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ABSTRACT  

The energy of interaction between molecules is commonly expressed in terms of four key 

components: electrostatic, polarization, dispersion and exchange-repulsion. Using monomer 

wavefunctions to obtain accurate estimates of electrostatic, polarization and repulsion energies, 

along with Grimme’s dispersion corrections, a series of energy models are derived by fitting to 

dispersion-corrected DFT energies for a large number of molecular pairs extracted from organic 

and inorganic molecular crystals. The best performing model reproduces B3LYP-D2/6-31G(d,p) 

counterpoise-corrected energies with a mean absolute deviation (MAD) of just over 1 kJ mol–1, 

but in considerably less computation time. It also performs surprisingly well against benchmark 

CCSD(T)/CBS energies, with a MAD of 2.5 kJ mol–1 for a combined dataset including Hobza’s 

X40, S22, A24 and S66 dimers. Two of these energy models - the most accurate, and the fastest -  

are expected to find widespread application in investigations of molecular crystals.  
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In recent years our research has focused on the development of novel approaches, especially 

graphical ones based on Hirshfeld surface analysis, to investigate and rationalize intermolecular 

interactions in molecular crystals.1 Despite some attempts to extract quantitative information 

from the Hirshfeld surface,2-3 these approaches remain inherently qualitative. However, it has 

become clear to us4 and others5-7 that mapping the molecular electrostatic potential on Hirshfeld 

surfaces can provide direct insight into intermolecular interactions in crystals. Close molecular 

contacts in the crystal can be rationalized and discussed in terms of the electrostatic 

complementarity of touching surface patches in adjacent molecules.4 The relative magnitudes of 

the electrostatic potentials mapped in this manner correlate with computed electrostatic energies 

for many different interactions. 4 

Over this same period investigations of molecular crystals in terms of pairwise interaction 

energies have become increasingly popular, in large part due to Gavezzotti’s PIXEL approach,8-11 

which has for some time provided a computationally tractable means of obtaining reliable 

intermolecular energies via a nonempirical electrostatic energy, along with semiempirical 

polarization, dispersion and repulsion contributions. Alternative quantum mechanical 

approaches, using various levels of theory and basis sets, have also been employed, especially in 

work by Shishkin and others,12-15 but these are necessarily more time-consuming for wide 

application to a large number and variety of molecular crystals.  

In parallel with these developments, considerable attention has been very recently given to the 

computation of pairwise interaction and lattice energies for organic crystals16-22 and quite large 

supramolecular complexes23-24 using dispersion-corrected density functional theory. Here, we 

outline an approach to computing accurate model energies for use in crystal structure analysis. It 

has been inspired by the extensive work of Gavezzotti, whose PIXEL approach has become 
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popular in applications to organic molecular crystals.6, 25-27 Our objective is quite simple: to 

obtain an accurate and computationally efficient model for intermolecular interaction energies 

that can be applied as widely and efficiently as possible to organic and inorganic molecular 

crystals, and used in conjunction with our program CrystalExplorer.28 

Our basic expression for the interaction energy follows that used by Gavezzotti and others, 

 𝐸!"! = 𝐸!"! + 𝐸!"# + 𝐸!"# + 𝐸!"#,  

where the terms have their usual meaning. This separation of contributions to the total interaction 

energy also follows many energy decomposition schemes, such as those of Kitaura & 

Morokuma29-30 or Hayes & Stone,31 but here we construct the interaction energy from its 

individual components, rather than breaking down a much larger total energy for the interacting 

pair of molecules. This is philosophically closer to our desire to gain insight into packing of 

molecules in crystals using unperturbed electron densities and related properties. The terms in 

the interaction energy are specifically defined as follows: 

𝐸!"! Classical electrostatic energy of interaction between unperturbed charge distributions of 

the monomers (from the antisymmetric product of the monomer spin orbitals); 

𝐸!"# Polarization energy as a sum over nuclei with terms of the kind −
!

!
!!"#$ !

!, where the 

electric field at each nucleus is computed from the charge distribution of the other 

monomer, and 𝛼!"#$ are recommended isotropic atomic polarizabilities from Thakkar & 

Lupinetti;32 
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𝐸!"# Grimme’s D233 or D3(BJ)34-35 dispersion correction, summed over all intermolecular atom 

pairs. Compared with D2 the D3(BJ) model employs a more elaborate method for choosing 

atomic dispersion coefficients and a different damping function. 

𝐸!"# Exchange-repulsion energy, calculated between unperturbed charge distributions of the 

monomers (also from the antisymmetric product of the monomer spin orbitals, or spin 

natural orbitals with largest occupations for correlated wavefunctions). A more detailed 

exposition of this and the electrostatic term has been given recently by Su and Li.36 

The energies obtained in this manner are remarkably sensible, but they vary considerably from 

any meaningful quantum mechanical estimates (see the upper plots in Figs. 1 and 2, where they 

are labelled by the abbreviation CE for CrystalExplorer). To remedy this we introduce four scale 

factors, one for each term in the energy expression, and determine their optimum values by 

fitting to a large training set of quantum mechanical interaction energies based on dispersion- 

and counterpoise-corrected B3LYP/6-31G(d,p) calculations. This training set contains 232 

molecular pairs extracted from 37 organic and inorganic molecular crystal structures including 

atoms up to Xe. For these quantum mechanical energies two different dispersion models due to 

Grimme were explored: D233 and D3,34-35 the latter with Becke-Johnson damping. As the 6-31G 

basis is not defined for atoms beyond Kr, calculations including those atoms used the DGDZVP 

basis, a practice shown by Gavezzotti to be an appropriate alternative.10 Further details are 

provided in the Supporting Information. Monomer electron densities used to compute 𝐸!"!#, 𝐸!"# 

and 𝐸!"# were obtained at three different levels of theory: HF/3-21G, MP2/6-31G(d,p) and 

B3LYP/6-31G(d,p). Figures 1 and 2 illustrate the effect of this simple scaling procedure, and the 

measures of fit and resulting scale factors are summarized in Table 1. 
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Figure 1. Scatter plots for ‘unscaled’ (top) and ‘scaled’ (bottom) model energies vs B3LYP-

D2/6-31G(d,p) counterpoise-corrected results. Plots and linear regression trendline data are 

provided for three different choices of monomer electron densities. All values are in kJ mol–1, 

and note that the energies span a range of almost 350 kJ mol–1. Similar plots for fits to B3LYP-

D3(BJ)/6-31G(d,p) counterpoise-corrected energies are given in the Supporting Information. 

 

Figure 2. As for Figure 1, but limited to data between –100 and +50 kJ mol–1. Similar plots for 

fits to B3LYP-D3(BJ)/6-31G(d,p) counterpoise-corrected energies are given in the Supporting 

Information. 
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Table 1. MAD, MD, root-mean-square deviation (RMSD) and minimum/maximum deviations 

(in kJ mol–1) for model energies, and optimum scale factors for individual energy components. 

Results are given for fits to both training sets of energies. 

 fits to B3LYP-D2/6-31G(d,p) energies fits to B3LYP-D3(BJ)/6-31G(d,p) energies 

monomer 

electron 

density 

HF 

3-21G 

MP2 

6-31G(d,p) 

B3LYP 

6-31G(d,p) 

HF 

3-21G 

MP2 

6-31G(d,p) 

B3LYP 

6-31G(d,p) 

MAD 2.1 1.4 1.2 2.1 1.3 1.2 

MD 0.2 0.2 0.1 0.2 0.2 0.1 

RMSD 4.0 2.5 2.0 3.9 2.5 2.0 

min, max 

deviations 
–21.4, 22.2 –10.7, 11.7 –6.9, 8.5 –22.5, 19.8 –11.2, 10.2 –8.1, 9.2 

kele 0.882 1.027 1.063 0.884 1.039 1.060 

kpol 0.593 0.722 0.756 0.540 0.656 0.729 

kdis 0.852 0.842 0.843 0.967 0.970 0.963 

krep 0.681 0.605 0.595 0.637 0.586 0.573 

 

This simple scaling approach is clearly extremely successful, as seen by the quality of fits to 

the training sets of energies (Figures 1 and 2), but also the measures of fit (Table 1). In all cases 

the mean deviation (MD) is effectively zero, and the mean absolute deviation (MAD) is between 

1.2 and 2.1 kJ mol–1, for a set of reference energies spanning a range of nearly 350 kJ mol–1 (and 

for which the mean absolute reference energy is 18.4 kJ mol–1). Perhaps unsurprisingly, the best 

fit is obtained using B3LYP/6-31G(d,p) monomer electron densities, but MP2/6-31G(d,p) 

densities result in only a slightly worse fit and, quite surprisingly, even HF/3-21G electron  



 8 

 

Figure 3. Deviation of model energies from training set values for Fit=D2. The data are 

ordered from left to right by decreasing magnitude of the reference interaction energy, values for 

which are shown as black circles where they fit within the range of the plot. Data on the far left 

refer to large negative interaction energies, while those on the far right refer to positive 

interaction energies. 

 

densities are capable of providing meaningful estimates of interaction energies, albeit with much 

larger deviations from the training data.  

The sets of scale factors in Table 1 can be considered to specify six different model energies, 

and from here onwards it is economical to refer to them by the abbreviations CE-HF(Fit=D2), 

CE-MP2(Fit=D3) etc., where CE is a reference to our program CrystalExplorer,28 HF, MP2 and 

B3LYP refer to the theory level used to obtain monomer electron densities (the basis sets are 

implicitly those given in Table 1, or, as previously discussed, DGDZVP rather than 6-31G(d,p) 

for atoms larger than Kr), and D2 and D3 refer to the specific dispersion correction employed in 

the training set of energies (where B3LYP-D2/6-31G(d,p) and B3LYP-D3(BJ)/6-31G(d,p) are 

implied). In Figure 3 we depict graphically the deviation of CE-HF, CE-MP2 and CE-B3LYP 

energies (all Fit=D2) from those for the B3LYP-D2/6-31G(d,p) training set. With few 
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exceptions, the largest deviations are found for molecular pairs with the most negative 

interaction energies. 

The scale factors also reveal some interesting trends, notably the constancy of 𝑘!"#, 

irrespective of the choice of electron density, but differences are observed between D2 and 

D3(BJ) dispersion models, as expected. Although the statistics in Table 1 suggest the preferred 

model energies are those based on B3LYP/6-31G(d,p) monomer electron densities, there is little 

difference between fits to D2 or D3(BJ) dispersion corrected quantum mechanical results (i.e. 

either CE-B3LYP(Fit=D2) or CE-B3LYP(Fit=D3)).  

Table 2. Statistical results for comparisons between benchmark CCSD(T)/CBS energies and CE-

B3LYP(Fit=D2) or CE-B3LYP(Fit=D3) model energies. Values are given in kcal mol–1 for ease 

of comparison with literature results. 

 CE-B3LYP(Fit=D2)  CE-B3LYP(Fit=D3) 

 MAD MD RMSD  MAD MD RMSD 

X40 0.70 0.18 1.12  0.62 0.30 1.07 

S22 0.54 0.02 0.73  0.44 0.14 0.61 

A24 0.42 0.28 0.81  0.47 0.27 0.86 

S66 0.61 0.33 0.88  0.88 0.85 1.12 

all 152 pairs 0.60 0.24 0.92  0.68 0.51 1.01 

 

To further examine the potential capability of these two model energies we have computed 

interaction energies for pairs of molecules in several standard benchmark datasets for 

intermolecular interactions: X40,37 S22,38 A2439 and S66.40 For this purpose we have used the 

geometries provided in the Benchmark Energy & Geometry Database41 and compare our model 

results with CCSD(T)/CBS energies tabulated there. Table 2 summarizes the MAD, MD and 
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RMSD, and Figure 3 compares graphically the trends obtained with CE-B3LYP(Fit=D2) and 

CE-B3LYP(Fit=D3) model energies against the CCSD(T)/CBS benchmark values for each of the 

four datasets. 

Uniformly positive MD values in Table 2 indicate that the present CE-B3LYP(Fit=D3) model 

energies yield systematic overestimates of benchmark binding energies, and this is confirmed by 

the trends displayed in Figure 4, where the CE-B3LYP(Fit=D3) results lie below both 

benchmark and CE-B3LYP(Fit=D2) for many molecular pairs in the S66 dataset. Combined with 

statistics for the complete set of energies in Table 2, we conclude that the CE-B3LYP(Fit=D2) 

model is to be preferred over CE-B3LYP(Fit=D3) for our purposes, and our subsequent 

discussion focuses only on this model. 

 

 

Figure 4. Comparison between model energies and CCSD(T)/CBS benchmark values. For each 

benchmark set the data have been sorted by increasing magnitude of the interaction energy. 

At this point it is useful to compare the capability of this preferred energy model against 

CCSD(T) benchmark values with the performance of a range of DFT-D and wavefunction-based 

methods in the recent literature. For the S66 set Goerigk et al.17 have reported MAD values 

between 0.19 and 0.40 kcal mol–1 for a wide range of DFT-D methods using a QZVP basis, while 
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values as large as 0.45 and 0.74 kcal mol–1 have been reported for MP2/CBS and SCS-

MP2/CBS, respectively.40 The present CE-B3LYP(Fit=D2) MAD of 0.61 kcal mol–1 compares 

favorably. For the S22 set Carter and Rohl18 have reported MAD values between 0.55 and 1.60 

kcal mol–1 for a range of basis sets and GGA functionals with vdW-DF dispersion. The present 

CE-B3LYP(Fit=D2) result of 0.54 kcal mol–1 again compares favorably, and even more so 

against results for other methods summarized in Table 3 of that work. 

The performance of the PM6 and PM6-DH2 semiempirical schemes against S22, S66 and X40 

sets has been reported recently by Sure and Grimme, along with results obtained with their 

proposed small basis set corrected Hartree-Fock method, HF-3c.42 For these methods MAD 

values reported are (in kcal mol–1 for HF-3c, PM6 and PM6-DH2, respectively): X40; 1.44, 1.73 

and 1.46; S22: 0.55, 3.39 and 0.39;  S66: 0.38, 2.68 and 0.65. For comparison, MAD values 

obtained with the CE-B3LYP(Fit=D2) energy model are 0.70, 0.54 and 0.61 kcal mol–1, for X40, 

S22 and S66, respectively. 

As a final test of the capability of our model energies, we have applied these methods to nine 

of the twelve large supramolecular complexes taken from the S12L23-24 set (we have omitted the 

cationic complexes 6a, 6b and 7a). For this purpose we test the performance of CE-

B3LYP(Fit=D2), as well as that of the less accurate but much faster CE-HF(Fit=D2), which is 

based on HF/3-21G monomer electron densities. Table 3 lists the energies obtained, and it 

emerges that both models overestimate the binding energies for all of these complexes, but the 

MAD from the empirical reference values is still under 5 kcal mol–1 for both models. Of 

particular interest is the fact that CE-HF(Fit=D2) energies are very close to those obtained from 

the CE-B3LYP(Fit=D2) model, but in considerably less time. It is also important to note that the 

energy differences for pairs of complexes with the same host molecule are faithfully reproduced 
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in all cases by both of these models. These results can also be put into perspective by reference 

to some of the MAD values given by Risthaus and Grimme for a large number of DFT, MP2-

based and semiempirical methods for all of the S12L set.24 For example, they list a series of 

“workable” DFT methods, for which MAD values (in kcal mol–1) range between 1.6 (PBE-

D2/TZVP) and 5.4 (PBE-XDM/mixed TZ), and “best estimate” methods, for which the range of 

MAD values is 2.1 (PBE-NL/QZVP) to 4.1 (M06-L/QZVP). Once more we see that the two 

model energies tested here compare favorably. 

 

Table 3. CE-B3LYP(Fit=D2) and CE-HF(Fit=D2) model energies compared with empirical 

reference energies24 for a subset of the S12L test set. In line with other tabulations from the 

literature, the present model energies include a three-body dispersion correction,23 and values are 

given in kcal mol–1 for ease of comparison with literature resultsa 

a There appears to be a typographical error in Table 1 of reference 24; the empirical reference 

energy for complex 5b is actually –23.1 and not –21.3 kcal mol–1 as reported. 

complex  CE-B3LYP(Fit=D2) CE-HF(Fit=D2) empirical 

reference 

2a TCNQ@tweezer –31.8 –33.5 –29.9 

2b DCB@tweezer –21.9 –21.7 –20.5 

3a 3c@pincer –33.3 –32.8 –24.3 

3b 3d@pincer –28.0 –29.2 –20.4 

4a C60@catcher –29.4 –30.4 –27.5 

4b C70@catcher –30.5 –31.0 –28.7 

5a GLH@mcycle –41.5 –42.2 –34.8 

5b BQ@mcycle –28.1 –28.7 –23.1 

7b ADOH@CB7 –25.5 –25.6 –22.6 

 MAD 4.2 4.8  
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The performance of these relatively simple models for interaction energies is remarkable, 

given that the four scale factors are the only “variables” in each model, with no special terms 

introduced to cater for hydrogen bonding, which is sometimes a feature of similar methods. The 

models have been derived from dispersion-corrected DFT energies for molecular pairs found in a 

very wide range of molecular crystals, inorganic as well as organic, and including atoms up to 

iodine and xenon. The success of this approach is perhaps in large part due to the considerable 

amount of quantum mechanics built into three of the energy terms, and the fact that Grimme’s 

dispersion corrections have been optimised and soundly calibrated in many studies (although 

they were not calibrated against our training set). What is perhaps most significant is that the 

computation time associated with these models is much less than that associated with its 

corresponding ab initio training set. We expect that they will be of great benefit in quantitatively 

exploring, and thus developing a sound intuition for, interaction energies in molecular crystals, a 

goal that has long been advocated as necessary for crystal engineering.43 

We find it interesting that the present CE model energies cannot really be labelled 

semiempirical, nor can they be called DFT or ab initio, or even a version of intermolecular 

perturbation theory. They perhaps represent a new hybrid method, with some similarity to the 

approach used by Li et al. who investigated linear scaling of SAPT0 energy terms.44 The present 

𝐸!"! and 𝐸!"# energies are equivalent, or very close, to the first terms in the SAPT expansion for 

electrostatic and exchange energies (for example, see reference 45), but in our case polarization 

and dispersion energies are not wavefunction-based. There are many improvements that could be 

made to the models, but we expect that increasing the size of the basis set is not likely to be 

helpful; it will only lead to longer computation times. Apart from fitting to a “better” set of 

training energies, the most attractive refinement is likely to involve replacing the isotropic 
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polarizabilities used to determine 𝐸!"# with distributed polarizabilities derived from the 

monomer wavefunctions.  

We anticipate that the models presented here may find widespread application. We are 

currently exploring their use in a novel graphical representation of pairwise interaction energies 

in molecular crystals (unpublished results), which provides ready insight into some of the 

physical properties of crystals, such as cleavage and various mechanical properties. Future work 

involving these models will focus on their use in estimating lattice energies – and comparison 

with experimental values, as well as those from recent computational methods  – as well as the 

extension to charged species such as organic salts. 

 

 

COMPUTATIONAL METHODS 

 

 

Energies for the training sets used the implementation of Grimme’s D2 and D3 dispersion 

corrections (EmpiricalDispersion=GD2 and EmpiricalDispersion=GD3BJ, respectively) and 

counterpoise correction for basis set superposition error in Gaussian09.46 For the D2 corrections 

the overall scale factor s6 was set to 1.0 instead of the default value of 1.05, as recommended 

recently.16 All other computations were performed with CrystalExplorer 3.2,28 using a local 

implementation of D2 dispersion, and dftd334-35 for the D3(BJ) dispersion corrections. The 

preferred energy models (Fit=D2) have been incorporated into CrystalExplorer in such a way 

that monomer wavefunctions need to be computed only once for any pre-selected cluster 

surrounding a central molecule. Density matrices of neighboring molecules are generated by the 

various space group symmetry operations, and computation of interaction energies of a molecule 

with those in its first coordination sphere is completely automated. 
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