
Accurate 3D Tracking of Rigid Objects with Occlusion

Using Active Appearance Models

Pradit Mittrapiyanuruk1, Guilherme N.DeSouza2, Avinash C. Kak1
 1 Robot vision Laboratory, School of Electrical and Computer Engineering, Purdue Univerisy, USA

2 School of Electrical, Electronic & Computer Engineering, The University of Western Australia

mitrapiy@purdue.edu, gdesouza@ee.uwa.edu.au, kak@ecn.purdue.edu

Abstract

In this paper we present a new method for tracking rigid

objects using a modified version of the Active Appearance

Model. Unlike most of the other appearance-based methods

in the literature, such as [3,5,6,9,11], our method allows for

both partial and self occlusion of the objects. We use

ground-truth to demonstrate the accuracy of our tracking

algorithm. We show that our method can be applied to track

moving objects over wide variations in position and

orientation of the object – one meter in translation and 140

degrees in rotation – with an accuracy of a few millimeters.
.

1. Introduction

Tracking an object in 3D space, that is, determining the
position and orientation of the object in 6 DOF, plays an
important role in many applications. For instance, in many
state-of-the-art robotic applications determining the exact
pose of a moving object is crucial in order to control the
robot end-effector to perform a task on that object.

A classical approach for tracking 3D objects relies on
matching geometrical features of the object with the image
[1, 2]. However, when scenes are complex, either because
the objects are complex or the background is cluttered,
extracting and matching features using geometric-based
methods can be daunting. As an alternative, several
appearance-based methods [3, 5, 9, 11] have been proposed.

One limitation of early implementations of appearance-
based methods [5, 11] is in the fact that they could not
model the appearance of an object for different viewing
angles – which leads to problems of self-occlusion. Since the
object appearance in a 2D image depends on the viewing
position, tracking a face that moves from left to right profile,
for example, could not be done robustly with such methods.

In order to solve this problem, extensions to the
appearance based approach have been proposed that use
view-based appearance representations [6, 7, 8]. The
common idea among these methods is that the appearance of
an object is modelled using a set of 2D templates
corresponding to the various views of the object. While
tracking an object, the algorithm selects a suitable template
(or model) to use for the purpose of appearance matching.
Since only 2D information about the object is available
through the templates, this approach obviously requires

model switching. Methods that have been proposed so far
for model switching tend to be complicated.

In [6] for example, the original AAM algorithm was
modified so that the model parameters could generate many
possible views of the object. While this modification was
sufficient in the context of the application presented – face
recognition – it was constrained by only allowing one degree
of freedom in the rotation of the head (pan). This
contribution also could not handle partial occlusions.

Another variation of AAM, presented in [4], also
constructed a single appearance model obtained from images
of the object taken from multiple views. The idea was based
on the assumption that there are some common points
among these training samples that can be used to align each
sample with respect to a common template. However, this
assumption is valid only in some special cases such as the
case of tracking faces across left-profile to right-profile and
it does not apply for irregular and asymmetric objects.

In [3], a different appearance-based method called 3D
Morphable Models (3DMMs) was proposed. Since this
model carries out a 3D encoding of object shape and
texture, problems such as self-occlusion can be properly
handled. However, despite the formulation of the method
using 3D coordinates, the test and the results presented in [3]
apply only to the case of 1DOF in the rotation of the head
and, again, there is no provision to deal with partial
occlusions.

Finally, in [12], the authors compared 3DMMs to the
classical 2D AAMs. They demonstrated how the
representational power of 2D AAMs can lead to meaningless
instances of the object and how it can be constrained to
overcome this problem. But again, they stopped short of
demonstrating the usefulness of their method when dealing
with radical variations in rotation. Instead, they presented
results for only +/- 18 degrees in yaw (pan) and even less
than that for pitch and roll.

In this paper, we propose a new method that combines a
sparse 3D model with multiple appearance models to
accurately estimate the 6 DOF pose of objects. Unlike the
range maps in [3], our 3D model is very simple and can be
created using a few mouse clicks on a pair of stereo images.
However, despite the simplicity of this 3D model, our
method provides means to deal with both partial and self
occlusion with high accuracy – typically a few millimetres
in translation and less than one degree in rotation. Our
approach treats self-occlusion and partial occlusion

This paper appears in: Proceedings of the IEEE Workshop on Moition and Video Computing, 2005

separately. Issues related to self-occlusion are resolved by
using multiple view-specific templates and a simple 3D
model, and issues related to partial occlusion resolved by
using robust statistics within the appearance based paradigm.
This is unlike the 2D work in [16] where both self and
partial occlusion are dealt with using robust statistics. Our
approach allows for arbitrary rotations of the 3D object.

2. Background

In this section, we will first briefly review the concepts
behind Active Appearance Models. Since the method that we
propose in section 3 is an extension from our earlier work in
[11], we will then provide a quick review of that work in
section 2.2.

2.1. Review of Active Appearance Models

In AAM, the appearance model of an object is defined

by its shape and texture. The shape model is a set of 2D

landmark points represented by a vector: s = [x1 y1 ;.. xn yn]
T,

where (xi yi) are the coordinates of the ith landmark point. A

PCA analysis is performed on the training samples to obtain

the mean shape s and the shape eigenvector matrix Ps.

Hence, an instance of the shape can be expressed in term of

the shape parameter vector bs as:

ss bPss += (1)

The texture model is defined by the set of intensity

values of the pixels lying inside the reference shape sref. That

is, the texture model is the vector g=[g1 g2 .. gm]T, where gi is

the intensity value of the xi pixel inside sref. Again, a PCA

analysis is performed on the training samples and an

instance of the texture can be expressed by:

bPgg gg+= (2)

where g is the mean texture vector, Pg the texture

eigenvector matrix, and bg the texture parameter vector.

In order to locate the object in the current image I, the

matching algorithm determines the model parameters (bs, bg,

and t2D) that minimize the difference between the model

texture g and the observed texture go. That is

∑ −=
i

DioiD gg 2

22)],;();([minarg)(tbxbxt,b,b sggs
 (3)

where

)),;(()(2Diiog tbxWIx s=

or, for simplicity of notation

∑=
i

DiD r 2

22])([minarg)(t,b,bt,b,b gsgs
 (3a)

where: ri is the texture difference, or residue, between the ith

pixel of model texture and the corresponding pixel in the

current image; W(xi) -- by abuse of notation -- is a warping

function that relates those two sets of pixels; and

t2D=[tx,ty,Θ,λ] are the parameters of a rigid transformation

that defines the pose of the object in 2D.

2.2. Tracking 3D rigid objects using AAM -- single view

In [11], we proposed a modification of the AAM
approach to track the 6DOF pose of an object – but without
occlusions. In that contribution, we represent the shape of an
object by the 3D coordinates of its landmark points. That is:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

n

n

n

ZZ

YY

XX

..

...

...

1

1

1

S

 (4)

As for the texture model, we then extract the intensity values
from the pixels lying inside the contour defined by the
perspective projection of the landmark points S in eq.(4). The
texture model can then be defined exactly as in eq. (2), and
the perspective projections of the 3D landmark points given
by:

SHKu o

c **
...

...

1

1 =⎥
⎦

⎤
⎢
⎣

⎡
=

n

n

yy

xx (5)

Here, K and c
Ho represent respectively the intrinsic and

the extrinsic parameters of the camera. Where the intrinsic
parameters are constant and the extrinsic, c

Ho, capture the 6
DOF pose of the object w.r.t the camera, also represented by
t3D=[tx, ty, tz, rx, ry, rz].

In addition to the above, the contribution in [11] also used
the following modification of the matching algorithm: it now
consisted of determining a set of parameters, t3D and bg, that
minimize the following equation:

∑

∑
=

−=

i

Di

i

DiiD

r

g

2

3

2

33

])([minarg

)]);(();([minarg)(

t,b

txWIbxt,b

g

gg
(6)

This approach has various advantages over the methods
presented in [3], [5], [6], and [12]. For example, vis-à-vis the
method presented in [6], we can now accurately estimate the
full pose of an object and allow for changes in camera view
in all 6DOF (tx, ty, tz, rx, ry, and rz), instead of just in the pan
angle. Besides, a Gauss-Newton based minimization
algorithm similar to that used in [5] can be applied to
minimize (6) as explained in [11].

In terms of 3D approaches, such as those presented in [3]
and [12], our method relies on a sparse set of landmark
points: roughly 30 landmark points for common real-world
objects. This number of landmarks is a few orders of
magnitude smaller than the dense set of points used in [3] –
more than 70,000 points in that case. Also, this set of 3D
landmark points is obtained using a simple tool that was also
presented in [11]. This software tool displays two stereo
images of the object and guides the human in selecting
landmark points in the left image and the corresponding
points in the right image. After a few clicks of the mouse,
and using simple 3D reconstruction, a 3D model of the object
is created. This model is of course greatly more accurate than
the one obtained using structure-from-motion as in [12].

A similar method using AAM and a 3D-pose
parameterization for t3D is employed in [9]. However, in their
approach the texture parameter bg is not included in the final

parameterization. Instead, they approximate the model

texture using the current observed texture vector, which from
our experience produces errors in the AAM matching.

In the next section we present the details of a new AAM-

based method for tracking 3D rigid object with occlusions.

As we mentioned earlier, this new method extends our

previous work in such a way to allow for occlusions: both

self and partial.

Figure 1. The model of the box: (i) 4 different appearance models with the
selected landmark points (yellow crosses); and (ii) the 3D Model from the
combined 3D landmark points.

3. Proposed New Method

In order to handle self-occlusion, we employ a multi-
view approach similar to the one in [6]. That is, each object
is represented by multiple appearance models, each one
representing one of the possible views that the object can
assume in front of the camera. As for the second type of
occlusion, partial occlusion, we employ a robust estimation
framework within the matching algorithm.

3.1. Object Model

The complete object model consists of: (i) a set of
multiple appearance models; and (ii) a 3D model. In order to
construct this model, first the number of possible views must
be specified. For instance, to model the box in Figure 1, we
represent it with only 4 different views: left, frontal, right
and top. For each of these views, we proceed exactly as
described in section 2.2, creating one appearance model for
each of the four views.

The 3D model is simply a combined list of 3D points
corresponding to the landmark points in each view. Since
these landmark points are obtained for each of the views
separately, they need to be transformed into a common
object coordinated frame. This is done by applying the 3D to
3D absolute orientation algorithm [10].

3.2. Tracking algorithm

Given the above representation, we can now explain how

to track a 3D rigid object in a sequence of images. The

tracking algorithm can be divided in two major steps. The

first step, Selecting Appearance Models, determines a list of

appearance models that should be visible in the current

image. It is this step of our new approach that permits

tracking in the presence of self-occlusion. The second step,

Robust Multiple-AAM Matching, uses the visible appearance

models detected in step one to estimate the 3D location of

the object. It is in this step that partial occlusion is handled --

by introducing robust estimation in the AAM matching

algorithm (section 3.2.2).

3.2.1. Selecting Appearance Models

In this step, self-occlusions are detected using a simple

backface removal algorithm [13]. The procedure starts by

creating a list of 3D triangular meshes from the 3D model of

the object. In fact, for efficiency, this list of triangular

meshes can be pre-calculated during the model construction.

Figure 2. The appearance model of the box: (a) 3D triangular mesh from the
3D Model and (b) the corresponding 2D triangular meshes from the
projections of (a)

Since, at each frame, we have the estimate of the object
pose from the previous frame – given by t3D – this
information can be used to predict the current pose of the
triangular meshes. That is, we apply the 3D rigid
transformation given by t3D to the coordinates of each vertex
of a mesh and then determine the normal vector with respect
to the camera coordinate frame. This procedure is possible
because we assume that the object pose in two consecutive
image frames does not change significantly. This assumption
and the consequences when it fails to hold are discussed in
section 4.

For each triangular mesh, the algorithm calculates the
viewing vector v that points out from the origin of the
camera coordinate frame (center of projection - COP) to the
center of that mesh (Figure 2). Also, since we have
calculated the normal vector (n) of each triangular mesh, we
can define the viewing angle Θ of the mesh using the dot-
product between the two vectors above.

The visibility of the triangular mesh can be determined
by testing the viewing angle Θ. If this angle is smaller 90
degrees, this means that the triangular mesh is not visible
from the current viewing angle of the camera. Otherwise, the
triangular mesh is visible. This visibility, however, increases
with increasing values of the angle. To capture this property,
we define the visibility of a triangular mesh as:

w = | cos Θ | (7)

For each appearance model, if at least one triangular
mesh is visible according to the criterion above, that model
is included in the list of selected appearance models. The
above algorithm also creates another list with the visibility
measures w. With these two lists, we can run the Robust
Multi-AAM Matching algorithm, as explained next.

3.2.2. Robust Multiple AAM Matching

In order to handle partial occlusion, as mentioned
already, we employ a robust estimation framework. The

0
0.05

0.1

0
0.02

0.04
0.06

0.08

0

0.05

0.1

0.15

0

0.05

0.1

0
0.02

0.04
0.06

0.08

0

0.05

0.1

0.15

v

COP

n(a) (b)

underlying assumption of this framework is that the
occluded area can cause large texture differences between
the template and what is seen in the camera image. In that
case, the texture difference corresponding to the occluded
pixels can be considered as “oultiers” in the estimation
process.

In the new proposed matching algorithm, we incorporate

the standard M-estimation and the automatic scale

computation [14] in our previous matching formulation.

That is, in eq. (6), instead of using the L2-norm, we

determine the parameters p=(bg,t3D) that minimize a similar

expression using the robust norm ρ(). That is:

∑=
i

ii rw));((*minarg σρ pp (8)

where ri is texture residue at pixel i. The robust norm

function ρ() is defined by the Lorentzian function where the

scale parameter σ is automatically estimated from the

median value of the absolute residue for the initial parameter

p
0 (initialized with the result from the previous frame). That

is, the robust norm function and the estimate of σ are

automatically obtained by:

|)(|4826.1);
2

1(log);(0

2

2

pii

i

i rMed
r

r =+= σ
σ

σρ (9)

Another change in eq. (8) with respect to eq. (6) is in the

incorporation of a weight wi, which is applied to each

residue ri. This weight is derived from the visibility measure

in eq (7) and it represents the credibility of each pixel used

in the estimation.
To perform the above minimization, we also had to

modify the Gauss-Newton formulation to accommodate the
M-estimation. Our modification to the Gauss-Newton
formulation is along the lines of the iterative method
presented in [14]. In this method, given the current estimate
of p, we determine the next estimate p′= p+∆p by
calculating ∆p using the gradient G and the first order
estimate of the Hessian H of the objective function as in:

 ∆p=-H-1(p) G(p) (10)

where the kth element of G and the (kth,lth) elements of H can

be written in terms of ρ and ri as

l

i

k

i

ii i

i
kl

i k

i

i

ik
p

r

p

r

rr

w
H

p

r

r
wG

∂
∂

∂
∂

∂
∂

=
∂
∂

∂
∂

= ∑∑ ρρ
; (11)

Now that we can handle partial occlusion using robust
estimation, we must combine this with the previous step
where we select the multiple appearance models that are
visible in the current image. It is the combination of both
steps that will allow our algorithm to handle both partial and
self occlusions.

Let’s assume that the frontal and the left views of the

object are visible in the current frame. There exists a

separate appearance model for each view. The parameter

vectors corresponding to each of these models in the image

can be denoted bgv1
 and bgv2

. The matching algorithm

needs to take into account both of these vectors at the same

time. The matching algorithm needs to warp the texture from

all visible triangular meshes in the current image to the

reference templates for the two appearance models. The

triangular meshes in the current image are obtained from the

projection of all visible 3D triangular meshes determined in

the previous step.
In general, to include all visible models in the estimation

process, we dynamically combine the models as if they were
one single appearance model. Then, we apply the robust
estimation process to estimate the parameters that minimizes
the residue over the combined model texture and the
combined observed texture.

In other words, if {v1, v2, …, vk} is the list of the visible

appearance models selected by the first step of the

algorithm, then the parameters being estimated are given by:

p = (t3D bgv1
 … bgvk

) (12)

where bgvi
 is the texture parameter vector corresponding to

the vi
th appearance model. Also, at each iteration of the

minimization process, given a current set of parameters, p,

we can obtain the combined model texture and the combined

observed texture from, respectively:

g = (gv1
T

 | … | gvk
T

)
 T

go = (gov1
T

 | … | govk
T

)
T (13)

where gvi
 is the texture calculated from the vi

th appearance

model (eq. (2)) with parameter bgvi
 and govi

 is the texture

sampled from the image inside the projection of the meshes

belonging to the appearance model vi.

Finally, the residue vector, r(p)= g - go , can be evaluated

and used in the minimization process stated in equations. (8)

through (11).

Figure 3. The “can” object at 5 different views with their annotated

landmark points

4. Results

In order to evaluate our method, we collected
experimental data using a pair of stereo cameras mounted on
the end-effector of an industrial robot. The robot moved on
several specified paths around a stationary target object. A
sequence of images (640x480 pixels) was acquired and the
end-effector’s position was recorded for each image taken.
Also, for all experiments reported here, we used two
different target objects: a box and a can. The box was
modelled using 4 different appearance models (frontal, top,
left and right) as shown in Figure 1, while we used 5
different appearance models for the can, as shown in Figure
3. For each object, we acquired two different image
sequences: one for training (approximately 10 images per

model) and another for testing (over 500 images for each
object).

Finally, since the image sequences recorded in the
manner described above presented only self-occlusion, in
order to also create partial occlusion we overlapped a
portion of the images of the target object with a small patch
obtained from another independent image (Figure 4). This
partial occlusion obscures between 20% and 40% of the total
area of the target object

The qualitative result of our method can be observed in
Figure 4. As that figure shows, the projected object border
computed from the estimated pose of the object –
represented by the yellow dotted lines superimposed onto
the image – closely matches the actual border of the object
(box), or the area defined by the exterior landmark points
(can). The matching was good for all poses of the two
objects, regardless of the presence of partial occlusion.

Figure 4. Some tracking results: with and without partial occlusion

For a quantitative assessment, we determined the

accuracy of our method by comparing the estimated pose of

the end-effector with the same pose obtained using the robot

kinematics (ground truth). The pose of the end-effector is

expressed using a homogeneous transformation by eiHe0
 and

it represents the end-effector’s position “ei” with respect to

some previously specified reference end-effector position

“e0”. Note that while the target object is stationary with

respect to the end-effector, the motion represented by eiHe0

is relative. That implies that even though it is the end-

effector that is moving with respect to the object, it is the

same as assuming that the end-effector is stationary while

the object is moving.
In Figure 5, we depict the ground truth – that is, the

relative motion of the box – in terms of the translation and

the rotation components. Also in the same figure, we plot the
estimated motion obtained from our method. The figure also
shows the estimated motion in the presence of partial
occlusion. Note that, due to space limitations, we plotted
only the curve for the experiment using the box. Similar
results were obtained for the can and are summarized in
Table 1.

As it can be seen in Figure 5, the estimated poses are
almost the same as the ground truth. This fact can be better
appreciated in Table 1, where the statistics of the error
between estimated and actual pose are summarized for each
of the 6 degrees of freedom. In that table, we observe that
the average error in any translational component is always
smaller than 1cm with a very small standard deviation,
usually less than 0.5cm. In terms of the rotational error, on
the average the error is less than one degree.

Figure 5. The motion paths for the “box” in experiment. Each plot shows

the groundtruth and the calculated path using our method in the presence of

self-occlusion only and both self and partial occlusion.

The relatively large values for the maximum error for
both the translational and rotational components are due to a
few “bad” samples, as it can be observed in Figure 5 (around
frame 300) and as can also be inferred from the small
standard deviations.

As we explained in section 3.2, we made an assumption
that the object pose in two consecutive frames does not
change significantly. This assumption affects the selection of
the appearance models as described in section 3.2.1 as well
as the initialization of the parameter p0 in section 3.2.2. The
latter is critical since a bad initialization of p may cause the
matching algorithm to not converge.

In order to check the consequences of the failure to
satisfy this assumption, we tested our method for several
velocities of the target object. In Figure 6, we show the error
in pose estimation for the box moving from 1 to 7 cm
between two consecutive frames. As can be observed, the

0 100 200 300 400 500 600
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

m
e

te
r

Frame number

x-trans.
Groundtruth
SelfOcc. only
Self/Partial Occ.

0 100 200 300 400 500 600
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

m
e

te
r

Frame number

y-trans.

0 100 200 300 400 500 600
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m
e

te
r

Frame number

z-trans.

0 100 200 300 400 500 600
-100

-50

0

50

100

d
e

g

Frame number

x-rot.

0 100 200 300 400 500 600
-20

0

20

40

60

80

d
e

g

Frame number

y-rot.

0 100 200 300 400 500 600
-20

-15

-10

-5

0

5

10

15

20

d
e

g

Frame number

z-rot.

method works well – no change in pose error – for any
amount of motion of the box and without occlusions.
However, in the presence of occlusion, the error grows
rapidly. We believe this growth is due mainly to the bad
initialization of the parameter p, more specifically, t3D. If the
tracking algorithm starts with a bad value for t3D, the texture
samples will be taken from an image region far away from
the expected one. This adds to the fact that the object is
being occluded and it causes an increasingly large number of
outliers in the robust estimation, which is known to fail for
more than 50% of outliers.

Table 1.

Statistics of error

x
-t

ra
n

s

(m
m

)

y
-t

ra
n

s

(m
m

)

z-
tr

a
n

s

(m
m

)

x
-r

o
t

(d
eg

)

y
-r

o
t

(d
eg

)

z-
ro

t

(d
eg

)

Avg 7.0 6.2 9.3 1.16 1.08 0.68

Std 4.7 4.9 10.6 0.87 0.71 0.63
Self-occ.

 Only
Max 18.1 22.1 41.1 4.49 2.57 2.61

Avg 7.1 6.5 9.4 1.25 1.18 0.67

Std 5.0 4.5 11.2 0.88 0.79 0.62

B

O

X
Self/

Partial occ.
Max 18.1 21.4 44.7 4.27 2.73 2.61

Avg 4.8 5.2 7.5 0.76 0.48 0.63

Std 3.6 3.2 5.5 0.56 0.32 0.39
Self-occ.

 Only
Max 16.9 18.6 33.6 2.98 1.42 1.60

Avg 4.5 5.1 7.4 0.79 0.45 0.65

Std 3.4 3.5 5.5 0.60 0.34 0.42

C

A

N
Self/

Partial occ.
Max 17.0 18.9 33.4 3.00 1.52 1.67

1 2 3 4 5 6 7 8

1

1.5

2

2.5

3

3.5

4

4.5

max. displacement (cm.)

A
v
g

.
tr

a
n

s
la

ti
o

n
a

l
e

rr
o

r
(c

m
.)

"Box" SelfOcc. only
"Box" Self/Partial Occ.
Box Self/Partial Occ.
 with Motion Prediction

Figure 6. The graph shows the avg. translational error for different speeds

of the object.

We tested this hypothesis by implementing a very simple
linear-motion prediction scheme to initialize p for the next
frame. When we use this prediction, the error improves
again for motions up to 3.5 cm between consecutive frames.
But it fails again for motions of about 5 cm between
consecutive frames because larger motions also involve
changes in the direction of the end-effector motion ---
especially because such changes are not incorporated in the
simple prediction scheme used.

5. Conclusion and Future Work

We introduced a new method to track rigid objects using
a modified version of AAM. The method allows for partial
and self occlusions of the object. We showed results for
wide changes in the position and orientation of the object.
For the experiments shown, tracking was carried out with
high precision over a range of 1 meter in translation and 140
degrees in rotation.

The proposed method suffers from one drawback that is
common to many trackers --- the tracker works only when
the frame-to-frame variations in the object pose are small.

We also showed that this problem could be partially
alleviated by incorporating simple motion prediction in the
tracking process. But, for obvious reasons, further works
needs to be carried out on how best to carry out motion
prediction in our context. Another major drawback of the
method is that the initialization of the pose parameters must
be carried out manually in the first frame of the video
sequence. Practically all trackers today that analyze targets
at a level higher than merely considering them to be blobs
suffer from this limitation. This initialization issue also
needs to be addressed if the type of trackers presented here
are to have any real-world applications.

Since our main goal is to use this method for visual
servoing, we must improve the speed of the matching
algorithm so it can run in real time. The most time
consuming step of the algorithm is for computing the
Hessian matrix and the gradient vector (in eq (10) - (11)).
We are currently working on the development of a real-time
version of the algorithm based on the inverse compositional
approach [15].

6. References

[1] D.Gennery, “Visual tracking of known three-dimensional objects,”
IJCV, 7:243-270, 1992.

[2] D.Koller, K.Daniilidis, and H.H. Nagel, “Model-based object tracking
in monocular image sequences of road traffic scenes,” IJCV, 10:257-
281, 1993.

[3] V. Blanz and T.Vetter, “Face Recognition Based on Fitting a 3D
Morphable Model,” IEEE Trans. PAMI, Vol.25, pp. 1063-1074, Sep
2003.

[4] S. Romdhani, A. Psarrou, and S. Gong. “A Generic Face Appearance
Model of Shape and Texture under very large Pose Variations from
Profile to Profile Views,” Proceedings of the 15th ICPR 2000, Vol I:
1060-1063.

[5] T.F. Cootes, G.J. Edwards, and C.J. Taylor, “Active Appearance
Model,” IEEE Trans. PAMI, Vol.23 (6), pp. 681-685, June 2001.

[6] T.F. Cootes, K.Walker, and C.J. Taylor, “View-based Active
Appearance Models,” Image and Vision Computing, Vol 20, pp. 657-
664, 2002.

[7] Y. Wu, T. Yu and G. Hua, “Tracking appearance with occlusions,”
IEEE Conf. CVPR. June 2003, vol. I, pp.789-795.

[8] A. Pentland, B. Moghaddam, and T. Starner, “View-based and
Modular eigenspaces for face,” IEEE Conf. CVPR June 1994, pp.84-
91.

[9] J. Ahlberg, “Using the active appearance algorithm for face and facial
feature tracking,” in IEEE ICCV workshop on Recognition, Analysis,
and Tracking of Faces and Gestures in Real-Time Systems, 2001, pp.
68-72.

[10] B.K.P. Horn, “Closed-form solution of absolute orientation using unit
quarternions,” Journal of Optical Soc. Am. , Vol. 4, pp. 629-642,
1987.

[11] P. Mittrapiyanuruk, G. N. DeSouza, A. C. Kak, “Calculating the 3D-
pose of Rigid-Objects using Active Appearance Models,” Proceedings
of IEEE ICRA 2004

[12] J. Xiao, S. Baker, I. Matthews, and T. Kanade, “Real-Time Combined
2D+3D Active Appearance Models” Proceedings of the IEEE Conf.
on CVPR, June, 2004.

[13] C.Pokorny, Computer Graphics: An object-orientation Approach to
the Art and Science, Franklin, Beedle & Associates, c1994.

[14] H.S. Sawhney and S. Ayer, “Compact Representations of Videos
Through Dominant and Multiple Motion Estimation,” IEEE Trans.
PAMI Vol.8 (8) Aug. 1996.

[15] S. Baker and I. Matthews, “Lucas-Kanade 20 Years On: A Unifying
Framework,” IJCV, Vol. 56 (3), March, 2004, pp. 221 - 255.

[16] R. Gross, I. Matthews, and S. Baker, “Construction and Fitting Active
Appearance Models with occlusion,” in the Proceedings of the IEEE
Workshop on Face Processing in Video, 2004

