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Abstract— Accurate localization of landmarks in the vicinity
of a robot is a first step towards solving the SLAM problem.
In this work, we propose algorithms to accurately estimate
the 3D location of the landmarks from the robot only from a
single image taken from its on board camera. Our approach
differs from previous efforts in this domain in that it first
reconstructs accurately the 3D environment from a single
image, then it defines a coordinate system over the environment,
and later it performs the desired localization with respect to
this coordinate system using the environment’s features. The
ground plane from the given image is accurately estimated
and this precedes segmentation of the image into ground and
vertical regions. A Markov Random Field (MRF) based 3D
reconstruction is performed to build an approximate depth
map of the given image. This map is robust against texture
variations due to shadows, terrain differences, etc. A texture
segmentation algorithm is also applied to determine the ground
plane accurately. Once the ground plane is estimated, we
use the respective camera’s intrinsic and extrinsic calibration
information to calculate accurate 3D information about the
features in the scene.

I. INTRODUCTION

Simultaneous Localization And Mapping (SLAM) is the
classic problem where a robot in an unknown terrain has
to build a map with respect to the Euclidean cordinates of
features in its environment and has to localize itself with
respect to this map. Inferring accurately the 3D positional
information of features with respect to the robot is thus of
primary importance in solving SLAM. Traditionally, a laser
scanner or a stereo vision system has been used to estimate
the location of these features. The high cost of 3D scanners
and the need for proper calibration of stereo cameras render
both sensor modalities unfavorable for this task and thus this
motivates research for better alternatives.

In recent years there have been a number of techniques
reported in the literature focusing on the use of monocular
cues for depth estimation. Depth from shading [10], depth
from blur/focus/defocus [11], depth from magnification [13],
etc. are representatives of these efforts. A problem with
these approaches is that they impose explicit assumptions
on the environment such as Lambertian reflectance, single
source of light direction, etc. In the work of [3], texture
gradient based methods for inferring the depth are suggested,
but they are limited to a noise free environment. Three
dimensional reconstruction from a single image is discussed
in [1] whereby availability of perspective planes is required.
In [7], a dynamic Bayesian model for learning depth is
introduced but it is limited to indoor images.

In the work reported in [4], Homiem et. al use a texture
segmentation algorithm based on [5] to divide the envi-
ronment into ground, vertical, and sky. But the results not
only do not seem to be generalizable but this technique is
not accurate enough for localization. In [8], [2] and [14],
Saxena et. al proposed a different algorithm for building a
depth map from a single image. This algorithm is robust
to texture differences on the ground plane, it is relatively
immune to shadows, and it works well in finding discon-
tinuities in the image. This last capability dictates its use
for obstacle detection among others. One problem associated
with their method is that the output is continuous and finding
boundaries or edges of planes is infeasible, especially when
considering irregularities of the reconstructed surface. The
authors in [2] suggest machine learning to directly determine
the plane parameters, but the algorithm was found to be less
efficient when operating in real-time. Also, one may be more
interested in building a high accuracy ground map for robot
localization rather than a visually pleasing 3D reconstruction.

Our approach introduces a novel way of combining the
depth map results from Saxena et. al in [8], with the texture
segmentation algorithm reported in [5] to provide an accurate
ground plane estimation. The main idea of our methodology
is to build an accurate ground/vertical image representation
from the given image. Our primary assumptions are that no
objects are hung in the air and the depth of an object can
be estimated by the distance between the point at which an
object touches the ground and the position of the camera.
We also assume in our derivations that the optical axis of
the camera embedded on the robot is parallel to the ground
plane. Our method starts by first reconstructing the 3D depth
map of the image using an MRF model as described in [8].
We consider the smoothing of the MRF to be very important
as indiscriminate smoothing can lead to loss of valuable
information regarding obstacles in the robot path. As a result
of this we introduce a novel smoothing parameter estimation
method based on Principal Component Analysis (PCA).

In order to find the boundaries of the ground plane, a tex-
ture segmentation of the image is performed next following
the method outlined in [5]. This algorithm returns segments
(called super-pixels from here on) in the image whose
encompassing pixels exhibit similar textures. A problem with
this approach is that small texture differences like shadows or
changes in lighting conditions result in separate super-pixels.
In order to build an accurate ground plane, we introduce a
novel approach by combining the depth maps with the super-



pixels. Once the ground plane is found, we use the calibration
of the camera along with information regarding its Euclidean
position to build a 3D coordinate system for the image. We
intend to address in the future the intricacies associated with
the simultaneous movements of the robot and the change of
feature coordinates due to the robot’s moves.

The rest of the document is organized as follows: We begin
with algorithms for estimating the ground plane outlined in
Sections II.A, II.B and II.C. In Section II.D, we define a
reference frame for estimating the depth at a pixel in the
image. Finally, we discuss our experiments, a few sample
reconstructions, and empirical results in Section III.

II. GROUND PLANE ESTIMATION

A. 3D depth map construction

Humans seldom have any difficulty in inferring the 3D
structure of the scene from a single image. This is not only
attributed to prior knowledge about the environment but also
to using monocular cues such as texture variations, occlusion,
known object sizes, haze, de-focus, etc. For example, the
texture of many objects will look different at different
distances from the viewer. Texture gradients capture the
distribution of the direction of the edges and it is a valuable
source of depth cues. Haze, which is caused by atmospheric
light scattering can also provide texture information to define
depth. For example, the haze of the sky is very different from
the haze of something closer to the camera. This research
stems from the approach described in [8]. It uses texture
energies, texture gradient, and haze as the sources of depth
information. Since we deal with RGB images in which the
texture is distributed over the three color channels, it is better
to consolidate the texture information to a single intensity
channel by converting the image into the YCbCr format.
This pixel intensity information is convolved with 9 Laws
mask filters [6], 2 local averaging filters, and 6 Nevatia-
Babu texture gradient filters [9]. The Laws and Nevatia-Babu
filters are shown in Figure 1. Typical outputs of these filters
for a sample image are shown in Figure 2. These 17 filter
outputs combined with their squared energies form a 34-
dimensional feature vector. In order to include information
regarding depth at neighboring pixels, we include the feature
vectors from the four neighbors as well to form a 34x5=170-
dimensional feature vector. We call it the absolute feature
vector since its components directly map to the depth at
the pixel. The absolute feature vector is complemented with

(a) (b)

Fig. 1. (a) Laws masks filters (9 3x3 filters), (b) Nevatia-Babu texture
gradient filters.

another feature vector, called the relative feature vector to
represent relative depths between two given pixels. It is
formed using the 17-dimensional feature vector introduced
earlier by creating a 10-bin histogram for every dimension.

We assume that the relative depth between two pixels is
proportional to the difference between the respective relative
feature vectors.

Fig. 2. First subplot shows the original image. Images 1-9 are outputs of
the Laws mask filters. These filters do local averaging, edge detection, and
spot detection. Images 10-11 are the results of local averaging filters applied
to the Cb and Cr channels respectively. Images 12-17 are the outputs of the
Nevatia-Babu filters. They provide information regarding the direction of
texture gradients.

Now that depth information from a single image has
been represented by a composite feature vector (using the
absolute and relative feature vectors), a supervised learning
algorithm applied on a Gaussian Markov Random Field
(MRF) [12] is deployed to estimate the posterior distribution
of the depth for every pixel in the image. We do not use
the feature vectors at multiple scales as discussed in the
original paper. This is a compromise we have made as the
extra computational burden introduced is not justified by the
accuracy achieved. We model the posterior distribution of
depth d, given the feature vectors X parameterized by σ and
θ as:

P (d|X;σ, θ) =
1
Z
exp(−Eσ,θ(d,X)) (1)

where

Eσ,θ(d,X) =
n∑
i=1

(di −Xiθr)2

σ2
1r

+
n∑
i=1

∑
j∈Ns(i)

(di − dj)2

σ2
2r

.

(2)
Here, Z is a normalization constant, Eσ,θ(d,X) defines

a Gibbs energy function, and Xi is the feature vector at
pixel i as explained earlier. The first term in Equation (2)
models the absolute depth at the pixel i in terms of feature
vectors through the parameter θr. As it is apparent from the
equation, we use a linear relationship between the feature
vectors and the depth at a pixel. A different θr parameter
is used for each row of the image because the laser depth
maps we use for training the system were captured using a
horizontally mounted camera. To estimate the θr parameters
we use a linear least squares solution over the training data.
The second term in (2) models the relative depth at pixel i
in terms of the depths at its four neighboring pixels Ns(i).

The parameter σr defines the smoothness of the depth
map. Similarly to the values of the θr parameters, we



estimate different σr for each row of the image. Estima-
tion of these parameters is quite important for the depth
map creation since it defines the smoothness of the depth
variations. We introduce a PCA based approach to find the
σ2

1r values. We find the parameters Ur of a hyperplane such
that σ2

1r = ‖UrXi‖. Eigen analysis is used to estimate Ur.
We find the covariance matrix between the difference in
di − Xiθr across all the pixels in the row and across all
the training images. The eigenvector corresponding to the
largest eigenvalue is selected and this forms the vector Ur
for a given row.

Estimation of the σ2
2r parameters is achieved by following

a similar approach. Since this parameter defines relative
smoothness across pixel depths, the relative feature vectors
introduced earlier are considered here. We estimate the plane
parameter Vr from the eigen analysis of the covariance
matrix of (di−dj) and compute σ2

2r = ‖Vr(Yi−Yj)‖, where
Yi and Yj are the relative feature vectors at depth pixels i
and j, respectively.

Once the parameters are estimated from the training data,
given a test image, we use the Maximum A Posteriori (MAP)
estimate to find the depth map. MAP is implemented as an
iterative gradient descent algorithm, where the depth at ith

pixel in the (s+ 1)st iteration is given by:

ds+1
i = dsi − λ∇Eσ,θ(di, Xi) (3)

∇Eσ,θ(di, Xi) =
(

1
σ2

1r

+
1
σ2

2r

)−1
Xiθi
σ2

1r

+
∑

j∈Ns(i)

(di − dj)
σ2

2r


(4)

where λ is the learning rate.
Further smoothing is achieved by sampling the depth

points from each row, applying linear interpolation and fitting
a spline. Figure 3 shows a typical output of this algorithm.

(a) (b) (c)

Fig. 3. (a) Original. (b) Estimated depth map. Note the smoothing of the
ground plane irrespective of the shadowed region. (c) It shows the same plot
from the side to show explicitly the smoothing of the ground plane texture.

B. Texture segmentation

A problem with the depth-map created from the above
algorithm is the loss of information regarding the plane
boundaries. We can’t differentiate if a particular variation
in the depth is due to an error in the estimation or simply
due to depth discontinuities. Furthermore, even after multiple
smoothing of the planes, it still has irregularities as is seen in
Figure 3(c). In order to counteract this problem, we divide the

original image into regions of perceptually similar textures
called super-pixels based on the algorithm described in [5].
Our assumption is that regions having similar textures are
more likely to lie on the same plane and thus even if the depth
map gives irregularities in estimation, this could be corrected
from the information resulting from image segmentation.
Figure 4 shows the output of superpixelation. In the next
section, we propose a strategy to merge coplanar superpixels,
thereby determining the ground plane.

(a) (b)

Fig. 4. (a) Original Image. (b) The Superpixels. Each superpixel is a
uniquely colored region in the graph. Note in (b) that the shadow in the
image falls in a separate superpixel than that for the ground plane.

C. Inferring the ground plane

As discussed in the previous sections, the MRF based
algorithm gives us an estimate of the depth at each pixel,
but we lose information regarding the planes in the image.
The superpixel algorithm provides planes in the image, but
it lacks information regarding coplanarity. In this section we
describe an algorithm to combine both these approaches to
get a more robust estimation of the ground plane.

We consider the superpixels as being the nodes of a graph
and adjacent superpixels are linked with an edge in the
graph. Since the output of the superpixeling algorithm is a
set of complex shaped uniquely colored regions, we devise
a strategy to get an adjacency matrix from the superpixel
graph. The algorithm is depicted below:

Input: superpixel image
Output: adj matrix
edges := EdgeDetector(superpixel image);
foreach edge in edges do

foreach nibor color in niborhood of edge do
if nibor color 6= color of edge then

adj matrix(color of edge, nibor color) = 1;
end

end
end

Algorithm 1: Finds the adjacency matrix from the super-
pixel graph

In Algorithm 1, EdgeDetector() takes the superpixel image
and produces an edge map from the superpixels. Since these
edges are boundaries of the superpixels, a check of the
colors of the regions around an edge will provide information
regarding the neighborhood. The algorithm operates in O(E)
time, where E represents the number of edges in the graph.
Figure 5 shows an output of a superpixel and the neighboring
superpixels identified by the above algorithm. Once the
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Fig. 5. (a) shows a typical super pixel and (b) shows its detected neighbors
from the adjacency matrix.

adjacency matrix is found, we perform a Breadth First Search
(BFS) over the graph moving across superpixel planes and
checking if neighboring planes are coplanar. We assume that
the robot is located on the superpixel plane at the bottom
center of the image. Thus, it is highly likely that the best
path for robot navigation will be coplanar to this plane1. We
start the BFS from the superpixel at the bottom center of the
segmented graph, and work our way upwards through the
neighbors from the adjacency matrix. For each neighboring
superpixel, we sample n points, map these points to the
corresponding points in the depth map we found in Section
II.A, and then we fit a 3D plane into these n points using the
Moore-Penrose pseudoinverse. Once the normal unit vectors
to these planes are found, we check the cosine similarity
between these vectors. Those planes having high cosine
similarity are more likely to be coplanar, and thus those
superpixels are merged. Figure 6 shows the schematic of
the scenario.

Fig. 6. SP1, SP2 are two superpixel planes and ~N1 and ~N2 are normals
to these planes. To check if two super pixels are coplanar, we compute the
inner product between ~N1 and ~N2 checking if it is closer to unity.

D. Building the reference plane from ground plane

Now that the ground plane has been identified, we can
use the calibration of the camera and assumptions about

1This assumption is not entirely valid when the pose of the robot changes.
In this situation we need to find the entropy of the superpixels to determine
the best path suitable for robot navigation.

its Euclidean coordinates, to find the correct distance map.
Figure 7 depicts the scenario.

Fig. 7. Schematic of the camera structure.

Here P is the optical center, h the height of the camera, I
the image plane, G the ground plane, f the focal length, and
D the actual depth of the bottom most row of the image on
the ground plane from the image plane. In addition, d is the
depth, h1 and h2 show the heights of the projected ground
points on the image plane.

Once the ground plane is determined, the given image is
first inverse calibrated using the camera calibration matrix.
We use the following equation to determine the actual depth
of each pixel:

d = D ∗ h

h1
∗ h1 − h2

h2 − h
. (5)

III. EXPERIMENTS AND RESULTS

In the experimental results discussed below we used
an MIT implementation of the superpixeling algorithm for
texture segmenting the image. All other algorithms were
implemented in Matlab. We also implemented the MRF
based depth map creation algorithm and used the Stanford
Make3D 400 images/depthmaps data set for training and
testing our implementation. Out of the 400 images in the set,
we used 200 of the images for training the system and used
the rest for testing. Each image was of size 1704 x 2272 and
each depth map of size 55 x 305. On a PC running on a 2GHz
Pentium processor and 2GB RAM, our implementation took
1-2 seconds per image for producing the 3D reconstruction.

Fig. 8. It shows the mean error (in meters) between the real and predicted
depths against image rows.

We found that the output of our implementation gave very
good depth maps for the rows above 35 and below 25. A plot
of the error in the estimation is shown in Figure 8. As it is



category mean rms error(m) standard deviation
Campus 0.374 0.082
Forests 0.707 0.246
Roads 0.316 0.099
Overall 0.397 0.269

TABLE I
MEAN RMS ERROR AND STANDARD DEVIATION COMPUTED BETWEEN

THE RECONSTRUCTED 3D AND THE CORRESPONDING LASER DEPTH

MAP.

seen from Figure 8, the error is quite high around the mid
row of the images. This is due to the robot mounted camera
and the variation in depth across the training images is quite
high along the horizon where the ground and vertical planes
meet. Thus our algorithm will not provide a good estimate
of depths at these points. However this is a problem that we
can accommodate, since we are only interested in building
the ground plane and therefore we do not need to consider
the depth map this far.

An empirical comparison of our algorithm with the given
laser data is provided in Table I. Since we do not know the
Euclidean coordinates of the camera, we made an estimate
of them from the images and the corresponding laser data.
The data set was segregated into images of campus, roads,
and forests. As seen from the table, the forest group shows
the maximum error, because of the noisy environment with
too many texture variations. In our experiments we found
that in many other instances the output of our algorithm
looked superior to the laser depth maps. This is because the
laser depth maps degrade with distance from the camera,
but our algorithm uses the predicted depth map and the
plane similarities to increase the accuracy in estimating the
ground plane. Figures 9 through 11 show the estimation of
the ground plane in various scenarios. The predicted ground
plane in each of these situations is shown in green. Figure
12 shows two samples of the 3D environment reconstructed
from the image. Figure 13 provides a comparison of our
method with the raw output of the MAP estimation. Figures
14 and 15 show comparisons of the predicted depth maps
with the laser range data.

(a) (b)

Fig. 9. (a) Original. (b) The image shows the estimated ground plane in
green color. The robustness of the algorithm to shadows is depicted here.

(a) (b)

Fig. 10. (a) Original. (b) The image shows the estimated ground plane in
green color. The algorithm finds out obstacles in the image and considers
that in the ground plane estimation.

(a) (b)

(c) (d)

Fig. 11. (a) and (c) show the original images. (b) and (d) show the estimated
ground plane in green color. This exemplifies the robustness to texture
differences in the ground plane and also the identification of obstacles in
the path.

IV. CONCLUSION AND FUTURE WORK

In this work, we introduced a framework for estimating
the ground plane accurately and showed how to map the
pixels in a single image to 3D Euclidean coordinates with
respect to the camera center. It was found that combining the
predicted depth map with the superpixel algorithm results in
better ground plane estimation. The new algorithm was found
to be robust against shadows or texture differences on the
ground plane while simultaneously it facilitated detection of
obstacles in the robot navigation path. The algorithm could
be improved for irregularly illuminated regions like forests
over which its performance was not very impressive. In the
present work we did not consider the intricacies associated
with robot motion, nor have we investigated on how to
combine 3D reconstructions from multiple views. These are



Fig. 12. Left figures show the original images. Right figures show the 3D
reconstructions based on the estimated ground plane. The black region in
the images on the right shows the estimated ground plane.

Fig. 13. Comparison of final predicted depth map with the raw output
of the MAP estimation (before using superpixel information). Each row
shows the original image, the image predicted after the MAP estimation,
and the final depth map after using the superpixel information respectively.
The region marked in blue shows the ground plane identified as navigable.

Fig. 14. Comparison of the 3D reconstruction with the laser depth data.
Each row shows the original image, the predicted depth map, and the laser
depth map, respectively.

topics for future research.
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