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Abstract 
 

In this paper we present a new method for tracking rigid 

objects using a modified version of the Active Appearance 

Model. Unlike most of the other appearance-based methods 

in the literature, such as [3,5,6,9,11], our method allows for 

both partial and self occlusion of the objects. We use 

ground-truth to demonstrate the accuracy of our tracking 

algorithm. We show that our method can be applied to track 

moving objects over wide variations in position and 

orientation of the object – one meter in translation and 140 

degrees in rotation – with an accuracy of a few millimeters. 
. 

1. Introduction 
 

Tracking an object in 3D space, that is, determining the 
position and orientation of the object in 6 DOF, plays an 
important role in many applications.  For instance, in many 
state-of-the-art robotic applications determining the exact 
pose of a moving object is crucial in order to control the 
robot end-effector to perform a task on that object.  

A classical approach for tracking 3D objects relies on 
matching geometrical features of the object with the image 
[1, 2]. However, when scenes are complex, either because 
the objects are complex or the background is cluttered, 
extracting and matching features using geometric-based 
methods can be daunting. As an alternative, several 
appearance-based methods [3, 5, 9, 11] have been proposed. 

One limitation of early implementations of appearance-
based methods [5, 11] is in the fact that they could not 
model the appearance of an object for different viewing 
angles – which leads to problems of self-occlusion. Since the 
object appearance in a 2D image depends on the viewing 
position, tracking a face that moves from left to right profile, 
for example, could not be done robustly with such methods. 

In order to solve this problem, extensions to the 
appearance based approach have been proposed that use 
view-based appearance representations [6, 7, 8]. The 
common idea among these methods is that the appearance of 
an object is modelled using a set of 2D templates 
corresponding to the various views of the object. While 
tracking an object, the algorithm selects a suitable template 
(or model) to use for the purpose of appearance matching. 
Since only 2D information about the object is available 
through the templates, this approach obviously requires 

model switching.  Methods that have been proposed so far 
for model switching tend to be complicated. 

In [6] for example, the original AAM algorithm was 
modified so that the model parameters could generate many 
possible views of the object. While this modification was 
sufficient in the context of the application presented – face 
recognition – it was constrained by only allowing one degree 
of freedom in the rotation of the head (pan). This 
contribution also could not handle partial occlusions. 

Another variation of AAM, presented in [4], also 
constructed a single appearance model obtained from images 
of the object taken from multiple views. The idea was based 
on the assumption that there are some common points 
among these training samples that can be used to align each 
sample with respect to a common template. However, this 
assumption is valid only in some special cases such as the 
case of tracking faces across left-profile to right-profile and 
it does not apply for irregular and asymmetric objects. 

In [3], a different appearance-based method called 3D 
Morphable Models (3DMMs) was proposed. Since this 
model carries out a 3D encoding of  object shape and 
texture, problems such as self-occlusion can be properly 
handled. However, despite the formulation of the method 
using 3D coordinates, the test and the results presented in [3] 
apply only to the case of 1DOF in the rotation of the head 
and, again, there is no provision to deal with partial 
occlusions. 

Finally, in [12], the authors compared 3DMMs to the 
classical 2D AAMs. They demonstrated how the 
representational power of 2D AAMs can lead to meaningless 
instances of the object and how it can be constrained to 
overcome this problem. But again, they stopped short of 
demonstrating the usefulness of their method when dealing 
with radical variations in rotation. Instead, they presented 
results for only +/- 18 degrees in yaw (pan) and even less 
than that for pitch and roll. 

In this paper, we propose a new method that combines a 
sparse 3D model with multiple appearance models to 
accurately estimate the 6 DOF pose of objects. Unlike the 
range maps in [3], our 3D model is very simple and can be 
created using a few mouse clicks on a pair of stereo images. 
However, despite the simplicity of this 3D model, our 
method provides means to deal with both partial and self 
occlusion with high accuracy – typically a few millimetres 
in translation and less than one degree in rotation. Our 
approach treats self-occlusion and partial occlusion 
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separately. Issues related to self-occlusion are resolved by 
using multiple view-specific templates and a simple 3D 
model, and issues related to partial occlusion resolved by 
using robust statistics within the appearance based paradigm. 
This is unlike the 2D work in [16] where both self and 
partial occlusion are dealt with using robust statistics.  Our 
approach allows for arbitrary rotations of the 3D object.  

2. Background 

In this section, we will first briefly review the concepts 
behind Active Appearance Models. Since the method that we 
propose in section 3 is an extension from our earlier work in 
[11], we will then provide a quick review of that work in 
section 2.2.  

 

2.1. Review of Active Appearance Models  

In AAM, the appearance model of an object is defined 

by its shape and texture. The shape model is a set of 2D 

landmark points represented by a vector: s = [x1 y1 ;.. xn yn]
T, 

where (xi yi) are the coordinates of the ith landmark point. A 

PCA analysis is performed on the training samples to obtain 

the mean shape s and the shape eigenvector matrix Ps. 

Hence, an instance of the shape can be expressed in term of 

the shape parameter vector bs as: 
 

ss bPss +=    (1) 
 

The texture model is defined by the set of intensity 

values of the pixels lying inside the reference shape sref. That 

is, the texture model is the vector g=[g1 g2 .. gm]T, where gi is 

the intensity value of the xi pixel inside sref. Again, a PCA 

analysis is performed on the training samples and an 

instance of the texture can be expressed by: 
  

 

bPgg gg+=   (2) 
 

where g is the mean texture vector, Pg the texture 

eigenvector matrix, and bg the texture parameter vector. 

In order to locate the object in the current image I, the 

matching algorithm determines the model parameters (bs, bg, 

and t2D) that minimize the difference between the model 

texture g and the observed texture go. That is 
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where: ri is the texture difference, or residue, between the ith 

pixel of model texture and the corresponding pixel in the 

current image; W(xi) -- by abuse of notation -- is a warping 

function that relates those two sets of pixels; and 

t2D=[tx,ty,Θ,λ] are the parameters of a rigid transformation 

that defines the pose of the object in 2D. 
 

 

2.2. Tracking 3D rigid objects using AAM -- single view  
 

In [11], we proposed a modification of the AAM 
approach to track the 6DOF pose of an object – but without 
occlusions. In that contribution, we represent the shape of an 
object by the 3D coordinates of its landmark points. That is: 
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As for the texture model, we then extract the intensity values 
from the pixels lying inside the contour defined by the 
perspective projection of the landmark points S in eq.(4). The 
texture model can then be defined exactly as in eq. (2), and 
the perspective projections of the 3D landmark points given 
by: 
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Here, K and c
Ho represent respectively the intrinsic and 

the extrinsic parameters of the camera. Where the intrinsic 
parameters are constant and the extrinsic, c

Ho, capture the 6 
DOF pose of the object w.r.t the camera, also represented by 
t3D=[tx, ty, tz, rx, ry, rz]. 

In addition to the above, the contribution in [11] also used 
the following modification of the matching algorithm: it now 
consisted of determining a set of parameters, t3D and bg, that 
minimize the following equation: 

 

∑

∑
=

−=

i

Di

i

DiiD

r

g

2

3

2

33

])([minarg

)]);(();([minarg)(

t,b

txWIbxt,b

g

gg
(6) 

 

This approach has various advantages over the methods 
presented in [3], [5], [6], and [12]. For example, vis-à-vis the 
method presented in [6], we can now accurately estimate the 
full pose of an object and allow for changes in camera view 
in all 6DOF (tx, ty, tz, rx, ry, and rz), instead of just in the pan 
angle. Besides, a Gauss-Newton based minimization 
algorithm similar to that used in [5] can be applied to 
minimize (6) as explained in [11]. 

In terms of 3D approaches, such as those presented in [3] 
and [12], our method relies on a sparse set of landmark 
points: roughly 30 landmark points for common real-world 
objects. This number of landmarks is a few orders of 
magnitude smaller than the dense set of points used in [3] – 
more than 70,000 points in that case. Also, this set of 3D 
landmark points is obtained using a simple tool that was also 
presented in [11]. This software tool displays two stereo 
images of the object and guides the human in selecting 
landmark points in the left image and the corresponding 
points in the right image. After a few clicks of the mouse, 
and using simple 3D reconstruction, a 3D model of the object 
is created. This model is of course greatly more accurate than 
the one obtained using structure-from-motion as in [12]. 

A similar method using AAM and a 3D-pose 
parameterization for t3D is employed in [9]. However, in their 
approach the texture parameter bg is not included in the final 

parameterization. Instead, they approximate the model 



texture using the current observed texture vector, which from 
our experience produces errors in the AAM matching. 

In the next section we present the details of a new AAM-

based method for tracking 3D rigid object with occlusions. 

As we mentioned earlier, this new method extends our 

previous work in such a way to allow for occlusions: both 

self and partial. 
 

 

 

 

 

 

 

 
 

Figure 1. The model of the box: (i) 4 different appearance models with the 
selected landmark points (yellow crosses); and (ii) the 3D Model from the 
combined 3D landmark points.  

 

3. Proposed New Method 
 

 

In order to handle self-occlusion, we employ a multi-
view approach similar to the one in [6]. That is, each object 
is represented by multiple appearance models, each one 
representing one of the possible views that the object can 
assume in front of the camera. As for the second type of 
occlusion, partial occlusion, we employ a robust estimation 
framework within the matching algorithm. 

 
 

3.1. Object Model 
 

The complete object model consists of: (i) a set of 
multiple appearance models; and (ii) a 3D model. In order to 
construct this model, first the number of possible views must 
be specified. For instance, to model the box in Figure 1, we 
represent it with only 4 different views: left, frontal, right 
and top. For each of these views, we proceed exactly as 
described in section 2.2, creating one appearance model for 
each of the four views. 

The 3D model is simply a combined list of 3D points 
corresponding to the landmark points in each view. Since 
these landmark points are obtained for each of the views 
separately, they need to be transformed into a common 
object coordinated frame. This is done by applying the 3D to 
3D absolute orientation algorithm [10].  

 

 

3.2. Tracking algorithm 
 

Given the above representation, we can now explain how 

to track a 3D rigid object in a sequence of images. The 

tracking algorithm can be divided in two major steps. The 

first step, Selecting Appearance Models, determines a list of 

appearance models that should be visible in the current 

image. It is this step of our new approach that permits   

tracking in the presence of self-occlusion. The second step, 

Robust Multiple-AAM Matching, uses the visible appearance 

models detected in step one to estimate the 3D location of 

the object. It is in this step that partial occlusion is handled -- 

by introducing robust estimation in the AAM matching 

algorithm (section 3.2.2). 
 

 

3.2.1. Selecting Appearance Models  
 

In this step, self-occlusions are detected using a simple 

backface removal algorithm [13]. The procedure starts by 

creating a list of 3D triangular meshes from the 3D model of 

the object. In fact, for efficiency, this list of triangular 

meshes can be pre-calculated during the model construction. 
 

 

 

 

 

 

 

 

 
 

 

Figure 2.  The appearance model of the box: (a) 3D triangular mesh from the 
3D Model and (b) the corresponding 2D triangular meshes from the 
projections of (a) 

Since, at each frame, we have the estimate of the object 
pose from the previous frame – given by t3D – this 
information can be used to predict the current pose of the 
triangular meshes. That is, we apply the 3D rigid 
transformation given by t3D to the coordinates of each vertex 
of a mesh and then determine the normal vector with respect 
to the camera coordinate frame. This procedure is possible 
because we assume that the object pose in two consecutive 
image frames does not change significantly. This assumption 
and the consequences when it fails to hold are discussed in 
section 4. 

For each triangular mesh, the algorithm calculates the 
viewing vector v that points out from the origin of the 
camera coordinate frame (center of projection - COP) to the 
center of that mesh (Figure 2). Also, since we have 
calculated the normal vector (n) of each triangular mesh, we 
can define the viewing angle Θ of the mesh using the dot-
product between the two vectors above. 

The visibility of the triangular mesh can be determined 
by testing the viewing angle Θ. If this angle is smaller 90 
degrees, this means that the triangular mesh is not visible 
from the current viewing angle of the camera. Otherwise, the 
triangular mesh is visible. This visibility, however, increases 
with increasing values of the angle. To capture this property, 
we define the visibility of a triangular mesh as: 

 

w = | cos Θ |    (7) 
 

For each appearance model, if at least one triangular 
mesh is visible according to the criterion above, that model 
is included in the list of selected appearance models. The 
above algorithm also creates another list with the visibility 
measures w. With these two lists, we can run the Robust 
Multi-AAM Matching algorithm, as explained next. 

 

 

3.2.2. Robust Multiple AAM Matching  
 

In order to handle partial occlusion, as mentioned 
already, we employ a robust estimation framework. The 
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underlying assumption of this framework is that the 
occluded area can cause large texture differences between 
the template and what is seen in the camera image. In that 
case, the texture difference corresponding to the occluded 
pixels can be considered as “oultiers” in the estimation 
process.  

In the new proposed matching algorithm, we incorporate 

the standard M-estimation and the automatic scale 

computation [14] in our previous matching formulation. 

That is, in eq. (6), instead of using the L2-norm, we 

determine the parameters p=(bg,t3D) that minimize a similar 

expression using the robust norm ρ(). That is: 
  

∑=
i
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where ri is texture residue at pixel i. The robust norm 

function ρ() is defined by the Lorentzian function where the 

scale parameter σ is automatically estimated from the 

median value of the absolute residue for the initial parameter 

p
0 (initialized with the result from the previous frame). That 

is, the robust norm function and the estimate of  σ are 

automatically obtained by: 
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Another change in eq. (8) with respect to eq. (6) is in the 

incorporation of a weight wi, which is applied to each 

residue ri. This weight is derived from the visibility measure 

in eq (7) and it represents the credibility of each pixel used 

in the estimation. 
To perform the above minimization, we also had to 

modify the Gauss-Newton formulation to accommodate the 
M-estimation. Our modification to the Gauss-Newton 
formulation is along the lines of the iterative method 
presented in [14]. In this method, given the current estimate 
of p, we determine the next estimate p′= p+∆p by 
calculating ∆p using the gradient G and the first order 
estimate of the Hessian H of the objective function as in: 
 

 ∆p=-H-1(p) G(p)   (10) 
 

 

where the kth element of G and the (kth,lth) elements of H can 

be written in terms of ρ and ri as  
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Now that we can handle partial occlusion using robust 
estimation, we must combine this with the previous step 
where we select the multiple appearance models that are 
visible in the current image.  It is the combination of both 
steps that will allow our algorithm to handle both partial and 
self occlusions. 

Let’s assume that the frontal and the left views of the 

object are visible in the current frame. There exists a 

separate appearance model for each view. The parameter 

vectors corresponding to each of these models in the image 

can be denoted bgv1
 and bgv2

. The matching algorithm 

needs to take into account both of these vectors at the same 

time. The matching algorithm needs to warp the texture from 

all visible triangular meshes in the current image to the 

reference templates for the two appearance models. The 

triangular meshes in the current image are obtained from the 

projection of all visible 3D triangular meshes determined in 

the previous step. 
In general, to include all visible models in the estimation 

process, we dynamically combine the models as if they were 
one single appearance model. Then, we apply the robust 
estimation process to estimate the parameters that minimizes 
the residue over the combined model texture and the 
combined observed texture.  

In other words, if {v1, v2, …, vk} is the list of the visible 

appearance models selected by the first step of the 

algorithm, then the parameters being estimated are given by: 
 

p = ( t3D bgv1
 … bgvk

 )  (12) 
 

 

where bgvi
 is the texture parameter vector corresponding to 

the vi
th appearance model. Also, at each iteration of the 

minimization process, given a current set of parameters, p, 

we can obtain the combined model texture and the combined 

observed texture from, respectively: 
 

g = ( gv1
T

 | … | gvk
T

 )
 T   

go = ( gov1
T

 | … | govk
T

 )
T (13) 

 

where gvi
 is the texture calculated from the vi

th appearance 

model (eq. (2)) with  parameter bgvi
 and govi

 is the texture 

sampled from the image inside the projection  of the meshes 

belonging to the appearance model vi. 

Finally, the residue vector, r(p)= g - go , can be evaluated 

and used in the minimization process stated in equations. (8) 

through (11). 
 

 
 
 

Figure 3.  The “can” object at 5 different views with their annotated 

landmark points 
 
 

4. Results 
 

In order to evaluate our method, we collected 
experimental data using a pair of stereo cameras mounted on 
the end-effector of an industrial robot. The robot moved on 
several specified paths around a stationary target object.  A 
sequence of images (640x480 pixels) was acquired and the 
end-effector’s position was recorded for each image taken. 
Also, for all experiments reported here, we used two 
different target objects: a box and a can. The box was 
modelled using 4 different appearance models (frontal, top, 
left and right) as shown in Figure 1, while we used 5 
different appearance models for the can, as shown in Figure 
3. For each object, we acquired two different image 
sequences: one for training (approximately 10 images per 



model) and another for testing (over 500 images for each 
object).  

Finally, since the image sequences recorded in the 
manner described above presented only self-occlusion, in 
order to also create partial occlusion we overlapped a 
portion of the images of the target object with a small patch 
obtained from another independent image (Figure 4). This 
partial occlusion obscures between 20% and 40% of the total 
area of the target object 

The qualitative result of our method can be observed in 
Figure 4. As that figure shows, the projected object border 
computed from the estimated pose of the object – 
represented by the yellow dotted lines superimposed onto 
the image – closely matches the actual border of the object 
(box), or the area defined by the exterior landmark points 
(can). The matching was good for all poses of the two 
objects, regardless of the presence of partial occlusion. 

 

 
 

 
 

 
 

 
 

 

Figure 4. Some tracking results: with and without partial occlusion 
 

 

For a quantitative assessment, we determined the 

accuracy of our method by comparing the estimated pose of 

the end-effector with the same pose obtained using the robot 

kinematics (ground truth). The pose of the end-effector is 

expressed using a homogeneous transformation by eiHe0
 and 

it represents the end-effector’s position “ei” with respect to 

some previously specified reference end-effector position 

“e0”. Note that while the target object is stationary with 

respect to the end-effector, the motion represented by  eiHe0 
 

is relative. That implies that even though it is the end-

effector that is moving with respect to the object, it is the 

same as assuming that the end-effector is stationary while 

the object is moving. 
In Figure 5, we depict the ground truth – that is, the 

relative motion of the box – in terms of the translation and 

the rotation components. Also in the same figure, we plot the 
estimated motion obtained from our method. The figure also 
shows the estimated motion in the presence of partial 
occlusion. Note that, due to space limitations, we plotted 
only the curve for the experiment using the box. Similar 
results were obtained for the can and are summarized in 
Table 1. 

As it can be seen in Figure 5, the estimated poses are 
almost the same as the ground truth. This fact can be better 
appreciated in Table 1, where the statistics of the error 
between estimated and actual pose are summarized for each 
of the 6 degrees of freedom. In that table, we observe that 
the average error in any translational component is always 
smaller than 1cm with a very small standard deviation, 
usually less than 0.5cm. In terms of the rotational error, on 
the average the error is less than one degree. 

 
 

 

 

 

 

 

 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 
 
 
 
 

 

Figure 5. The motion paths for the “box” in experiment. Each plot shows 

the groundtruth and the calculated path using our method in the presence of 

self-occlusion only and both self and partial occlusion. 
 

The relatively large values for the maximum error for 
both the translational and rotational components are due to a 
few “bad” samples, as it can be observed in Figure 5 (around 
frame 300) and as can also be inferred from the small 
standard deviations. 

As we explained in section 3.2, we made an assumption 
that the object pose in two consecutive frames does not 
change significantly. This assumption affects the selection of 
the appearance models as described in section 3.2.1 as well 
as the initialization of the parameter p0 in section 3.2.2. The 
latter is critical since a bad initialization of p may cause the 
matching algorithm to not converge. 

In order to check the consequences of the failure to 
satisfy this assumption, we tested our method for several 
velocities of the target object. In Figure 6, we show the error 
in pose estimation for the box moving from 1 to 7 cm 
between two consecutive frames. As can be observed, the 
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method works well – no change in pose error – for any 
amount of motion of the box and without occlusions. 
However, in the presence of occlusion, the error grows 
rapidly. We believe this growth is due mainly to the bad 
initialization of the parameter p, more specifically, t3D. If the 
tracking algorithm starts with a bad value for t3D, the texture 
samples will be taken from an image region far away from 
the expected one. This adds to the fact that the object is 
being occluded and it causes an increasingly large number of 
outliers in the robust estimation, which is known to fail for 
more than 50% of outliers.  
 

Table 1. 
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Figure 6.  The graph shows the avg. translational error for different speeds 

of the object. 
 

We tested this hypothesis by implementing a very simple 
linear-motion prediction scheme to initialize p for the next 
frame. When we use this prediction, the error improves 
again for motions up to 3.5 cm between consecutive frames. 
But it fails again for motions of about 5 cm between 
consecutive frames because larger motions also involve 
changes in the direction of the end-effector motion --- 
especially because such changes are not incorporated in the 
simple prediction scheme used. 

 

5. Conclusion and Future Work 
 

We introduced a new method to track rigid objects using 
a modified version of AAM. The method allows for partial 
and self occlusions of the object. We showed results for 
wide changes in the position and orientation of the object. 
For the experiments shown, tracking was carried out with 
high precision over a range of 1 meter in translation and 140 
degrees in rotation. 

The proposed method suffers from one drawback that is 
common to many trackers --- the tracker works only when 
the frame-to-frame variations in the object pose are small. 

We also showed that this problem could be partially 
alleviated by incorporating simple motion prediction in the 
tracking process. But, for obvious reasons, further works 
needs to be carried out on how best to carry out motion 
prediction in our context. Another major drawback of the 
method is that the initialization of the pose parameters must 
be carried out manually in the first frame of the video 
sequence. Practically all trackers today that analyze targets 
at a level higher than merely considering them to be blobs 
suffer from this limitation. This initialization issue also 
needs to be addressed if the type of trackers presented here 
are to have any real-world applications. 

Since our main goal is to use this method for visual 
servoing, we must improve the speed of the matching 
algorithm so it can run in real time. The most time 
consuming step of the algorithm is for computing the 
Hessian matrix and the gradient vector (in eq (10) - (11)). 
We are currently working on the development of a real-time 
version of the algorithm based on the inverse compositional 
approach [15]. 
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