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aInstituto de Telecomunicaciones y Aplicaciones Multimedia; bInstituto de

Instrumentación para Imagen Molecular; bInstituto de Matemática Multidisciplinar
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This work gives a new formula for the forward relative error of matrix exponential Taylor
approximation and proposes new bounds for it depending on the matrix size and the Taylor
approximation order, providing a new efficient scaling and squaring Taylor algorithm for the
matrix exponential. A Matlab version of the new algorithm is provided and compared with
Padé state-of-the-art algorithms obtaining higher accuracy in the majority of tests at similar
or even lower cost.
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1. Introduction

Matrix exponential plays a fundamental role in linear systems arising in many
areas of science, and a large number of methods for its computation have been
proposed [1, 2]. This work improves the scaling and squaring algorithm presented
in [3] providing a competitive scaling and squaring algorithm for matrix exponen-
tial computation. The new algorithm employs an improved version of Theorem 1
from [3] to bound the norm of matrix power series. A new formula for the forward
relative error of Taylor approximation in exact arithmetic and new sharp bounds
for forward and backward relative errors are given. Moreover, taking into account
that the roundoff error in the computation of Taylor matrix polynomial tends to
increase with the matrix size and the approximation order, we propose increasing
the allowed bounds for the error in exact arithmetic with both parameters. A Mat-
lab version of the new algorithm is given. Numerical tests showed that it provided
higher accuracy than Padé algorithms from [5, 6] at similar or even lower cost.
Throughout this paper Cn×n denotes the set of complex matrices of size n× n,

I denotes the identity matrix for this set, ρ(A) is the spectral radius of matrix
A, and N denotes the set of positive integers. The matrix norm ‖·‖ denotes any
subordinate matrix norm, and || · ||∞ and || · ||1 denote the ∞-norm and the 1-norm,
respectively. Both norms are simple to compute, so they have been very used in the
matrix function computation literature; particularly, the 1-norm is used in recent
studies on matrix exponential computation [5, 6], and [4] provides an algorithm for
its estimation which will be used in this paper.
This paper is organized as follows. Section 2 presents the scaling and squaring

error analysis and the improved algorithm. Section 3 deals with numerical tests
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and gives some conclusions. The following theorem will be used to bound the norm
of matrix power series, see [3, Th. 1].

Theorem 1.1 Let hl(x) =
∑

k≥l bkx
k be a power series with radius of convergence

R, and let h̃l(x) =
∑

k≥l |bk|xk. For any matrix A ∈ Cn×n with ρ(A) < R, if ak is

an upper bound for ||Ak|| (||Ak|| ≤ ak), p ∈ N, 1 ≤ p ≤ l, p0 ∈ N is the multiple of
p with l ≤ p0 ≤ l + p− 1, and

αp = max{a
1

k

k : k = p, l, l + 1, l + 2, . . . , p0 − 1, p0 + 1, p0 + 2, . . . , l + p− 1}, (1)

then ||hl(A)|| ≤ h̃l(αp).

Proof . Since p0 is a multiple of p, then p0/p ∈ N and ||Ap0 || = ||App0/p|| ≤
||Ap||p0/p. Hence, it follows that

||hl(A)|| ≤
∑

k≥l

|bk|||Ak|| ≤
∑

j≥0

l+p−1
∑

i=l

|bi+jp|||Ap||j ||Ai||

≤
∑

j≥0





p0−1
∑

i=l

|bi+jp|||Ap||j ||Ai||+ |bp0+jp|||Ap||j+p0/p +

l+p−1
∑

i=p0+1

|bi+jp|||Ap||j ||Ai||





≤
∑

j≥0

l+p−1
∑

i=l

|bi+jp|αpj+i
p =

∑

k≥l

|bk|αk
p = h̃l(αp). (2)

�

Theorem 1.1 unifies the two cases in which Theorem 1 from [3, p. 1835] is divided,
and avoids needing a bound for ||Ap0 || to obtain αp, see (1).

2. Taylor Algorithm

Taylor approximation of order m of exponential of matrix A ∈ Cn×n can be ex-

pressed as the matrix polynomial Tm(A) =
m
∑

k=0

Ak/k!. The scaling and squar-

ing algorithms in Taylor approximations are based on the approximation eA =
(

e2
−sA

)2s

≈ (Tm(2−sA))
2s

[1], where the nonnegative integers m and s are cho-

sen with the aim of achieve full machine accuracy at minimal cost. Similarly, this
method is applied in Padé approximation.
In [2, p. 241], the author states that Padé approximations are preferred to Taylor

series approximations in the context of scaling and squaring methods because they
provide a given accuracy with lower computational cost. However, in [3] the authors
presented a scaling and squaring Taylor algorithm based on an improved mixed
backward and forward error analysis, which was more accurate than existing state-
of-the-art Padé algorithms [5, 6] in the majority of test matrices with a lower or
similar cost. Moreover, modifications to Padé algorithm had to be carried out in [6,
p. 983] to improve the denominator conditioning, whereas Taylor algorithms have
no denominator.
In [2, p. 247-248], an analysis about rounding errors and numerical stability of

the scaling and squaring methods are performed. The author states that the over-
all effect of rounding errors in the computation by repeated squaring may be large
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relative to the computed exponential. This may or may not indicate instability of
the algorithm, depending on the conditioning of the eA problem at the matrix A.
If A is normal, then the scaling and squaring method is guaranteed to be forward
stable; hence, the square phase is innocuous and the error in the computed ex-
ponential is consistent with the conditioning of the problem. Another case where
the scaling and squaring method is forward stable corresponds to matrices with
nonnegative nondiagonal entries as shown in[12].
The scaling and squaring method has also a weakness when applied to block

triangular matrices [13, 14]. The exponential of a block 2 × 2 block triangular
matrix A can be computed as

exp

([

A11 A12

0 A22

])

=





eA11

1
∫

0

eA11(1−s)A12e
A22sds

0 eA22



 ,

where matrices A11 and A22 are square matrices. However, since matrix A12 appears
only in the (1,2) block of eA, then eA depends linearly of A12, and the accuracy of
computing eA should be unaffected by ‖A12‖ and should depend only on ‖A11‖ and
‖A22‖. Since s depends on ‖A‖, when ‖A12‖ >> max {‖A11‖ , ‖A22‖} the diagonal
blocks A11 and A22 are overscaled with regard to the computation of eA11 and eA22 ,
and this can affect the accuracy of computing eA.
In [14] L. Diecci and A. Papini obtain improved error bounds for Padé approxi-

mations to eA when A is block triangular. As a result, improved scaling strategies
ensue which avoid some common overscaling difficulties. Later, [6] presents an al-
gorithm that reduces the overscaling problem choosing parameter s, based on the
norms of low powers of matrix A instead of in ||A||, and computes the diagonal
elements in the squaring phase as exponentials instead of from powers of the di-
agonal Padé approximation for the case of triangular matrices. In [3], estimations
of norms of higher powers of matrix A (greater than or equal to m+1) are used
to obtain the scaling parameter s, and similar ideas to those in [6] can be used in
the case of Taylor approximations to compute the diagonal elements for triangular
matrices.
Algorithm 1 presents a general scaling and squaring Taylor algorithm for com-

puting the matrix exponential, where the maximum allowed value of m is denoted
by mM .

Algorithm 1 Given a matrix A ∈ Cn×n and a maximum order mM , this algorithm
computes C = eA by a Taylor approximation of order m 6 mM .

1: Preprocessing of matrix A.
2: Scaling phase: Choose m 6 mM , and an adequate scaling parameter s ∈

N ∪ {0} for the Taylor approximation with scaling.
3: Compute B = Tm(A/2s) using (3)
4: for i = 1 : s do
5: B = B2

6: end for
7: Postprocessing of matrix B.

The preprocessing and postprocessing steps are based on applying transforma-
tions to reduce the norm of matrix A, see [2], and will not be studied in this paper.
In Step 2, the scaling phase, the optimal order of Taylor approximationmk 6 mM

and the scaling parameter s are chosen.
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Table 1. Values of qk depending on the selection of mM .

k 0 1 2 3 4 5 6 7
mM�mk 1 2 4 6 9 12 16 20
16 1 2 2 3 3 4 4
20 1 2 2 3 3 4 4 4
25 1 2 2 3 3 4 4 5 5
30 1 2 2 3 3 4 4 5 5 5

For the evaluation of Tm (2−sA) in Step 3 we use the modified Horner and
Paterson–Stockmeyer’s method proposed in [3, p. 1836-1837]. From [3, p. 6454-
6455] matrix polynomial Tm(2sA) can be computed optimally for m in the set
M = {1, 2, 4, 6, 9, 12, 16, 20, 25, 30, . . .}, where we denote the elements of M as m0,
m1, m2, . . ., respectively, by using Paterson-Stockmeyer’s method [10], see [2, p.
72–74] for a complete description. First, matrix powers A2, A3, · · · , Aq are com-
puted, where q =

⌈√
mk

⌉

or ⌊√mk⌋, both values dividing mk and giving the same
cost [2, p. 74].Then, the truncated Taylor series is computed using (10) of [3, p.
1837], which includes the matrix scaling in Taylor series coefficients and saves some
divisions of matrix A by scalar in the next way

Tm

(

2−sA
)

=

{{

· · ·
{

Aq

2sm
+Aq−1

}

/[2s(m−1)]+Aq−2

}

/ [2s(m−2)]+· · ·A2

}

/ [2s(m−q+2)] +A

+2s(m− q + 1)I

}

Aq

22s(m− q + 1)(m− q)
+Aq−1

}

/ [2s(m− q − 1)] +Aq−2

}

/ [2s(m− q − 2)] + · · ·+A2

}

/[2s(m− 2q + 2)] +A+ 2s(m− 2q + 1)I

}

× Aq

22s(m− 2q + 1)(m− 2q)
+ · · ·+A2

}

/[2s(q + 2)]+A+2s(q + 1)I

}

× Aq

22s(q + 1)q
+Aq−1

}

/ [2s(q − 1)] + · · ·+A2

}

/[2s2]+A

}

/2s + I. (3)

Analogously to Sastre et al. [3], in the proposed scaling algorithm it will be
necessary that the same powers of A are used for the two last orders mM−1 and
mM , i.e. Ai, i = 2, 3, . . . , q. For each value of mM Table 1 shows the selected
optimal values of q for orders mk, k = 0, 1, 2, . . . ,M , denoted by qk. For example,
if mM = 20 and m4 = 9 is the optimal order obtained in the scaling phase, then
q4 = 3.
Taking into account Table 4.1 from [2, p. 74], the total cost of evaluating

Tmk
(2−sA) in terms of matrix products for k = 0, 1, . . ., denoted by Πmk

, is
Πmk

= k. Finally, after the evaluation of Tm (2−sA), s repeated squarings are
applied in Steps 4-6. Thus, the computational cost of Algorithm 1 in terms of
matrix products is Cost(mk, s) = k + s.

2.1 Roundoff error analysis

The main contributions of this paper are concerned with the selection of m and s
in the scaling phase, where the roundoff error in the computation of (3) will play
an important role. The roundoff error can be studied by using a componentwise
analysis [11, pp. 18-19]. If we denote |A| = (|aij |)n×n, then

(1) |fl(A+B)− (A+B)| < u |A+B| , A,B ∈ Cn×n,
(2) |fl(AB)−AB| < nu |A| |B|,
(3)

∣

∣

∣

∣

fl

(

m
∑

k=0

pkA
k

)

−
m
∑

k=0

pkA
k

∣

∣

∣

∣

≤̇ m(n+ 1)
m
∑

k=0

|pk| |A|k,
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where ≤̇ denotes the inequality avoiding the terms of order greater than or
equal to u2, where u = 2−53 is the unit roundoff in IEEE double preci-
sion arithmetic. Taking into account these properties, it is straightforward to
prove that the roundoff error for computing Tm (2−sA) by using (3) verifies
|fl (Tm(2−sA))− Tm(2−sA)| 6̇ϕ(m,n)uTm(2−s |A|), where u is the unit roundoff,
m ∈ M, and for large n, asymptotically it follows that

ϕ(m,n) = mn,m ≥ 2. (4)

Hence if we use the 1–norm, then

‖fl (Tm(2−sA))− Tm(2−sA)‖1
Tm(2−s‖A‖1)

6 ϕ(m,n)u. (5)

This is a worst-case bound. If we denote the actual roundoff error in computing
(3) from (5) as φ(m,n)u, and noting that minimum roundoff errors of value u are
expected, by (4), for large n in the majority of cases we can assume that

1 ≤ φ(m,n) ≤ mn. (6)

From [8, p. 52] a well-known rule of thumb to obtain realistic error estimates in
(5) is that if the bound is f(n)u then the error will be typically of order

√

f(n)u,
and this rule of thumb can be supported by assuming that the rounding errors are
independent random variables and applying the central limit theorem. By (4) and
(5) the application of this rule gives

φ(m,n) ≈
√
mn. (7)

Rounding errors do not necessarily behave like independent random variables [8,
p. 52] and there will be cases where the application of this rule will be pessimistic
and others where it will be optimistic. However, in numerical results we will see
that the use of (7) allows to reduce the cost of Algorithm 1 with no important
effects in accuracy in the majority of cases.

2.2 Analysis of truncation error

Following [3, p. 1836], if we denote the remainder of the truncated exponential
Taylor series of A ∈ Cn×n as

Rm(A) =
∑

k≥m+1

Ak/k!, (8)

for a scaled matrix 2−sA, s ∈ N ∪ {0}, we can write

(

Tm(2−sA)
)2s

= eA
(

I + gm+1(2
−sA)

)2s

= eA+2shm+1(2−sA), (9)

where

gm+1(2
−sA) = −e−2−sARm(2−sA), (10)

hm+1

(

2−sA
)

= log
(

I+gm+1(2
−sA)

)

, (11)
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where log denotes the principal logarithm, hm+1(X) is defined in the set

Ωm =
{

X ∈ Cn×n : ρ
(

e−XTm(X)− I
)

< 1
}

, (12)

and both gm+1(2
−sA) and hm+1 (2

−sA) are holomorphic functions of A in Ωm and
then commute with A. Using scalar Taylor series in (10) and (11) one gets

gm+1(x) =
∑

k≥m+1

b
(m)
k xk =

(

ehm+1(x) − 1
)

=
∑

k≥1

(hm+1 (x))
k /k!, (13)

hm+1(x) =
∑

k≥1

(−1)k+1(gm+1(x))
k

k
=

∑

k≥m+1

c
(m)
k xk, (14)

where b
(m)
k and c

(m)
k depend on order m. From (13) and (14) it follows that

b
(m)
k = c

(m)
k , k = m+ 1,m+ 2, . . . , 2m+ 1, (15)

and if ‖hm+1(2
−sA)‖ ≪ 1 then

gm+1(2
−sA) = hm+1(2

−sA) + (hm+1(2
−sA))2/2 + · · · ≈ hm+1(2

−sA), (16)

and, similarly, if ‖gm+1(2
−sA)‖ ≪ 1

hm+1(2
−sA) = gm+1(2

−sA) + (gm+1(2
−sA))2/2 + · · · ≈ gm+1(2

−sA). (17)

Using (8) and the exponential Taylor series in (10) it follows that

gm+1(x) =
−xm+1

(m+ 1)!

{

(−1)0
1

0!
+ (−1)1

[

1

1!
− 1

0!(m+ 2)

]

x+ (−1)2
[

1

2!

− 1

1!(m+ 2)
+

1

0!(m+ 2)(m+ 3)

]

x2 + · · ·+ (−1)ka
(m)
k xk + · · · , (18)

where by induction the general term of coefficient a
(m)
k is

a
(m)
k =

1

k!
− 1

(k − 1)!(m+ 2)
+

1

(k − 2)!(m+ 2)(m+ 3)
− · · · (19)

+
(−1)k−3

3!(m+ 2)(m+ 3) · · · (m+ k − 2)
+

(−1)k−2

2!(m+ 2)(m+ 3) · · · (m+ k − 1)

+
(−1)k−1

1!(m+ 2)(m+ 3) · · · (m+ k)
+

(−1)k

0!(m+ 2)(m+ 3) · · · (m+ k + 1)
.

Summing from the last term to the initial terms of a
(m)
k it is easy to show that the

sum of the last i terms of a
(m)
k becomes

(−1)k−(i−1)

(i− 1)!(m+ 2)(m+ 3) · · · (m+ k − (i− 1))(m+ k + 1)
(20)
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and then it follows that

a
(m)
k =

m+ 1

k! (m+ 1 + k)
. (21)

Hence, using (18) it follows that

gm+1(x) = −
∑

k>0

(−1)kxm+1+k

k!m! (m+ 1 + k)
, (22)

and then

b
(m)
m+k+1

b
(m)
m+k

=
−1

k
(

1 + 1
m+k

) . (23)

This expression confirms the observation from [3, p. 1838], where for the orders
mk that were proposed in the algorithm presented therein and the first 1000 series
terms, using Matlab’s Symbolic Math Toolbox we checked experimentally that the
following expression holds

1

k + 1
<

∣

∣

∣

∣

∣

b
(m)
m+k+1

b
(m)
m+k

∣

∣

∣

∣

∣

<
1

k
, k > 1. (24)

Once obtained the closed form (22) for gm+1(x), hm+1(x) can be obtained using
(14), and now we set the basis for the scaling algorithm. If we choose s so that
2−sA ∈ Ωm, see (12), then from (9) one gets that

∆A = 2shm+1

(

2−sA
)

, (25)

represents the backward absolute error in exact arithmetic from the approximation
of eA by Taylor series truncation with the scaling and squaring technique. If the
minimum value of s is chosen so that

∥

∥hm+1

(

2−sA
)
∥

∥ ≤
∥

∥2−sA
∥

∥u, (26)

or

∥

∥gm+1

(

2−sA
)
∥

∥ ≤ φ(m,n)u. (27)

where φ(m,n)u is the roundoff error in computing (3), see Section 2.1.

• If the minimum value of s is given by (26), then from (25) it follows that ∆A ≤
‖A‖u and using (9) it follows that

(

Tm

(

2−sA
))2s

= eA+∆A ≈ eA. (28)

• If the minimum value of s is given by (27), using (9), (10) and the exponential
Taylor series it follows that

∥

∥Rm

(

2−sA
)∥

∥ =
∥

∥

∥
e2

−sAgm+1

(

2−sA
)

∥

∥

∥
≤

∥

∥

∥
e2

−sA
∥

∥

∥
φ(m,n)u, (29)
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Table 2. Maximal values Θm such that h̃m+1 (Θm) ≤ Θmu, maximal values Θ̃m such that

g̃m+1

(

Θ̃m

)

≤ φ(m,n)u for φ(m,n) = 1, and values ϑm = max
{

Θm, Θ̃m

}

.

m Θm Θ̃m for φ(m,n) = 1 ϑm

1 2.220446049250264e-16 1.490116111983279e-8 1.490116111983279e-8
2 2.580956802971767e-8 8.733457513635361e-6 8.733457513635361e-6
4 3.397168839976962e-4 1.678018844321752e-3 1.678018844321752e-3
6 9.065656407595101e-3 1.773082199654024e-2 1.773082199654024e-2
9 8.957760203223343e-2 1.137689245787824e-1 1.137689245787824e-1
12 2.996158913811581e-1 3.280542018037257e-1 3.280542018037257e-1
16 7.802874256626574e-1 7.912740176600240e-1 7.912740176600240e-1
20 1.438252596804337 1.415070447561532 1.438252596804337
25 2.428582524442827 2.353642766989427 2.428582524442827
30 3.539666348743690 3.411877172556771 3.539666348743690

and, taking into account that a relative roundoff error φ(m,n)u will be intro-
duced in the numerical evaluation of the matrix polynomial Tm (2−sA), there is
no point in increasing the scaling parameter s or the approximation order m to
reduce further the norm of Taylor remainder Rm (2−sA).

Using (14) and (22), Matlab’s Symbolic Math Toolbox, high precision arithmetic,
200 series terms and a zero finder we obtained the maximal values Θm of Θ =
‖2−sA‖, shown in Table 2, such that, using notation of Theorem 1.1

||hm+1

(

2−sA
)

|| ≤ h̃m+1 (Θ) =
∑

k≥m+1

c
(m)
k Θk ≤ Θu. (30)

In a similar way, for a given value of φ(n,m) the maximal values Θ̃m such that

||gm+1

(

2−sA
)

|| ≤ g̃m+1 (Θ) =
∑

k≥m+1

b
(m)
k Θk ≤ φ(m,n)u, (31)

can be easily obtained. Table 2 shows Θ̃m values for the more restrictive case from
(6), i.e. when φ(m,n) = 1, which is the case used in the error analysis of [3, p.

1836]. Hence, if ||2−sA|| ≤ ϑm where ϑm = max
{

Θm, Θ̃m

}

then (26) or (27) hold.

For the values of m where Θm > 1 in Table 2, i.e. m = 20, 25 and 30, it follows
that ϑm = Θm. We recall bound (9) of [3, p. 1836], which holds for those values of
m and will be needed in the scaling algorithm:

||hm+1

(

2−sA
)

|| ≤ h̃m+1

(

||2−sA||
)

= h̃m+1 (Θ) ≤ Θu, 0 ≤ Θ ≤ Θm. (32)

2.3 Scaling algorithm

The new proposed scaling algorithm has some improvements with respect to that
proposed in [3, p. 1837-1838] that we describe in this section. For all norms appear-
ing in the scaling algorithm we will use the 1–norm, and from Algorithm 1 recall
that mM is the maximum allowed Taylor order. Using the same bounds and a sim-
ilar process that we use in the proposed scaling algorithm described below, we will
first verify if any of the lower Taylor optimal orders mk = 1, 2, 4, . . . ,mM−1 satisfy
(26) or (27) without scaling, i.e. with s = 0. If not, the optimal scaling parameter
s ≥ 0 for order mM is computed. This computation has two phases: Calculation of
an initial value of the scaling parameter s0, and the refinement of this value to test
if it can be reduced. In this paper the main improvement with respect to the algo-
rithm from [3] is applied to the refinement of the scaling parameter, where roundoff
error and function φ(m,n) from (7) will play an important role. The calculation of
the initial scaling parameter s0 remains practically unchanged except for the use of
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the new Theorem 1.1 instead of Theorem 1 from [3], and it is described for clarity
in the following section.

2.3.1 Calculation of initial scaling s0

First, the 1–norm estimate of ||AmM+1|| is computed using the block 1–norm
estimation algorithm of [4]. For a n×n matrix this algorithm carries out a 1-norm
power iteration whose iterates are n× t matrices, where t is a parameter that has
been taken to be 2, see [6, p. 983]. Hence, the estimation algorithm has O(n2)
computational cost, negligible compared to matrix products, whose cost is O(n3).
Similarly to [3, p. 1837], the upper bounds ak for ||Ak|| needed to apply Theo-

rem 1.1 in (30) and (31) are obtained using products of norms of matrix powers
estimated for current and previous tested orders, i.e. ||Amk+1||, k = 0, 1, 2, . . . ,M ,
and the powers of A computed for evaluation of TmM

(2−sA), Ai, i = 1, 2, . . . , q, as

∥

∥

∥
Ak

∥

∥

∥
≤ ak = min

{

‖A‖i1
∥

∥A2
∥

∥

i2 · · · ‖Aq‖iq
∥

∥Am1+1
∥

∥

im1+1
∥

∥Am2+1
∥

∥

im2+1 · · ·

×
∥

∥AmM+1
∥

∥

imM+1

: i1 + 2i2 + · · ·+ qiq + (m1 + 1)im1+1

+ (m2 + 1)im2+1 + · · ·+ (mM + 1)imM+1 = k
}

, (33)

and a simple Matlab function was provided in [3] to obtain ak, see nested func-
tion powerbound from exptayns.m available at http://personales.upv.es/

~jorsasma/Software/exptayns.m.

Then, we seek for the minimum value of αp from Theorem 1.1 with l = mM +
1, denoted by αmin, obtaining successively αp for p = 2, 3, . . . , q,m1 + 1,m2 +
1, . . . ,mM + 1, stopping the process for that value of p such that

a1/pp ≤ max{a1/kk : k = m+ 1,m+ 2, . . . , p0 − 1, p0 + 1, p0 + 2, . . . ,m+ p}, (34)

where p0 is the multiple of p with m + 1 ≤ p0 ≤ m + p. In the following we show
that if condition (34) holds, then for p′ > p it follows that αp′ ≥ αp :

By (33) one gets ap0
6 a

p0/p
p , and then using (34) it follows that

a1/p0

p0
≤ a1/pp ≤ max{a1/kk : k = m+ 1,m+ 2, . . . , p0 − 1, p0 + 1, p0 + 2, . . . ,m+ p},

(35)
and then

αp = max{a1/kk : k = m+ 1,m+ 2, . . . , p0 − 1, p0 + 1, p0 + 2, . . . ,m+ p}

= max{a1/kk : k = m+ 1,m+ 2, . . . ,m+ p}. (36)

Hence, for p′ > p, if

a
1/p′

p′ ≤ max{a1/kk : k = m+ 1,m+ 2, . . . , p′0 − 1, p′0 + 1, p′0 + 2, . . . ,m+ p′}, (37)

where p′0 is a multiple of p′, then in a similar way it follows that

αp′ = max{a1/kk : k = m+ 1,m+ 2, . . . ,m+ p′}

≥ max{a1/kk : k = m+ 1,m+ 2, . . . ,m+ p} = αp. (38)
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Otherwise, if (37) is not verified, as a
1/p′

p′ ≥ a
1/p′

0

p′

0

it follows that

αp′ = a
1/p′

p′ > max{a1/kk : k = m+ 1,m+ 2, . . . ,m+ p′}

≥ max{a1/kk : k = m+ 1,m+ 2, . . . ,m+ p} = αp, (39)

and then, by (38) and (39) αp′ ≥ αp .
Once obtained αmin, we take the appropriate initial minimum scaling parameter

s0 ≥ 0 so that 2−s0αmin ≤ ϑmM
, i.e.

s0 =

{

0, if αmin ≤ ϑmM
,

⌈log2(αmin/ϑmM
)⌉, if αmin > ϑmM

.
(40)

Then, if ϑmM
= max{ΘmM

, Θ̃mM
} = Θ̃mM

using Theorem 1.1 and (31), taking for
simplicity from now on m = mM , it follows that

||gm+1

(

2−s0A
)

|| ≤ g̃m+1

(

2−s0αmin

)

≤ g̃m+1

(

Θ̃m

)

≤ u, (41)

and (27) holds. Taking into account that ||Ak||1/k ≤ ||A||, from (33) it follows that

a
1/k
k ≤ (||A||k)1/k = ||A||. Thus, αmin from Theorem 1.1 satisfies αmin ≤ ||A|| .

Hence, if ϑm = Θm from Table 2 it follows that m = 20, 25 or 30, and using (32)
one gets

||hm+1

(

2−s0A
)

|| ≤ h̃m+1

(

2−s0αmin

)

≤ 2−s0αmin u ≤ 2−s0 ||A||u, (42)

and (26) holds.
After obtaining the initial value of the scaling parameter s0, it will be refined as

described in the following section.

2.3.2 Scaling refinement

In this section bounds for ‖gm+1(2
sA)‖ and ‖hm+1(2

−sA)‖ of the same type of
(14) and (15) from [3, p. 1838] are used for the scaling parameter refinement. Both
series from (14) and (22) will be truncated with the same number of terms as in
Section 3 of [3, p. 1839], i.e. q+2 where q takes the values from Table 1. Taking into
account (15) one gets that the first m+1 coefficients of gm+1(2

sA) and hm+1(2
−sA)

are equal, and if q takes the values from Table 1 it follows that m+ 1 ≥ q + 2 for
m ≥ 4. Then, using (13)–(15) we take

‖gm+1(2
sA)‖ ≈

∥

∥

∥

∥

∥

m+q+2
∑

k=m+1

b
(m)
k (2sA)k

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

m+q+2
∑

k=m+1

c
(m)
k (2sA)k

∥

∥

∥

∥

∥

≈ ‖hm+1(2
sA)‖, (43)

and the refinement will be considered for m ≥ 4.
Hence, once the initial value s0 of the scaling parameter is obtained, if s0 ≥ 1 we

test if (26) or (27) hold with the reduced scaling parameter s = s0 − 1, using the
bounds for

∥

∥Ak
∥

∥ ≤ ak from (33) and testing if bound

m+q+2
∑

k=m+1

∣

∣

∣
c
(m)
k

∣

∣

∣
ak/2

sk ≤ max
{

φ(m,n),
∥

∥2−sA
∥

∥

}

u, (44)

holds taking φ(m,n) =
√
nm from (7). Note that we stop the series summation if

the first term does not verify the bound. If the sum of one or more terms is lower
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than the bound but the complete truncated series sum is not, we can estimate
||Am+2|| to improve the bound am+2 and check if (44) holds then, see [3]. If (44)
does not hold with s = s0 − 1, then we check if next bound holds

∥

∥Am+1
∥

∥

2s(m+1)

∥

∥

∥

∥

∥

m+q+1
∑

k=m+1

c
(m)
k (2−sA)k−m−1

∥

∥

∥

∥

∥

+
∣

∣

∣
c
(m)
m+q+2

∣

∣

∣

am+q+2

2(m+q+2)s
≤ max

{

φ(m,n),
∥

∥2−sA
∥

∥

}

u,

(45)

where φ(m,n) =
√
nm, matrix powers Ai, i = 2, 3, . . . , q from the computation of

Tm (2−sA) by (3) are reused, and we can divide by the coefficient of A to save the
product of matrix A by a scalar. In a similar way to [3, p. 1838], lower bounds for
expression (45) to avoid its unnecessary evaluation can be easily obtained.
If any of both bounds (44) or (45) holds with s0−1 then repeat the process with

s = s0 − 2, s0 − 3, . . . Note that computational cost of evaluating (44) and (45) is
O(n2), negligible when compared to matrix product costs, which are O(n3).
Note that from Table 2 for mk ≥ 20 it follows that ϑmk

/2 < ϑmk−1
. Thus, if the

last value of s where (44) or (45) hold is s ≥ 1 and ϑmM
/2 < ϑmM−1

it is possible
that order mM−1 also verifies (44) or (45) with the same value of scaling s, see [3].
Hence, if final resulting scaling is s ≥ 1 bounds (44) and/or (45) should be tested
with the same scaling parameter s and order mM−1. Finally, the algorithm returns
s and the minimum order mM or mM−1 satisfying (44) or (45). It is possible to
evaluate Tm(2−sA) with both orders with optimal number of matrix products at
this point because we set in its evaluation that both last orders used the same
matrix powers of A [3].
Summarizing, the complete scaling algorithm from Step 2 in Algorithm 1 consists

of:

(1) Check if one of optimal orders m = 4, 6, . . . ,mM−1, m ∈ M satisfies (44) or
(45) with s = 0 using the 1–norm estimate of ||Am+1|| from [4] and reusing
the matrix powers Ai, i = 2, 3, . . . , q needed to compute Taylor matrix
polynomial for each tested value of m, returning s = 0 and the order m
which satisfies (44) or (45) if it exists.

(2) If there is no value of m ≤ mM−1 that satisfies (44) or (45) with s = 0
then obtain an initial value s0 of the scaling parameter with order mM as
described in Section 2.3.1.

(3) If s0 > 0 refine the selection of s0 testing if (44) or (45) hold with s =
s0 − 1, s0 − 2, . . ., returning the lowest value of s that verifies (44) or (45).

(4) If the final selection of s is not zero, test if (44) or (45) hold with s and
mM−1, returning mM−1 if (44) or (45) hold with it, or otherwise returning
mM .

Maximum order mM = 30 is recommended as it obtained the highest accu-
racy results in [3]. For more details about the implementation we made avail-
able online a fully commented Matlab version of the complete Algorithm 1,
denoted by exptaynsv2, in http://personales.upv.es/~jorsasma/Software/

exptaynsv2.m, where changes in the selection of order m and scaling parameter
s are avoided when no cost reductions are achieved with respect to the original
algorithm exptayns from [3].

2.4 New bounds for ‖gm+1(2
sA)‖ and ‖hm+1(2

−sA)‖

This section provides bounds for the complete series of ‖gm+1(2
−sA)‖ without

truncation. These bounds are used to provide bounds for ‖hm+1(2
−sA)‖. From



12

(22), if B ∈ Cn×n and r ∈ N ∪ {0}, then

||gm+1(B)|| ≤ 1

m!

∥

∥

∥

∥

∥

k=r
∑

k=0

(−1)kBm+1+k

k! (m+ 1 + k)

∥

∥

∥

∥

∥

+

∥

∥Bm+r+2
∥

∥

m!(r + 1)!(m+ r + 2)
+ ||fm+2+r(B)||,

(46)
where

||fm+2+r(B)|| = 1

m!

∥

∥

∥

∥

∥

∥

∑

k≥r+2

(−1)kBm+1+k

k! (m+ 1 + k)

∥

∥

∥

∥

∥

∥

≤ 1

m!(m+ r + 3)

∑

k≥r+2

∥

∥Bm+k
∥

∥

k!
(

m+1+k
m+r+3

) .

(47)
If

ϑmM
= max{ΘmM

, Θ̃mM
} = Θ̃mM

, (48)

using αmin from Section 2.3.1, it follows that

||fm+2+r(2
−sA)|| ≤ 1

m!(m+ r + 3)

∑

k≥r+2

(2−sαmin)
m+k

k!
(

m+1+k
m+r+3

) (49)

≤ (2−sαmin)
m+r+2

m!(m+ r + 3)(r + 2)!



1 +
2−sαmin

(r + 3)
(

1 + 1
m+r+3

)

+
(2−sαmin)

2

(r + 3)(r + 4)
(

1 + 2
m+r+3

) + · · ·





≤ (2−sαmin)
m+r+2

m!(m+ r + 3)(r + 2)!

∑

j≥0

βj =
(2−sαmin)

m+r+2

m!(m+ r + 3)(r + 2)!

1

1− β
, (50)

where

β =
2−sαmin

(r + 3)
(

1 + 1
m+r+3

) , (51)

must verify β < 1, and the binomial theorem has been used taking into account
(1 + x)j ≥ 1 + jx for x > 0. If a sharper bound is needed, using (49) note that

||fm+2+r(2
−sA)|| ≤ 1

m!(m+ r + 3)

∑

k≥r+2

(2−sαmin)
m+k

k!
(

m+1+k
m+r+3

)

≤ (2−sαmin)
m+1

m!(m+ r + 3)

∑

k≥r+2

(2−sαmin)
k

k!

≤ (2−sαmin)
m+1

m!(m+ r + 3)

[

e2
−sαmin −

r+1
∑

k=0

(2−sαmin)
k

k!

]

, (52)

and an accurate enough approximation to this bound can be obtained using for
instance Matlab’s exponential function exp if r is not large and 2−sαmin is not
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very small. Taking r = q, as in Section 2.3.2, and using Table 1, it follows that
q ≤ 5. On the other hand, for mM ≥ 16, taking into account (40), (48) and Table
2 it follows that

2−sαmin ≥ Θ̃16/2 ≈ 0.3956, (53)

which is not so small to produce problems in the evaluation of bound (49). For
instance, with the maximum value of q and the minimum value of 2−sαmin using
Matlab we obtained that

exp
(

Θ̃16/2
)

−
6

∑

k=0

(

Θ̃16/2
)k

/k! = 3.16626365× 10−7, (54)

obtaining the same result for the 9 decimal digits shown using Matlab’s Symbolic
Math Toolbox and high precision arithmetic.
If ϑmM

= max{ΘmM
, Θ̃mM

} = ΘmM
then using (14), for ||gm+1(2

−sA)|| ≪ 1 it
follows that

||hm+1(2
−sA)|| ≤ ||gm+1(2

−sA)||+O
[

||gm+1(2
−sA)||2

]

≈ ||gm+1(2
−sA)||, (55)

If ||gm+1(2
−sA)|| < 1 is not small, using Taylor series of function log(1 − x) and

(14) it follows that

||hm+1(2
−sA)|| ≤ − log(1− ||gm+1(2

−sA)||). (56)

3. Numerical experiments and conclusions

This section compares the Matlab implementation of the proposed Taylor al-
gorithm, denoted by extaynsv2, with the original function exptayns from [3]
(http://personales.upv.es/~jorsasma/Software/exptayns.m), and functions
expm and expm new which implement Padé algorithms from [5] and [6], re-
spectively. Algorithm accuracy was tested by computing the relative error E =
‖eA − Ỹ ‖1/

∥

∥eA
∥

∥

1
, where Ỹ is the computed approximation. Cost was given in

terms of matrix products. The asymptotic cost in terms of matrix products for
solving the multiple right-hand side linear system appearing in Padé algorithms
was taken 4/3 [15]. We were interested in testing a wide range of matrices (diago-
nalizable and nondiagonalizable matrices) with a considerable dimension (between
128 and 1024), and whose exponentials could be computed accurately using or-
thogonal transformations. For this reason we chose the sets of matrices (1) and
(2). The matrices of set (3) appear in the state of the art in the exponential matrix
computation [5, 6]. These sets of matrices are described below:

(1) 3 sets of one hundred diagonalizable matrices of sizes 128, 256 and 1024,
respectively. These matrices have the form V TDV , where D is a diagonal
matrix whose diagonal elements are random values between −k and k with
different integer values of k, and V is an orthogonal matrix obtained as
V = H/16, where H is the Hadamard matrix.

(2) 3 sets of one hundred matrices with multiple eigenvalues of sizes 128, 256
and 1000, respectively. These matrices have the form V TDV , where D
is a block diagonal matrix whose diagonal blocks are Jordan blocks with
random dimension and random eigenvalues between −50 and 50, and V is
an invertible matrix with random values in [−0.5, 0.5] for size 1000, and
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Table 3. Comparison of functions exptaynsv2 (labelled 2) and exptayns (labelled 1) with

maximum order mM = 30: Maximum and minimum values of the matrix norm for each matrix

set, maximum and minimum relative error ratios E2/E1, maximum and minimum relative error

ratio E1/u where u is the unit roundoff, number N of matrices where exptaynsv2 cost is one

matrix product lower than exptayns.

diag 128 diag 256 diag 1024 Jord 128 Jord 256 Jord 1024
max{‖A‖1} 6.07e1 3.75e2 7.28e2 2.14e2 2.43e2 1.91e6
min{‖A‖1} 4.65e1 3.59 7.21 5.27 5.93 1.20e3
max{E2/E1} 1.02 1.01 1.00 1.12 1.06 1
min{E2/E1} 0.99 0.98 1.00 0.99 0.89 1
max{E1}/u 2.28e1 6.34e1 2.13e2 1.54e3 6.89e3 7.22e11
min{E1}/u 9.82 1.14 8.71 2.38 3.53 4.03e2

N(%) 67 10 6 11 12 0

an orthogonal matrix obtained as V = H/16, where H is the Hadamard
matrix for sizes 128 and 256.

(3) 43 25 × 25 matrices, 39 100 × 100 and 32 1000 × 1000 from the function
matrix from the Matrix Computation Toolbox [9]. Matrices whose ex-
ponential cannot be represented in double precision due to overflow were
excluded from all the matrices given by function matrix for each size.

The “exact” value of matrix exponential eA was computed using Matlab’s Symbolic
Math Toolbox or quadruple precision in Fortran, by using the following methods:

• For matrix sets 1 and 2: eA = V T eDV , where V T eDV was computed by using
the vpa function of Matlab with 32 decimal digit precision.

• For matrix set 3: Taylor method with different orders and scaling parameters
for each matrix to check the result correctness, using quadruple precision for
1000×1000 matrices, and 128 decimal digit precision for the remaining matrices.

Table 3 presents the results for sets (1) and (2) showing that maximum and
minimum exptaynsv2 and exptayns relative error ratios E2/E1, where E2 is the
relative error with function exptaynsv2 and E1 is the relative error for exptayns,
are very close to unity for all matrix sets. This is verified even for the first set, whose
norm range is such that exptaynsv2 saves one matrix product for 67% matrices.
In the remaining sets, which have a greater norm variability, the percentage of
matrices where exptaynsv2 saves products is lower, between 0 and 12%. Table
3 also shows that the relative error tends to increase with the matrix size, as
expected. Figures 1(a) and 1(b) show the costs in terms of matrix products and
the performance profiles [7] of exptaynsv2, exptayns, expm new and expm
for the two sets of the test matrices, where α coordinate varies between 1 and 5 in
steps equal to 0.1, and p coordinate is the probability that the considered method
has a relative error lower than or equal to α-times the smallest error over all the
methods, where probabilities are defined over all matrices. Taylor functions had
the highest accuracies with costs similar or even lower than expm new.
Figure 2(a) presents the relative error ratios E2/E1 for the 1000× 1000 matrices

from set 3, showing that there are three matrices (9.38%) where exptaynsv2
saved one matrix product. It also shows that there is one matrix where E2/E1 was
significant. It can be explained because for that matrix E1 = 0.00017u was much
lower than the minimum expected error, i.e. the roundoff error u. In the remaining
two cases E2 and E1 had the same order. Figure 2(b) gives the same conclusions
as Figures 1(a) and 1(b).
In order to test the most critical cases for function exptaynsv2 with respect

to error, we multiplied each matrix Ai from the 25 × 25 matrices from test set 3,
1 ≤ i ≤ 43, by a different constant ti ≥ 1 such that exptaynsv2 cost for matrix
ti×Ai was one matrix product lower than the cost of the same function with matrix
(ti + 0.01) × Ai. The same was done with the 100 × 100 matrices from the same
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(a) Diagonalizable matrices n = 128.
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(b) Jordan matrices n = 256.

Figure 1. Performance profile and cost in terms of matrix products for the 128× 128 diagonalizable and
256× 256 Jordan matrices from sets 1 and 2, and mM = 30 in Taylor functions.
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(a) Error comparison n = 1000.
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(b) Performance profile n = 1000.

Figure 2. Relative error ratios E2/E1 for functions exptayns (E1) and exptaynsv2 (E2), performance
profile and cost in terms of matrix products, for mM = 30 and the 1000× 1000 matrices from the Matrix
Computation Toolbox.

set. For the majority of the new matrices ti×Ai, exptaynsv2 cost was one matrix
product lower than exptayns cost, showing that the new proposed bounds based
on φ(n,m)u =

√
mnu were verified, while the original bounds from [3] based on

u were not. Maximum relative error differences between both functions were then
expected for those matrices. Figure 3 presents the results for the modified sets of
matrices sized 25 and 100, and similar conclusions to those from Figures 2(a) and
2(b) can be obtained, with the only difference that in the new matrix sets there
were some cases where E2 was significantly lower than E1.
To sum up, a competitive modification of the Taylor algorithm from [3] has been

proposed based on increasing the allowed forward error bound depending on the
matrix size and Taylor order. The proposed modification reduces the cost with a
small impact on accuracy, being more accurate than Padé existing state-of-the-art
algorithms in the majority of tests with similar or even lower cost.
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