6 except for CO.

CO lines are divided into several clearly separate, narrow
bands. Consequently, the absorption coefficient will vary by
many orders of magnitude on the scale of the bands. The AK
scheme is unsuited to such situations since it will tend to produce
large cut-off distances at the beginning of the cross-section cal-
culation. These line wings will normally be hidden by stronger
lines, but for CO they become non-negligible due to the lack of

3 For NH3, having the largest of our adopted line lists with >1.1 billion
lines, computation of absorption coefficients take about 11 days using
our adaptive cut-off scheme on a computer with an Intel Xeon X5660
processor with 12 cores at 2.8 GHz.
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Fig. 2. Left panel: arithmetic mean of the H2O absorption coefficient
between 1000 cm−1 and 1001 cm−1 calculated using the adaptive (AK),
fixed width (FW), fixed factor (FF) cut-off schemes as a function of the
cut-off parameters ( fAK, dFW and fFF, respectively) at 105 Pa, 1500 K.
The mean absorption coefficients have been normalised by the value
obtained using AK with fAK = 10−8. Right panel: computation time re-
quired using 12 cores at 2.8 GHz as a function of the cut-off parameter.
We see that our adaptive cut-off scheme is about two orders of magni-
tude faster than the two other methods for a given average absorption
coefficient.

strong lines in certain wavelength regions. For CO we therefore
use the FF method with fFF = 102.

Absorption coefficients are tabulated on a log P, log T grid
with 30 pressure points between 10−1 Pa and 108 Pa and 20 tem-
perature points between 70 K and 3000 K, uniformly distributed
on a logarithmic scale.

2.3. Molecular abundances

For the present work and tests we use the closed-form expres-
sions for the chemical equilibrium abundances of H2O, CO, CH4
and NH3 from Burrows & Sharp (1999). We use solar-like el-
emental abundances, listed in Table 3. We assume the gas to
be ideal and H2 and He partial pressures are calculated by as-
suming the atmosphere to be pure hydrogen and helium with
an atomic hydrogen number fraction of 0.91183. This yields
a mean molecular weight of 2.3376 g mol−1. For a mixture of
gases, k-coefficients are calculated from an effective mass ab-
sorption coefficient table obtained by summing mass absorp-
tion coefficients for each species weighted by the respective
mass mixing ratios, similar to the approach in Showman et al.
(2009). Alternatively, the random overlap method can be used
to combine k-coefficients for individual gases, though this is
much more computationally expensive (Lacis & Oinas 1991).
In Sect. 4.1, however, we only include absorption by H2O and
use k-coefficients calculated from the H2O mass absorption co-
efficient and multiply the k-coefficients by the mass mixing ratio
in each atmospheric layer.

For TiO and VO we use for the present tests a simple
parametrisation scheme to prescribe their abundances. Ti and
V are thought to sequester deeper than 106 Pa to 107 Pa, while
at low temperatures Ti and V will be bound to condensates
(Showman et al. 2009; Fortney et al. 2006). We therefore
parametrise the abundance of TiO and VO by assuming no ab-
sorbing TiO and VO to be present in the atmosphere for tem-
peratures below Tcrit or pressure above Pcrit. For temperatures

A59, page 5 of 16

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201323169&pdf_id=2


A&A 564, A59 (2014)

Table 3. Our adopted solar-like elemental abundances (Asplund et al.
2009).

Element (X) log NX/NH + 12

C 8.50
N 7.86
O 8.76
Si 7.51
Ti 4.95
V 3.93

above Tcrit and pressures below Pcrit, however, we assume TiO
and VO to be present, with partial pressures estimated by assum-
ing all Ti bound in TiO and similarly all V bound in VO. This
is a reasonable assumption since the abundances of both Ti and
V are much smaller than that of oxygen, see Table 3. TiO and
VO will therefore have a negligible effect on the availability of
oxygen in the atmosphere. We use Tcrit = 1500 K, Pcrit = 107 Pa.

Non-equilibrium chemistry, due to photochemical or mix-
ing processes, might be important in hot Jupiter atmospheres
(Cooper & Showman 2006). We are currently developing a non-
equilibrium chemistry scheme, but for the sake of present tests
we limit our analysis to equilibrium chemistry. Neither the exact
form of the TiO and VO abundance nor the inclusion of non-
equilibrium chemistry will, however, alter the main conclusions
of this paper.

3. The Edwards-Slingo radiation scheme and Atmo

Before discussing the tests we have performed to investigate the
accuracy of the UM radiation scheme, we briefly summarise the
formulation of the two-stream approximation (see e.g. Thomas
& Stamnes 2002) and correlated-k method (Lacis & Oinas 1991;
Goody et al. 1989) implemented in the Edwards-Slingo (ES)
radiation scheme (Edwards & Slingo 1996) currently used in
the UM. This scheme has been widely used in the meteoro-
logical community, see e.g. Sun (2011). We also describe the
line-by-line discrete ordinate code Atmo used for comparisons.
Both models approximate the atmosphere as plane parallel, a
standard approximation for radiation schemes in GCMs, but
we note that sphericity my be important particularly near the
terminator.

3.1. The two-stream approximation

The ES radiation scheme uses the two-stream approximated
version of the radiative transfer equation as formulated by
Zdunkowski et al. (1980, 1982); Zdunkowski & Korb (1985) to
obtain fluxes and heating rates, with details available in Edwards
& Slingo (1996). Without scattering, the equations reduce to

± 1
D

dF±
ν̃,d

dτ(ν̃)
= F±ν̃,d − πBν̃(T ), (10)

where F+
ν̃,d and F−

ν̃,d are the diffuse4 upward and downward
fluxes, respectively, τ(ν̃) is the optical depth, Bν̃(T ) is the Planck
intensity at temperature T and D is the diffusivity. Per definition,

4 Diffuse radiation is in general defined as thermal and scattered radia-
tion. Since we ignore scattering, the diffuse radiation will simply be the
thermal component.

the downward diffuse flux is always zero at the upper boundary.
The direct component5 of the flux, F±s , is given by

F+ν̃,s = 0 F−ν̃,s = Fν̃,se−τ(ν̃)/µ0/µ0, (11)

where Fν̃,s is the solar flux at the top of the atmosphere and µ0 =

cos θ0 where θ0 is the solar zenith angle. The total upward and
downward flux is the sum of the diffuse and direct components:

F±ν̃ = F±ν̃,d + F±ν̃,s, (12)

and we define the total flux, Fν̃, as the upward flux minus the
downward flux, i.e.

Fν̃ = F+ν̃ − F−ν̃ . (13)

In the following, the explicit wavenumber dependence will be
dropped to simplify the notation. Compared to the two-stream
equation in Toon et al. (1989) this formulation is slightly dif-
ferent in that the thermal source function is πB and not 2πB/D.
The choice πB ensures the correct thermal source flux indepen-
dent of the choice of D, and is consistent with the formulation
previously used by Dobbs-Dixon & Agol (2013); Rauscher &
Menou (2012). Note that, for the thermal component, the ES ra-
diation scheme solves the two-stream equations for the differ-
ential fluxes (total component of the flux less the Planck flux
at the local temperature), see Edwards (1996). It is also worth
noting that Showman et al. (2009) used the two-stream source
function method (Toon et al. 1989) for the thermal component,
which is exact in the no scattering case. We show that the two-
stream approximation yields fairly accurate results for the ther-
mal component without scattering, however, and plan to include
scattering particles in the future. In the absence of scattering,
the two-stream approximation yields the exact stellar component
due to the separation of the flux into a direct (stellar) compo-
nent and a diffuse (stellar) component, the latter being 0 without
scattering6.

Since we ignore scattering, eliminating the single scattering
albedo and backscattering coefficient, the only free parameter is
the diffusivity factor D. It is related to the mean angle of the
radiation by µ̄ = 1/D, where µ̄ = | cos θ̄| and θ̄ is the mean
zenith angle. In the present work we explore three different val-
ues for D: 1.66, originally due to Elasser (1942),

√
3 ≈ 1.73

from the discrete ordinate method with two quadrature points,
and 2, obtained assuming an isotropic radiation field (Thomas
& Stamnes 2002). See discussions in e.g. Thomas & Stamnes
(2002); Edwards (1996) for more details.

The optical depth is given by

dτ = −k(z) dz = −kρ(z)ρ(z) dz = −
∑

i

ζi(z)ki
ρ(z)ρ(z) dz, (14)

or in integrated form, assuming hydrostatic equilibrium:

τ =
∑

i

τi =
∑

i

∫ ∞

z

dz′ ζi(z′)ki
ρ(z
′)ρ(z′) (15)

=
1
g

∑

i

∫ P

0
dP′ ζi(P′)ki

ρ(P
′), (16)

5 The direct component is defined as the unscattered part of the stellar
radiation.
6 Note that for very hot planets, or planets with a low mass parent star
(i.e. with a flux shifted towards the infrared), the thermal and stellar
components will overlap significantly in wavelength. We specifically
use the terminology thermal and stellar components over infrared and
visible wavelength regions to avoid confusion.
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where ki
ρ and ζi are the mass absorption coefficient and mass

mixing ratio of species i, respectively. The total mass absorption
coefficient is kρ(z), and the total absorption coefficient is k(z) =
kρ(z)ρ(z).

The heating rate is given by

H = −dF

dz
=
gm̄P

RT

dF

dP
(17)

where g is the gravitational acceleration, m̄ the mean molecular
weight in g mol−1, P the pressure, R the ideal gas constant and
F the total flux integrated over the entire spectrum. Hydrostatic
equilibrium is assumed and the ideal gas equation is used to de-
rive the final expression.

3.2. The correlated-k method

Currently the ES radiation scheme uses a combination of
the exponential sum fitting of transmissions (ESFT) technique
(Wiscombe & Evans 1977) and the correlated-k method (Lacis
& Oinas 1991; Goody et al. 1989) to obtain k-coefficients, some
details of which can be found in Sun (2011). In each band the ab-
sorption coefficients from the line-by-line wavenumber grid are
reordered according to strength in increasing order and divided
into nk subintervals. The spacing of these subintervals must be
the same for each P–T and would ideally be spaced logarithmi-
cally in k. Rather than using logarithmic k-intervals defined at a
particular P–T point, an average absorption coefficient kρ,avg(ν̃)
is calculated from the top of the atmosphere down to an optical
depth of one:

ki
ρ,avg(ν̃)ui

τ= 1 =

∫ ∞

zτ= 1

dz′ ζi(z′)ρ(z′)ki
ρ(ν̃, z

′) (18)

=
1
g

∫ Pτ=1

0
dP′ ζi(P′)ki

ρ(ν, P
′) ≡ 1, (19)

where ζi(z) is the mass mixing ratio of species i, ui
τ= 1 is the col-

umn density of species i down to τ = 1 and hydrostatic equilib-
rium has been assumed. This is similar to the approach of Hogan
(2010) and provides an optimal sorting for the P–T where each
part of the spectrum is most important. We use an isothermal
P–T profile at 1116 K, one of the temperatures in our P–T grid,
for this calculation as a compromise between day-side and night-
side P–T profiles of hot Jupiters. These average absorption coef-
ficients are then used for the initial calculation of k-coefficients.
In the following, the species index i will be dropped for ease of
notation.

The k-coefficient for subinterval l is found by fitting the
transmission, ekl

ρ,optu j , to the weighted transmissions of the line-
by-line coefficients over a set of nu column densities, u j, i.e.
∫ gl+1

gl

dgw(g)ekρ(g)u j ≈ ekl
ρ,optu j , (20)

where w is the weighting function and kl
ρ,opt is the optimal

k-coefficient in subinterval l. The probability of finding an ab-
sorption coefficient between k and k + dk is dg = f (k) dk, with
g(k) being the cumulative probability distribution. In the above
equation, gl is the g-coordinate corresponding to the beginning
of the subinterval for k-term l and gnk + 1 is the g-coordinate for
the end of k-term nk. The error for k-term l is defined as the root
mean square (RMS) of the difference between the fitted expo-
nential and exact integral for all column densities:

ǫl =

√

√

√

1
nu

nu
∑

j= 1

(∫ gl+1

gl

dgw(g)ekρ(g)u j − ekl
ρ,optu j

)2

. (21)

The total error in a band, ǫ, is defined as

ǫ =

√

√

nk
∑

l= 1

wlǫ
2
l
, with wl =

∫ gl+ 1

gl

dgw(g). (22)

The weights are defined to be normalised over each band:
∫ 1

0
dgw(g) =

nk
∑

l= 1

wl = 1, (23)

and can be either a black-body spectrum at the current tempera-
ture, the stellar spectrum or uniform (in wavenumber).

A tolerance is set on the total error in a band, ǫmax. The num-
ber of k-terms in a band is chosen to be the smallest satisfying
the criterion ǫ < ǫmax. Once this division into subintervals has
been made, the fitting of optimal k-coefficients is repeated for
each P–T . These subsequent fits use the same subinterval spac-
ing but with a reordering appropriate for each P–T .

In the tests presented here, we use two values for ǫmax:
5 × 10−3 and 10−4, where ǫmax = 10−4 is expected to reduce
the error from the correlated-k method significantly. We note,
however, that the correlated-k method will not completely con-
verge to the LbL solution even with many k-coefficients (small
ǫmax): g(k) is calculated at each P–T independently. If the ab-
sorption coefficient decreases with height at one wavelength and
increases with height at a different wavelength within the same
band, the two wavelengths will no longer correspond to the same
value of g. A pseudo-monochromatic calculation where g is kept
constant is therefore not equivalent to a proper monochromatic
calculation except in a very few special cases, see e.g. Goody
et al. (1989) for more details.

The maximum column density over which k-coefficients are
to be fitted must be determined. The column density of species i
is given by

ui =

∫ ∞

z

dz′ ζi(z′)ρ(z′) =
1
g

∫ Pτ= 1

0
dP′ ζi(P′) =

ζiP

g
, (24)

where we have assumed a constant mass mixing ratio. We set
the maximum column density using Eq. (24) with the maximum
pressure and mixing ratio in our P–T table. In the ES radiation
scheme, the mass mixing ratio used in Eq. (19) is calculated from
the maximum column density using Eq. (24).

To obtain the total flux in band b, nk pseudo-monochromatic
calculations are performed, each yielding a total flux Fl. The
band-integrated flux is then given by

Fb =

nk
∑

l= 1

w∗l Fl. (25)

The weight w∗
l

for the thermal component should ideally be iden-
tical to wl evaluated at the local temperature. For simplicity, how-
ever, the weights wl at the temperature where τ = 1 are adopted.
For the stellar component, w∗

l
is the stellar spectrum at the top of

the atmosphere. We later compare these weighting schemes to a
uniform weighting scheme, and show that, using the band struc-
ture adopted here, the exact weighting scheme does not affect
fluxes and heating rates to a significant degree.

We use a band structure very similar to that used by
Showman et al. (2009), and we list our bands in Table 4. Three
small modifications have been made compared to the bands
listed in Showman et al. (2009): (i) the upper limit of band 30
has been reduced from 38 314 cm−1 to 28 000 cm−1 to reduce the
memory usage of our correlated-k code; (ii) Band 31 has been
added to capture absorption up to the small wavelength limit of
our line lists; and (iii) Band 32 has been added to capture most
of the stellar flux at small wavelengths.
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Table 4. Bands used.

Band Lower limit [cm−1] Upper limit [cm−1]

1 31 217
2 217 500
3 500 962
4 962 1550
5 1550 1916
6 1916 2273
7 2273 2632
8 2632 3041
9 3041 3346
10 3346 3992
11 3992 4608
12 4608 4950
13 4950 5627
14 5627 6277
15 6277 6680
16 6680 7519
17 7519 8354
18 8354 9091
19 9091 9950
20 9950 10 417
21 10 417 10 989
22 10 989 11 628
23 11 628 12 739
24 12 739 13 423
25 13 423 14 815
26 14 815 16 340
27 16 340 17 483
28 17 483 20 202
29 20 202 25 000
30 25 000 28 000
31 28 000 31 761
32 31 761 50 000

Notes. They are almost identical to the bands in (Showman et al. 2009),
the differences are explained in the text.

3.3. Band-averaged absorption coefficients

Band-averaged absorption coefficients have been applied to exo-
planet GCMs (Dobbs-Dixon & Agol 2013) and stellar/substellar
atmosphere radiation hydrodynamical models (see e.g. Freytag
et al. 2010). In Dobbs-Dixon & Agol (2013), an average absorp-
tion coefficient is calculated in each band as:

k̄b =

∫ ν̃b+1

ν̃b
dν̃ w(ν̃)kρ(ν̃)

∫ ν̃b+1

ν̃b
dν̃ w(ν̃)

, (26)

where ν̃b is the lower bound of bin b. The upper bound of the last
band is defined as ν̃nb+1, where nb is the number of bands. The
fluxes Fb are obtained by performing nb pseudo-monochromatic
calculations, the total flux being the sum of the individual fluxes
in each band. In Dobbs-Dixon & Agol (2013), the weighting
function w(ν̃) is a black-body spectrum evaluated at the local
temperature for the thermal component, i.e. k̄b is the Planck
mean in each band, known to be applicable in the optically thin
limit. The stellar spectrum at the top of the atmosphere is used
as weights for the stellar component. The bands were selected as
in Showman et al. (2009), see Table 4.

Improved schemes utilising mean absorption coefficients
exist, but we limit our discussion to the approach used by
Dobbs-Dixon & Agol (2013) and compare its accuracy to a full
correlated-k treatment. For this purpose, we show in Sect. 4
results obtained with band-averaged absorption coefficients

designed to replicate the treatment used in Dobbs-Dixon & Agol
(2013).

3.4. Atmo

In order to investigate the accuracy of both the correlated-k
method and various two-stream approximations, we compare the
ES radiation scheme to our line-by-line discrete ordinate code
Atmo. It follows the method of the MARCS code (for a descrip-
tion, see Gustafsson et al. 2008), with some modifications.

The 1D plane-parallel radiative transfer equation is solved
using the discrete ordinates method (see e.g. Thomas & Stamnes
2002), i.e. solving the radiative transfer equation for discrete ray
directions µi, which are selected according to Gauss-Legendre
quadrature. In this paper we use 16 rays, and we have checked
the convergence by using up to 32 rays. The discrete ordinate
equations are solved iteratively using the integral method, and
the code has been parallelised to facilitate a high wavenumber
resolution. By successively increasing the resolution, we found
that a resolution on the order of ∼10−3 cm−1 was necessary for
the solution to have converged, i.e. about 5 × 107 wavenumber
points. In contrast, we use about 300 pseudo-monochromatic
calculations in the ES scheme, illustrating the large gain in com-
putational efficiency achieved by using the correlated-k method.

4. Testing the correlated-k and two-stream

approximations

In this section we test the accuracy of the ES radiation scheme
by comparing it to Atmo. The accuracy is investigated for several
different scenarios designed to test a range of physical conditions
representative for hot Jupiters.

To ease comparison between the different two-stream ap-
proximations, we list the L1 norm of the error,

L1 =

∫ log10 Pmax

log10 Pmin

(d log10 P)





















|HAtmo|
∫ log10 Pmax

log10 Pmin
(d log10 P) |HAtmo|

× |HES −HAtmo|
|HAtmo|

]

=

∫ log10 Pmax

log10 Pmin
(d log10 P) |HES −HAtmo|

∫ log10 Pmax

log10 Pmin
(d log10 P) |HAtmo|

, (27)

given here for the heating rate, where HES and HAtmo are the
heating rates from the ES radiation scheme and Atmo, respec-
tively, and Pmin (Pmax) is the minimum (maximum) pressure
in our calculations. This is a convenient measure to use when
comparing errors between different two-stream approximations
and opacity treatments, and represents the relative error of some
quantity, in this case the heating rate, weighted by the current
value of that quantity integrated over all pressures.

In Appendix A, we describe a very simple test where analyt-
ical solutions to both the two-stream approximated and the full
radiative transfer equation exist. A grey opacity is used to elim-
inate errors from the correlated-k method. This scenario is used
to test both the accuracy of the numerical solvers and the two-
stream approximation in isolation. The test confirms that the nu-
merical solvers of both the ES radiation scheme and Atmo have
satisfactory accuracies. The value of D giving the most accu-
rate results (D = 1.66) yields an error of about 1% for the flux
and 10% for the heating rate.
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Fig. 3. Left panel: fluxes obtained with ES radiation scheme using
the two-stream approximation and correlated-k method obtained with
D = 1.66 and ǫmax = 5 × 10−3 (dash-dotted, green), ǫmax = 10−4

(dashed, cyan), and mean absorption coefficients (dotted, blue), for an
isothermal atmosphere with pure H2O absorption. The Atmo LbL DO
result is also shown in this panel (solid, black) and is used to calculate
the relative errors shown in the right panel (except for the mean ab-
sorption coefficient case since errors are too large). Relative errors stay
below 30% throughout the atmosphere.

We have also performed a test designed to be more realistic,
but still minimising the error caused by the correlated-k method
by including only H2–H2 collision induced (continuum) absorp-
tion (CIA) in an isothermal atmosphere without irradiation. For
brevity, we do not describe the test here, but only summarise the
main results. We found that the value of D giving the most ac-
curate results, D = 1.66, yielded an error in the flux of <1%,
and about 7.5% in the heating rate using ǫ = 5 × 10−3 (1 to
2 k-coefficients in each band). Using a mean absorption coeffi-
cient in each band yields similar errors.

In the next sections, we describe three other tests in detail.
Test 1 includes only absorption by H2O, a very important ab-
sorber in the atmospheres of both the Earth and hot Jupiters.
Tests 2 and 3 are designed to test the accuracy for a typi-
cal well-mixed hot Jupiter night-side and day-side, respectively,
where the day-side includes irradiation and absorption by TiO
and VO in the upper atmosphere. A gravitational acceleration
of 9.42 m/s2 is used, suitable for HD 209458b. Unless other-
wise stated, k-coefficients were calculated using ǫmax = 5 × 10−3,
a Planckian weighting scheme for the thermal component and
the stellar spectrum for the stellar component, unless stated
otherwise.

4.1. Test 1: Pure H2O absorption in a high-temperature
isothermal atmosphere

This test includes only absorption by H2O. The temperature
is fixed to 1500 K and the atmospheric domain extends from
10−1 Pa to 108 Pa, using 100 pressure points on a logarith-
mic scale. Irradiation at the upper boundary is not included
and the lower boundary emits as a black body at 1500 K with
zero albedo. A constant mass mixing ratio of 3.3477 × 10−3 is
adopted, which corresponds to the smallest mass mixing ratio
predicted by Eq. (A4) in Burrows & Sharp (1999). Adopting
ǫmax = 5 × 10−3 and ǫmax = 10−4 yield ∼10 and ∼100 k-
coefficients in each band, respectively. Note, however, that the
number of k-coefficients can vary significantly between different
bands.
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Fig. 4. Same as Fig. 3, but for heating rates. Relative errors stay be-
low 30% throughout the atmosphere. Note that in the region where the
heating rate (magnitude) is large, the error remains small.

Table 5. Computed flux (F) and heating rate (H) L1 norms for test 1,
showing that the most accurate fluxes and heating rates are obtained
with D = 1.66 and

√
3.

L1, F L1,H
D =

√
3 0.007 0.044

D = 1.66 0.007 0.046
D = 2 0.013 0.063
D = 1.66, ǫmax = 10−4 0.004 0.021
D = 1.66, UW 0.007 0.044
D = 1.66, mean 0.227 0.837

Notes. The last two rows correspond to a uniform weighting scheme
(UW) and band-averaged (mean) absorption coefficients, respectively.

Figures 3 and 4 show the fluxes and heating rates, respec-
tively, with corresponding relative errors. Since the atmosphere
is isothermal, the upward flux is the Planck flux throughout the
atmosphere. At the upper boundary, the downward flux is 0,
while at the lower boundary it is the Planck flux due to the high
optical depth. The total flux is therefore 0 at high optical depths,
while at low optical depths the planet radiates as a black body,
as expected, with a heating rate peak at ∼104 Pa. Errors in the
heating rate generally stay below about 10 % at pressures where
the heating is significant, while using ǫmax = 10−4 yields signifi-
cantly more accurate results. Table 5 shows L1 errors, indicating
that D = 1.66 and

√
3 yield the most accurate results. There

is no significant difference between a Planckian and a uniform
weighting (UW) scheme.

Using mean absorption coefficients (see Figs. 3 and 4 and
Table 5) yield very inaccurate fluxes and heating rates. The flux
is underestimated at a given pressure, while the heating rate peak
occurs at pressures about two orders of magnitude smaller than
the peak of the LbL DO result. The fact that one k-coefficient
per band is not sufficient to resolve the opacity is reflected by the
need for ∼10 k-coefficients in each band to achieve a tolerance of
ǫmax = 5 × 10−3 for H2O. The failure of this method is discussed
in more detail in Sect. 4.4.

4.2. Test 2: mixed night-side hot Jupiter atmosphere

We next consider conditions representative of a real hot Jupiter
atmosphere. We use a polynomial fit (Heng et al. 2011) to the
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Fig. 5. P–T profile used in test 2. From the polynomial fit (Heng et al.
2011) to the night-side profile of HD 209458b from Iro et al. (2005)
with the smoothing described in Mayne et al. (2014). The temperature
varies from about 400 K high in the atmosphere to above 1600 K in the
deeper layers.
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Fig. 6. Left panel: fluxes obtained in test 2 with the ES radiation scheme
using the P–T profile in Fig. 5. All opacity sources listed in Table 1 are
included except TiO and VO. The Atmo LbL DO result is also shown in
this panel and is used to calculate the relative errors shown in the right
panel. For explanation of the different lines, see the caption of Fig. 3.

night-side P–T profile from Iro et al. (2005) with the smooth-
ing described in Mayne et al. (2014), shown in Fig. 5. The tem-
perature varies from about 400 K in the upper atmosphere to
above 1600 K at 108 Pa, consistent with the literature (see e.g.
Fig. 6 in Showman et al. 2009; and Fig. 7 in Baraffe et al. 2008).
Irradiation at the upper boundary is not included and the lower
boundary emits as a black body with Tlb = T (Plb), where Tlb
and Plb are the temperature and pressure at the lower bound-
ary, respectively. From the P–T profile in Fig. 5, Tlb = 1662 K.
All molecules in Table 1 are included except TiO and VO, with
abundances as described in Sect. 2.3.

Fluxes and heating rates with relative errors are plotted in
Figs. 6 and 7, with L1 errors given in Table 6, from which it is
clear that D = 1.66 yields the most accurate fluxes and heating
rates overall.

When the flux or heating rate is close to zero, the relative
error can become large. We do not consider this as a prob-
lem, however, as it does not have a large impact on the atmo-
spheric heat budget. The overall results are similar to those ob-
tained in Sect. 4.1. Note that calculations with mean absorption
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Fig. 7. Same as Fig. 6 for the heating rates. Note that when the heating
rate is very small, relative errors may become large. The effect on the
heating budget will be small, however, so we do not consider this as a
problem.

Table 6. Computed flux (F) and heating rate (H) L1 norms for test 2,
showing that the most accurate fluxes and heating rates are obtained
with D = 1.66.

L1, F L1,H
D =

√
3 0.065 0.096

D = 1.66 0.043 0.080
D = 2 0.133 0.173
D = 1.66, ǫmax = 10−4 0.012 0.070
D = 1.66, UW 0.031 0.081
D = 1.66, mean 0.700 0.926

coefficients in each band significantly underestimates the flux
and result in heating rate peaks with the wrong amplitude.

4.3. Test 3: mixed day-side hot Jupiter atmosphere

Our last test adopts conditions suitable to the day-side of hot
Jupiters. We use the polynomial fit (Heng et al. 2011) to the day-
side P–T profile of HD 209458b from Iro et al. (2005) with the
smoothing described in Mayne et al. (2014), plotted in Fig. 8,
consistent with the literature (Showman et al. 2009; Baraffe et al.
2008). The thermal and stellar components of the flux are calcu-
lated separately and then summed to obtain the total flux and
heating rate. For the thermal component, the lower boundary
again emits as a black body at Tlb = T (Plb), i.e. 1998 K using
the P–T profile in Fig. 8. Note that, due to the separation of the
intensity into direct and diffuse components and the our neglect
of scattering, the stellar component of the intensity will only be
subject to errors caused by the correlated-k method.

We assume an orbital distance aorbit = 0.047 au and a par-
ent star effective temperature T star

eff = T Sun
eff = 5785 K and radius

Rstar = RSun. Using Stefan-Boltzmann’s law, the stellar irradia-
tion at the top of the planet’s atmosphere is given by

Fstar
TOA = σ

(

T star
eff

)4
(

Rstar

aorbit

)2

= 6.092 × 105 W/m2. (28)

We adopt a zero solar zenith angle and use a solar spectrum from
Kurucz7. At smaller wavelengths than available, we set the stel-
lar flux to zero, while at larger wavelengths we extrapolate using

7 See http://kurucz.harvard.edu/.
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Fig. 8. P–T profile used in test 3. From the polynomial fit (Heng et al.
2011) to the day-side profile of HD 209458b from Iro et al. (2005)
with the smoothing described in Mayne et al. (2014). The temperature
varies from about 1400 K in the upper atmosphere to about 2000 K in
the deeper layers.
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Fig. 9. Left panel: thermal component of the flux as a function of total
pressure for test 3. The Atmo LbL DO result is also shown in this panel
and is used to calculate the relative errors shown in the right panel.
For explanation of the different lines, see the caption of Fig. 3. At high
pressures the relative error becomes large, similar to that seen in Fig. 7
for the heating rate. As the flux itself is small, however, this is not a
problem.

a black-body spectrum with the effective temperature of the Sun
(T = 5785 K).

Figures 9 and 10 show the thermal flux and heating rate
with relative errors. The flux error is small in regions with non-
negligible flux. The heating rate error also remains small in re-
gions with significant cooling. This is confirmed by the com-
puted L1 norms listed in Table 7. A diffusitivy of D = 1.66
yields the smallest error, and it is approximately halved by de-
creasing ǫmax to 10−4. Whether a black-body or uniform weight-
ing scheme is used does not affect the accuracy significantly,
but using a mean absorption coefficient does result in significant
errors.

Figures 11 and 12 show the stellar flux and heating rate
with relative errors. At the top of the atmosphere, the flux
is −6.092 × 105 W/m2, as prescribed, and is subsequently ab-
sorbed. The heating rate is positive, i.e. the atmosphere is heated
due to the absorption of stellar radiation, as expected. The ac-
curacy is acceptable, the error in the flux stays below 10%,
while the heating rate error also stays below 10% in the regions
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Fig. 10. Same as Fig. 9 for the thermal component of the heating rate.
Relative errors become unreasonably large only where the heating rate
is very small.

Table 7. Computed flux (F) and heating rate (H) L1 norms for the ther-
mal component in test 3.

L1, F L1,H
D =

√
3 0.026 0.100

D = 1.66 0.015 0.097
D = 2 0.064 0.128
D = 1.66, ǫmax = 10−4 0.014 0.033
D = 1.66, UW 0.012 0.097
D = 1.66, mean 0.425 0.711

Notes. The smallest errors are again obtained with D = 1.66.

Table 8. Computed flux (F) and heating rate (H) L1 norms for the stel-
lar component in test 3.

L1, F L1,H
ǫmax = 5 × 10−3 0.004 0.035
ǫmax = 10−4 0.001 0.005
ǫmax = 5 × 10−3, UW 0.006 0.045
Mean 0.094 0.432

Notes. The correlated-k method is seen to introduce errors of about 4%.

with strong heating. This is reflected in the L1 errors listed in
Table 8. Using ǫmax = 10−4 significantly reduces the error from
the correlated-k method, and changing the weighting scheme
does not alter the results significantly. The use of an average ab-
sorption coefficient, however, is seen to still result in significant
errors. See Sect. 4.4 for discussion and more details.

The total flux and heating rate, obtained by summing up
the stellar and thermal components of the flux and heating rate,
are shown in Figs. 13 and 14, respectively. The main region of
heating and cooling, seen separately in Figs. 10 and 12, respec-
tively, are still clearly distinguishable in Fig. 14. The atmosphere
is heated at low pressures and cooled slightly at higher pres-
sures. Note that errors remain satisfactory small for relevant (i.e.
non zero) values of the heating rate, as also shown in Table 9.
The error introduced by using mean absorption coefficients is
significant.
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Fig. 11. Left panel: stellar component of the flux as a function of total
pressure for test 3 obtained with ǫmax = 5 × 10−3 (dash-dotted, green)
and ǫmax = 10−4 (dashed, cyan). The Atmo LbL DO result is also shown
in this panel (solid, black) and is used to calculate the relative errors
shown in the right panel. Errors are small, and using ǫmax = 10−4 almost
completely eliminates errors in the ES radiation scheme.
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Fig. 12. Same as Fig. 11 for the stellar component of the heating rate.

Table 9. Computed flux (F) and heating rate (H) L1 norms for the total
flux and heating rate in test 3.

L1, F L1,H
D =

√
3 0.164 0.132

D = 1.66 0.097 0.124
D = 2 0.387 0.169
D = 1.66, ǫmax = 10−4 0.081 0.043
D = 1.66, UW 0.090 0.116
D = 1.66, mean 2.034 0.624

Notes. Again D = 1.66 yields the smallest errors.

4.4. Discussion of the failure of mean absorption coefficients

Inspection of Figs. 3, 4, 6, 7 and 11 to 14 suggests systematic
deviations of results based on the band-averaged absorption co-
efficients. For a given pressure, the thermal and stellar fluxes
are underestimated, often resulting in heating rate peaks occur-
ring at lower pressures and having the wrong magnitude. In an
attempt to explain this behaviour, we first consider the direct stel-
lar component.
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Fig. 13. Left panel: total flux as a function of total pressure for test 3.
The Atmo LbL DO result is also shown in this panel and is used to
calculate the relative errors shown in the right panel. For explanation
of the different lines, see the caption of Fig. 3. Again, relative errors
become unreasonably large only where the flux is very small.
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Fig. 14. Same as Fig. 13 for the total heating rate. Relative errors be-
come unreasonably large only where the heating rate is very small, with
a negligible effect on the heating budget.

The band-integrated direct stellar component of the flux is
given by

F−s,b(uρ) =
1
µ0

∫ ν̃b+ 1

ν̃b

dν̃ Fse−kρ(ν̃)uρ/µ0 , (29)

where the atmospheric slab has been assumed to be homo-
geneous where uρ is the mass column density down to some
height z. Using a mean absorption coefficient instead, the cor-
responding flux is

F−s,b(uρ) =
e−k̄buρ/µ0

µ0

∫ ν̃b+1

ν̃b

dν̃ Fs. (30)

For simplicity we assume the incoming stellar radiation at the
top of the atmosphere is wavenumber independent within a given
band. Using a mean absorption coefficient then implies
∫ ν̃b+1

ν̃b

dν̃ e−kρ(ν̃)uρ/µ0 ≈ (ν̃b+1 − ν̃b)e−k̄buρ/µ0 . (31)

Within a band the absorption coefficient kρ(ν̃) will vary by or-
ders of magnitude, causing some regions in the band to have a
small transmission and others to have a large transmission. The
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mean in Eq. (26) is an arithmetic mean, i.e. the largest values
of kρ(ν̃) will dominate k̄b. Regions with high transmission due
to small kρ(ν̃) will be overshadowed by this large mean, causing
the overall transmission to be underestimated. This explains the
deviation in the flux seen in Fig. 11.

A similar argument can be used in the thermal region, but up-
ward and downward radiation need to be considered separately.
The radiative transfer equation reads

dIν̃

ds
= k(ν̃, s) [Bν̃(s) − Iν̃(s)] , (32)

where s is the path over which radiation travels. We first con-
sider the isothermal case, where the upward radiation is constant
and equal to the black-body flux throughout the atmosphere. At
the top of the atmosphere, the downward flux is zero, i.e. the
change in intensity will, according to Eq. (32), be dominated by
thermal emission (Bν̃(s) > Iν̃(s)). Using a band-mean absorption
coefficient effectively increases k(ν̃, s), which in Eq. (32) yields
a larger intensity at a given s or pressure. The downward radia-
tion contributes negatively to the total flux, i.e. the total flux will
be smaller for a given pressure, as seen in Fig. 3.

If the atmosphere has non-zero temperature gradients, the
upward flux will also depend on pressure. In both P–T pro-
files used here, the temperature decreases with height overall. At
the lower boundary the upward intensity is simply the Planck
intensity, i.e. the right-hand side of Eq. (32) is zero. As the
temperature decreases, Bν̃(s) will generally decrease, causing
Bν̃(s) < Iν̃(s). The upward flux is therefore dominated by absorp-
tion, and effectively increasing kρ(ν̃) will cause the upward flux
to become smaller for a given s or pressure. This explains why
the total flux at the top of the atmosphere is underestimated when
using a band-mean absorption coefficient, as seen in Figs. 3, 6
and 13.

These results show that large errors in both fluxes and
heating rates may occur when the mean opacity scheme de-
scribed in Dobbs-Dixon & Agol (2013) is applied in hot Jupiter
GCMs. Improved mean opacity schemes have been developed
by the stellar atmosphere community (see e.g. Nordlund 1982;
Skartlien 2000), which may be applicable to hot Jupiter atmo-
spheres. Further developments of these improved schemes may
be needed, however, as they rely on correlations induced by
strong vertical stratification, and longitude-latitude-dependent
stellar heating has not been considered. Further discussion is,
however, beyond the scope of the present work.

5. Conclusions

The accuracy of radiation schemes used in GCMs has been
studied extensively for Earth-like conditions, but detailed anal-
ysis for hot Jupiter-like conditions are lacking. In this paper
we have analysed the accuracy and uncertainties in state-of-
the-art radiation schemes used in several GCMs applied to hot
Jupiters. Opacity sources and calculation of absorption coeffi-
cients from high-temperature line lists have been discussed. We
present a line profile cut-off scheme that decreases the computa-
tion time required to calculate absorption coefficients by a factor
of ∼100 compared to other methods used in the literature, while
still giving accurate results. Both the two-stream approximation
and correlated-k method’s applicability to hot Jupiter atmo-
spheres have been analysed by comparing the Edwards-Slingo
radiation scheme to discrete ordinate line-by-line calculations.

The ES radiation scheme’s performance in these tests shows
that we have successfully adapted it to hot Jupiter-like atmo-
spheres. Our main conclusions are:

– Pressure broadening parameters for high-temperature molec-
ular lines are very uncertain and usually extrapolated from
room temperature and pressure and small quantum numbers.
Improvements in this area will become important as higher
accuracy will be required to analyse results from future exo-
planet characterisation projects (e.g. JWST, EChO, SPHERE
and ELT).

– A diffusivity factor of D = 1.66, already widely used in both
Earth and hot Jupiter GCMs, yields the smallest errors from
the two-stream approximation, although D =

√
3 ≈ 1.73 is

only slightly less accurate.
– About 10 k-coefficients in each band for molecular

line absorption yield satisfactory accuracy. Using ∼100
k-coefficients per band does improve the overall accuracy,
but errors decrease by less than 50%, while the radiative
transfer computation time increases by a factor of 10. We
therefore choose to adopt the former as a balance between
accuracy and computational cost.

– Both the two-stream approximation and the correlated-k
method contribute non-negligibly to the total error, with
overall heating rate errors of .10% in regions with signifi-
cant heating/cooling. Flux errors are similar or smaller.

– Whether a black-body spectrum, solar spectrum or uniform
(in wavenumber) weighting scheme is used has little effect
on the overall accuracy given the band structure used here
(Table 4). We therefore choose to adopt a uniform weight-
ing scheme, enabling the use of the same k-coefficients in
both the thermal and stellar spectral regions and for different
irradiation spectra.

– Using a mean absorption coefficient in each band, as in
Dobbs-Dixon & Agol (2013), yields inaccurate fluxes and
heating rates for molecular absorption. Heating rate errors
can reach 100% or more, even in regions with significant
heating. Band-averaged absorption coefficients should thus
be used with caution.

Any radiation scheme applied to hot Jupiters should be checked
against the tests we have presented here. These tests and the de-
tailed descriptions of our methods and approximations will be
useful for future adaptation of radiation schemes in other GCMs.
Current observational constraints on exoplanets do not require
the level of accuracy we have applied in this work. The field
develops at an amazing pace, however, and modellers should
now develop the best theoretical and numerical tools to tackle
the challenges posed by the increasing accuracy expected from
future large observational projects.
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Appendix A: Test 0

This test is based on a grey atmosphere without scattering and
irradiation at the top of the atmosphere, and a lower boundary
that emits as a perfect black body at a temperature Tc. These as-
sumptions are consistent with the thermal component of the ra-
diation. To facilitate analytical treatment, we make an additional
assumption: the lower boundary is located at a constant opti-
cal depth τ = τ∗. This is done in both the ES radiation scheme
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and Atmo by explicitly keeping the total mass absorption coeffi-
cient, kρ, constant as a function of pressure and placing the lower
boundary at a constant pressure.

A.1. Analytical solutions

Analytical solutions of the two-stream approximated and full ra-
diative transfer equation are available under these specific condi-
tions and are provided below. The analytical solutions are com-
pared to the numerical solutions obtained by the ES radiation
scheme and to the discrete ordinate solution from Atmo.

A.1.1. The two-stream approximation

The two-stream approximated radiative transfer equation in the
thermal region, ignoring scattering, is given by Eq. (10). We now
drop the diffuse flux subscript since stellar irradiation is ignored.
Using Eq. (16) and assuming hydrostatic equilibrium, the optical
depth can be related to the pressure by

τ(ν, P) =
1
g

∫ P

0
dP′ kρ(ν, P′) =

kρ

g
P, (A.1)

since kρ(ν, P) = kρ is assumed to be independent of both fre-
quency ν and pressure P. The optical depth is therefore propor-
tional to pressure and substitution can be done using the equation
above.

Integrating Eq. (10) with respect to frequency yields

± 1
D

dF±(τ)
dτ

= F±(τ) − σT 4
c , (A.2)

where Stefan-Boltzmann’s law has been used. The above equa-
tion is a simple inhomogeneous linear first order differential
equation in optical depth, τ, and can be solved using traditional
techniques. The homogeneous solution, i.e. ignoring the Planck
emission, is given by

F±h (τ) = A±e±Dτ, (A.3)

where A± is determined by boundary conditions, while the par-
ticular solution in this case is given by

F±p (τ) = σT 4
c , (A.4)

which yields the complete solution

F±(τ) = F±h (τ) + F±p (τ) = A±e±Dτ + σT 4
c . (A.5)

At the upper boundary, i.e. τ = 0, we have

F−(τ = 0) = A− + σT 4
c = 0 ⇒ A− = −σT 4

c . (A.6)

At the lower boundary, which we place at an optical depth of
τ = τ∗, we have

F+(τ = τ∗) = A+eDτ∗ + σT 4
c = σT 4

c ⇒ A+ = 0. (A.7)

The upwelling, downwelling and total fluxes are therefore

F+(τ) = σT 4
c , (A.8)

F−(τ) = σT 4
c

[

1 − e−Dτ
]

, (A.9)

F(τ) = F+(τ) − F−(τ) = σT 4
c e−Dτ. (A.10)

The heating rate is given by Eq. (17), and using Eq. (14), we get

H = −dF

dz
= kρρ

dF

dτ
=

kρPm̄

RT

dF

dτ
(A.11)

= −
kρPm̄D

RT
σT 4

c e−Dτ

= −
kρPm̄D

RT
σT 4

c e−DkρP/g. (A.12)

A.1.2. The angularly dependent radiative transfer equation

The full angular dependent (but still azimuthally averaged) ra-
diative transfer equation without scattering is given by (Thomas
& Stamnes 2002)

u
dIν̃(τ, u)

dτ
= Iν̃(τ, u) − Bν̃(Tc), (A.13)

where u = cos θ. From above, the general solution is given by

Iν̃(τ, u) = Aν̃(u)eτ/u + Bν̃(Tc). (A.14)

Note that a discrete ordinate method gives the same equation
and solution, except u is replaced by the quadrature points ui.
No downward radiation at the upper boundary implies Iν̃(τ =
0, u < 0) = 0, which yields

Iν̃(τ, u < 0) = Bν̃(Tc)
[

1 − eτ/u
]

. (A.15)

Perfect black-body radiation in the upward direction at the lower
boundary implies Iν̃(τ = τ∗, u > 0) = Bν̃(Tc), which yields

Iν̃(τ, u > 0) = Bν̃(Tc). (A.16)

Note that Iν̃(τ, u) is anisotropic in the downward direction ex-
cept in the limit of high optical depths, τ → ∞. The intensity at
a given optical depth in the downward direction, u < 0, is dic-
tated by the amount of atmosphere above it, in the direction of
the radiation, emitting thermally. The “effective optical depth”
or optical path is higher for smaller values of µ̄, and the intensity
consequently cannot be isotropic. The exception is at high opti-
cal depths, where the atmosphere becomes optically thick in all
directions.

The upward flux is

F+ν̃ (τ) = 2π
∫ 1

0
dµ µIν̃(τ, µ) = 2πBν̃(Tc)

∫ 1

0
dµ µ = πBν̃(Tc),

(A.17)

while the downward flux is

F−ν̃ (τ) = 2π
∫ 1

0
dµ µIν̃(τ,−µ) = 2πBν̃(Tc)

∫ 1

0
dµ µ

[

1 − e−τ/µ
]

(A.18)

= πBν̃(Tc) − 2πB(Tc)
∫ 1

0
dµ µe−τ/µ. (A.19)

This integral does not have a simple closed-form solution, but
can be found numerically. Integrating over all wavenumbers and
using Stefan-Boltzmann’s law, the total flux is given by

F(τ) = F+(τ) − F−(τ) = 2σT 4
c

∫ 1

0
dµ µe−τ/µ, (A.20)

i.e. dictated by this integral and clearly not equivalent to
Eq. (A.10). Note that the two-stream approximation effectively
evaluates the integral in Eq. (A.20) using a single quaderature
point µ̄ = 1/D which can be chosen using e.g. Gauss-Legendre
quadrature or an empirical fit. The heating rate, Eq. (17), is sim-
ilarly given by

H =
kρPm̄

RT

dF

dτ
=

2kρPm̄

RT
σT 4

c

∫ 1

0
dµ µ

d
dτ

[

e−τ/µ
]

(A.21)

= −
2kρPm̄

RT
σT 4

c

∫ 1

0
dµ e−τ/µ. (A.22)
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Fig. A.1. Left panel: fluxes obtained using the two-stream flux in
Eq. (A.10) and exact flux in Eq. (A.20) obtained with D =

√
3 (dot-

ted, red), D = 1.66 (dash-dotted, green), D = 2 (dashed, cyan) and
solving the fully angular dependent radiative transfer equation (solid,
black). Right panel: calculated relative errors in the two-stream fluxes.
Relative errors become unreasonably large only where the flux is very
small.
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Fig. A.2. Same as Fig. A.1 for heating rates. Relative errors become
unreasonably large only where the heating rate is very small.

A.2. Accuracy of the two-stream approximation

Fluxes and heating rates with errors are plotted in Figs. A.1
and A.2 using the solutions in Eqs. (A.10), (A.12), (A.20)
and (A.22). At small optical depths, the flux is equal to the
black-body flux while at large optical depths, the flux is zero,
as expected. The heating rate is zero at both low and high opti-
cal depths, while at intermediate optical depths the atmosphere is
cooled (the heating rate is negative). Interestingly, the relative er-
ror in both flux and heating rate approaches unity at large optical
depths, a consequence of the two-stream solutions approaching
zero faster than the full solution. We do not consider this a prob-
lem, however, since both the flux and heating rate are close to
zero in this region.

In Table A.1 we show the calculated L1 norms using the ana-
lytical solutions derived above. The smallest errors are achieved
with D = 1.66, but using D =

√
3 only yields slightly larger er-

rors. This is verified by looking at the relative error in Figs. A.1
and A.2.

It is worth noting that the different values for D yield dif-
ferent convergence towards zero heating rate at low optical
depths, evident in the right-hand panel of Fig. A.2, caused by
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Fig. A.3. Relative error in the numerical solutions from the ES radi-
ation scheme (dash-dotted, green) and Atmo (solid, black) calculated
using the analytical solution in Eqs. (A.10), (A.12), (A.20) and (A.22).
Relative numerical errors become large at large optical depths, caused
by both fluxes and heating rates being very small.

Table A.1. Computed flux (F) and heating rate (H) L1 norms for test 0
using the analytical solutions, thereby eliminating the errors from the
numerical solution schemes.

L1, F L1,H
D =

√
3 0.007 0.103

D = 1.66 0.006 0.094
D = 2 0.015 0.174

Notes. The smallest errors are obtained with D = 1.66.

Table A.2. Computed flux (F) and heating rate (H) L1 norms for test 0
comparing the numerical and analytical solutions to check the accuracy
of the numerical schemes.

L1, F L1,H
ES radiation scheme 3.88 × 10−5 3.55 × 10−3

Atmo 6.20 × 10−4 1.22 × 10−3

the factor D in Eq. (A.12). Comparing Eqs. (A.12) and (A.22),
it is clear that only D = 2 will yield the correct behaviour of the
heating rate at low optical depths. The effect on the heating rate
itself is small, however, and D = 1.66 yields the most correct
heating rate overall.

A.3. Accuracy of the numerical scheme

We use the analytical expressions in Eqs. (A.10), (A.12), (A.20)
and (A.22) to estimate the errors in the numerical solution
schemes in both the ES radiation scheme and Atmo. We have
plotted the numerical error in Fig. A.3 as a function of optical
depth, and given the L1 errors in Table A.2. The errors are small
for small optical depths, while at large optical depths the errors
increase significantly. The error in the flux and heating rate reach
10% at about τ = 10 and τ = 4, respectively, for the ES radia-
tion scheme, while Atmo is accurate to a somewhat larger op-
tical depth. The L1 errors reflects this, keeping in mind that the
error in Atmo is also caused by a finite number of rays in the
Gaussian quadrature, which may become important at the accu-
racy level of the numerical solver. Both numerical schemes are
seen to yield errors significantly smaller than errors caused by
the two-stream approximation. This confirms that both numeri-
cal solvers yield satisfactory accuracy.
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