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ABSTRACT Glaucoma is an eye disease which is one of the most common causes of blindness. Accurate

optic disc (OD) and optic cup (OC) segmentation play a critical role for detecting glaucoma. Considering

that the existing approaches can’t effectively integrate the multi-view information deriving from shape

and appearance to sufficiently describe OD and OC for segmentation, Locally Statistical Active Contour

Model with the Information of Appearance and Shape (LSACM-AS) and Modified Locally Statistical

Active Contour Model with the Information of Appearance and Shape (MLSACM-AS) are proposed in this

paper. The main contributions are as below: (1) we introduce the Locally Statistical Active Contour Model

(LSACM) to address the commonly occurred intensity inhomogeneity phenomenon caused by imperfection

of image devices or illumination variations. (2) In order to overcome the common effects caused by

pathological changes (i.e., peripapillary atrophy (PPA)) and vessel occlusion in OD and OC segmentation,

we integrate the local image probability information around the point of interest from a multi-dimensional

feature space into our model to preserve the integrity of the OD andOC structures. (3) Since the segmentation

objects have the similar ellipse shape structure, we incorporate the shape priori constraint information into

our model to further improve the robustness of the variations found in and around objects regions. To evaluate

the effectiveness of the proposed models, an available publicly DRISHTI-GS database is employed in this

paper. Seen from the abundant experiments, the proposed models outperform the state-of-the-art approaches

in terms of the obtained qualitative and quantitative results.

INDEX TERMS Glaucoma, optic disc, optic cup, active contour model, prior information.

I. INTRODUCTION

Glaucoma is a chronic ocular disorder. It is the second biggest

cause of vision loss in the world, accounting for 12.3% of

entire blindness world-wide [1]. According to prediction, 80

million people will be affected by 2020 [2]. Glaucoma is

asymptomatic in the early stage but gradually results in irre-

versible vision loss. 70%-90% of the glaucomatous patients

world-wide are unaware of the disease until it has arrived

its later period [1]. However, early cure can reduce the rate

The associate editor coordinating the review of this manuscript and

approving it for publication was Larbi Boubchir .

of blindness by about 50% as reporting in [3]. Hence early

detection for glaucoma is essential.

Optic nerve head (ONH) assessment is most reliable to

detect glaucoma and can be done by a trained professional.

But manual assessment is time-consuming, expensive and

highly subjective [4]. Therefore, automatic optic disc (OD)

assessment using retinal fundus images would be very bene-

ficial [5]. Optic disc is a bright elliptical region with a center

brighter round zone called the optic cup (OC), the region

located between the OD and the OC boundaries named the

neuroretinal rim, as shown in Fig.1 According to the char-

acteristics of the OD, there are two strategies for automatic
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ONH assessment. One is to utilize different classification

strategies for distinguishing the healthy and glaucoma fundus

images. However, the main limitation in it is that this pro-

cess requires a large number of labeled training samples for

trainingmodel which is difficult and challenging. The other is

to employ clinical indicators, such as the vertical cup to disc

ratio (CDR) [6], ISNT [7] and notching, etc. Among them,

CDR is well accepted and widely used in real applications.

Although these clinical indicators are different from each

other, precise information ofOD andOCboundary is required

for the measurement of such clinical indicators to efficiently

assess the glaucoma.

FIGURE 1. Major structures of the optic disc. White line: the optic disc
boundary, black line: the optic cup boundary, the region between the
white line and black line is the neuroretinal rim.

Many researchers have been put their efforts for automatic

segmentation of OD and OC from retinal fundus images.

Proposed approaches can mainly be broadly divided into two

categories: shape-based and appearance-based. In the shape-

based approaches, since the shape of OD and OC is approx-

imately a round or an oval, the edge maps extracted from

retinal fundus images are fitted using a circle or ellipse Hough

Transform [8]–[10]. However, since the real OD or OC shape

is not a regular round or oval, strict fitting cannot satisfy

with their original structures. Apart from the aforementioned

stiff segmentation methods, a flexible statistical shape model,

namely active shape model (ASM) [11]–[13] can represent

an OD-OC shape using statistical approaches. Although it

can represent the OD-OC shapes accurately, ASM may fail

in segmenting that the object with variation and irregular-

ity boundary.

For the appearance-based approaches, they can be further

classified into four classes including thresholding [14]–[16],

vessel bending [17]–[19], classification-based [5], [20]–[22]

and active contour model (ACM) [17], [23], [25], [27], [28].

Considering that the OC is the region of maximum color

contrast within the OD, Hatanaka et al. [14]–[16] presented

some thresholding-based approaches using intensity infor-

mation for segmenting the boundary of OC. However, there

are some problems during identifying the OC region due to

intensity inhomogeneity generated by imperfection of image

devices or illumination variations as well as obscuration

by bridging retinal vessel. To address these issues, W.W.K

and Hatanaka [17]–[19] applied the additional information

based on vessel kinks to detect OC. However, only a small

subset of positions where the vessel bend actually lies on

the OC boundary, thereby it is necessary to select several

heuristics algorithms to detect vessel kinks. According to

Cheng et al. [5], [20]–[22], classification-based approaches

have also been used to significantly enhance the OD and

OC detection. However, it is greatly influenced by sample

size (e.g., the small amount of training data will lead to a

larger bias for the segmentation results, and it is also time

consuming to deal with the large amount of training data).

Currently, in view of the complex topological changes of

boundary contour and irregular shape caused by peripapillary

atrophy (PPA) and vasculature occlusion, some ACM based

methods have been developed to evolve the boundary of

object during iteration.

Osareh et al. [23] located the OD boundary using an auto-

matically initialized snake based on image gradient, which

can improve the precision for capturing shape irregularity in

the OD area when comparing with the existing approaches.

After that, the OD boundary is evolved by a minimization of

the effect on the perturbance in the energy value due to the

high variations at vessels locations. Inspired by the localized

Chan-Vese (CV) models [24], Joshi et al. [17] presented a

region-based ACM approach to segment OD. Then, the OC

boundary is extracted depending on vessel kinks in retinal

fundus images. However, this method is only simply added

with the equally weighted in local region around each point of

interest, it ignores the intrinsic physical meaning and statisti-

cal information within the fundus images leading to that the

extracted OD boundary is inaccurate. Meanwhile, a majority

of blood vessels enter OC from the inferior and superior

directions, the estimation of OC boundary always tends to

be in nasal and temporal sectors which is easy to be inaccu-

rate. Mittapalli and Kande [25] extended the original local

binary fitting (LBF) [26] ACM by incorporating local image

information from multiple image channels for segmenting

the OD. Then, they combined spatially weighted Fuzzy

C-means (SWFCM) clustering and mathematical morphol-

ogy methods together to extract the OC boundary. Although

the methods can achieve OD and OC boundary extraction,

there are still three limitations in them. First, since this ACM-

based approach employed a hard classification manner for

OD boundary extraction, it isn’t able to well represent the

gradually varying areas that usually exist in retinal images

with intensity inhomogeneity, especially for severe inten-

sity inhomogeneity. Second, it neglects the imperfection of

the single-view information and can’t well deal with the

appearance information missing. Third, compared with OD

segmentation, the OC segmentation is more challenging.

For example, the appearance of OC is always covered by

most blood vessels or influenced by uneven illumination

leading to that the boundary of OC is obscure or incomplete.

Thakur and Juneja [27] presented a hybrid approach named

Level Set Adaptively Regularized Kernel-Based Intuitionistic

Fuzzy C Means (LARKIFCM) for OD and OC segmen-

tation, which used the level set combined with clustering
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approach. It can more effectively segment OD and OC due

to taking positive features of the combined approaches.

However, this approach ignores the integrated anatomical

structure prior information of OD and OC and fails to obtain

the accurate boundary of OD and OC in complex retinal

image. Gao et al [28] introduced the prior constraint infor-

mation into Local Image Fitting model which can overcome

most of influences caused by bright regions of PPA and

achieve a smooth boundary. However, this model leads to

inaccurate segmentation in some regions, as the prior infor-

mation replaces the important intensity information which

is insufficient.

Seen from the aforementioned approaches, they extract

OD-OC boundaries which are either shape-based or

appearance-based approaches. While both of them suffer

from the following challenging issues including severe inten-

sity inhomogeneity (see Fig.2(b)), the complex blood ves-

sel structure (see Fig.1) within the retinal images and the

PPA (see Fig.2(a)) around the OD. This paper proposes a

solution to overcome these issues and presents two novel

energy optimization frameworks by fusing the advantages of

both types of the approaches. The main contributions are as

follows: (1) LSACM is introduced to deal with the severe

intensity inhomogeneity which is widely existed in the retinal

fundus images. (2) To fully explore the intrinsic structures

within the retinal fundus images and make the extracted OD

and OC boundaries more integrity, we integrate probability

information from a multi-dimensional feature space into our

models. (3) Considering that the anatomical structures both

of the OD and OC are similar with ellipse shape, the shape

priori constraint information is further fused into our models.

FIGURE 2. Intensity inhomogeneity challenges in optic disc and optic cup
segmentation.

II. CONTOUR INITIALIZATION

Based on the cropped ROI around OD as shown in Fig.3(a)

which is achieved by our method mentioned in [29], we can

further extract the boundaries of the OD and OC. Considering

that it is necessary to initialize the presented active contour

model, a robust and effective contour initialization method

which combines saliency detection and threshold techniques

is designed in this subsection.

Because the choroidal vessels are presented in the ROI,

it may affect the segmentation accuracy of the OD and OC

boundaries. To address this problem, morphological open-

ing followed by closing operations are done on each red,

green, and blue channel images to remove the influence of

blood vessels and the vessels removal result is shown in

Fig.3(b). According to a large number of experimental ver-

ifications [2], we choose the disk structure with the radius

of 15 pixels as the basic structure element by experience to

remove vessels in this paper. Meanwhile, since the OD is

usually brighter than other areas in the retinal fundus images,

it can be considered as a salient objective. Inspired by saliency

detection method to find out the most important region in the

image, a cellular (i.e., superpixel) automata based saliency

detection method [30], which considers both global color

and spatial distance matrices, is applied to contour initial-

ization. First, the cellular automata based saliency detec-

tion method [30] is done on the vessels removal image for

obtaining the saliency map in which the corresponding out-

put saliency value of each superpixel is continuous between

0 and 1(see Fig.3(c)). Then, in order to obtain smoothed map

values, we use the mean filter [5] to process the saliency map

(see Fig.3(d)). Considering that the binary decisions for all

the pixels need to be obtained by a threshold in the smoothed

map (Fig.3(d)), we adopt the Otsu to obtain the threshold and

distribute 1 and 0 to OD and non-OD. After that, the object

region (OD) is set as 1 and the background region is set as 0.

Finally, we can achieve the largest connected object using

morphological operation, which is the connected region with

the largest number of the pixels (see Fig.3(e)). Its boundary

is regarded as the initial contour for segmenting the OD (see

Fig.3(f) in green).

The OC is predicted to be either a circular or oval within

the OD and is defined as the area of maximum color contrast

inside the OD [1], [25]. Compared to the OD, the extrac-

tion of the OC boundary is more challenge as it intertwines

with the blood vessels or surrounding area. In this paper,

the cup boundary is also determined via saliency detection

and threshold techniques. The main difference between the

OD and the OC contour initialization is the usage of differ-

ent threshold methods. As the OC is the highest intensity

region inside the OD, highest intensity based thresholding

approach is suitable for extracting OC initial contour. First,

thresholding [31] is empirically applied on the smoothed map

image (Fig.3(d)) with the value of threshold 10% of the high-

est intensity value and the obtained binary image is shown

in Fig.3(g). Then, Hough transform is done on the estimated

cup boundary (Fig.3(h)) which helps to obtain an overall

boundary of the identified cup region as well as smoothing the

region boundary. The result of the Hough transform is used

as the OC initialization contour, as shown in Fig.3(i)(blue).

III. THE PROPOSED METHODS

A. LOCALLY STATISTICAL ACTIVE CONTOUR

MODEL (LSACM)

The changes of OD and OC will indicate the severity of

glaucoma illness. The precision of boundary extraction of

OD and OC is necessary to study the process of glaucoma

illness and treatment results. However, intensity inhomo-

geneity phenomenon widely exists in retinal image caused
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FIGURE 3. Contour initialization. (a) cropped ROI around optic disc, (b) vessels removal, (c) saliency
detection result, (d) smoothed image of (c), (e) the largest connected object, (f) optic disc initial contour
(green), (g) the binary image of (d) using thresholding, (h) the edge image of (g), (i) the obtained cup
initial contour after Hough transform (blue).

by imperfection of image devices or illumination variations

seriously influencing OD and OC segmentation. In order to

deal with the problem, in this paper, we introduce the Locally

Statistical Active ContourModel (LSACM) [32] to model the

inhomogeneous objects as Gaussian distributions of different

means and variances. In LSACM, a sliding window is used to

map the original image into another domain, where the inten-

sity distribution of each object with intensity inhomogeneity

has less overlapping in the statistics. Besides a maximum

likelihood energy functional is solved to approximate the true

image signal. More detailed descriptions can refer to [32].

For a given input image I , the LSACM model [32] defines

an energy functional as

ELSACM =
n

∑

j=1

∫

�

Fj (y)Mj (8 (y)) dy (1)

where

Fj (y) ,

∫

�

Kρ (x, y)
(

log
(

σj
)

+
(

(

I (y) − B (x) cj
)2

/

2σ 2
j

))

dx

Kρ (x, y) =
{

1, |y− x| ≤ ρ

0, else.

Mj (8 (y)) =
{

1, y ∈ �j

0, else.

where the symbol ℜ represents the set of real number, pixel

coordinates x, y ∈ � ⊂ ℜ2, � = ∪j=1,...,n�j is image

domain where �j can be expressed as the domain of the

j-th object and �j ∩ �i = 2 for all j 6= i.

2 is an empty set. n represent the total number of objects in

image I . I (y) denotes the pixel value at the pixel coordinate y.

The symbol Ox denotes a neighboring region centering at

location x, i.e., Ox = {y ||y− x| ≤ ρ }, y is the neighborhood
point relative to x and ρ is the radius of the region Ox .

cj is assumed to be the true signal of the j-th object which

is always considered as a piecewise constant within object

domain. B (x) is the bias field function. B (x) cj is the spatial

varying mean that is estimated at the local region �j ∩ Ox
centered at each location x, σj is the standard deviation of

the Gaussian distribution for the j-th object.Mj (8 (y)) is the

membership function of the region �j and Mj (8 (y)) = 1

when y ∈ �j, otherwise Mj (8 (y)) = 0. 8 (y) is the set of

level set functions.Kρ (x, y) is the indicator function of a local

region Ox .

B. THE SEGMENTATION OF OPTIC DISC

Apart from intensity inhomogeneity, other conditions, such

as boundary smoothing, blood vessels covering and image

variations near the OD boundary due to pathological changes,

make the segmentation of the OD more challenging. To over-

come the above problems, we extract multi-view information
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based on the appearance and shape of OD aiming to achieve

accurate OD detection in varied conditions.

1) COMBINING LSACM WITH THE INFORMATION OF

APPEARANCE (LSACM-A)

Based on the appearance of OD, the LSACM is extended by

integrating the local image probability information around the

point of interest from a multi-dimensional feature space.

According to the [32], The Gaussian Probability Density

Function (PDF) based on the transformed domain for the j-th

object at the pixel x in a single feature space can be described

as follows:

P(I ′(x/θj,B)) ∝
∏

y∈�j∩Ox

P(I (y|θj,B, x)) (2)

where

P(I (y|θj,B, x)) =
1

√
2πσj

exp(−
(I (y) − B (x) cj)

2

2σ 2
j

)

where I ′ is the image in the transformed domain.

P(I (y|θj,B, x)) is the Gaussian PDF for the j-th object at the

pixel y near the pixel x in a single feature space. 5 is denoted

as multiplication. θj denotes the set of estimated parameters

{cj, σj}.
Now, we integrate probability information from a multi-

dimensional feature space and the working mechanism is

depicted in the Fig.4 Based on the mentioned Gaussian PDF

for the transformed domain, the proposed probability func-

tion based on the transformed domain for the j-th object at

the pixel x is depicted in Eq. (3). It combines a richer form of

the local image probability information at the point of interest

gathered over a multi-dimensional feature space.

d
∏

i=1

Pi(I
′
i (x/θji,Bi)) ∝

d
∏

i=1

∏

y∈�j∩Ox

Pi(Ii(y|θji,Bi, x)) (3)

FIGURE 4. Scheme illustration of joint probability information from a
multi-dimensional feature space. A set of feature images constitute a
multi-dimensional feature space. All of the Gaussian PDFs based on the
transformed domain for the j-th object at the pixel x in different
dimensional feature spaces multiply (e.g. j = 1, 2; i = 1, 2, 3).

where

Pi(Ii(y|θji,Bi, x)) =
1

√
2πσji

exp(−
(Ii(y) − Bi (x) cji)

2

2σ 2
ji

)

where Pi(I
′
i (x/θji,Bi)) is the Gaussian PDF based on the

transformed domain for the j-th object at the pixel x in the

i-th feature space. Pi(Ii(y|θji,Bi, x)) is the Gaussian PDF for

the j-th object at the pixel y near the pixel x in the i-th feature

space. d is denoted as the sum of feature spaces. Ii is the

input image in the i-th feature space. I ′i is the image in the

transformed domain for the i-th feature space. θji is the set of

estimated parameters {cji, σji}. Bi is the bias field function in

i-th feature space. Bi(x)cji is the spatial varying mean that is

estimated at the local region�j∩Ox centered at each location
x in the i-th feature space. cji is assumed to be the true signal

of the j-th object in the i-th feature space. σji is the standard

deviation of the Gaussian distribution for the j-th object in the

i-th feature space.

Supposing that D = {I ′(x/θji,Bi), x ∈ �, j =
1, . . . , n; i = 1, . . . , d}, based on the proposed probability

function by combining multi-dimensional features probabil-

ity information, the joint likelihood function can be described

as follows [32]:

P(D/θ,B) =
n

∏

j=1

∏

x∈�

d
∏

i=1

Pi(I
′
i (x/θji,Bi))

∝
n

∏

j=1

∏

x∈�

d
∏

i=1

∏

y∈�j∩Ox

Pi(Ii(y|θji,Bi, x)) (4)

where θ = {θji, j = 1, . . . , n; i = 1, . . . , d}, B = {Bi, i =
1, . . . , d}, n describes the sum of objects.

Similar to the [32], in order to evaluate the parameter set

θ̃ and B̃, the inverse log-likelihood function of P(D/θ,B) is

defined. Meanwhile, we also eliminate the trivial constant

term and add the constant weight coefficient. The novel

model based on the appearance can be obtained as follows:

ELSACM−A =
1

d

d
∑

i=1

n
∑

j=1

∫

�

Fji(y)Mj(φ(y))dy (5)

where

Fji(y) ,

∫

�

Kρ(x, y)(log(σji) + ((Ii(y) − Bi(x)cji)
2/2σ 2

ji ))dx

M1 = H (φ(y)); M2 = 1 − H (φ(y))

Because the OD is brighter than other areas in the reti-

nal fundus images [33], we set number of objects n as 2;

c1i = (c11, c12, . . . , c1d ), c2i = (c21, c22, . . . , c2d ), Bi =
(B1,B2, . . . ,Bd ), σ1i = (σ11, σ12, . . . , σ1d ) and σ2i =
(σ21, σ22, . . . , σ2d ) are five constant vectors. The values of

the two vectors c1i and c2i respectively are assumed to be

the true signal of the OD and the background in i-th feature

space. The values of the two vectors σ1i and σ2i respectively

express standard deviation of the Gaussian distribution of the

OD and the background in i-th feature space.H represents the

VOLUME 7, 2019 148187



Y. Gao et al.: Accurate and Efficient Segmentation of Optic Disc and Optic Cup

Heaviside function. φ is the level set function for segmenting

the OD. The values of c1i, c2i, Bi, σ1i and σ2i are optimally

chosen by minimizing the above energy function (5).

Due to the complex OD appearance (e.g. illumination

variations, the anomalies influence and intertwined blood

vessels), the complete OD can’t be well described by single-

feature space. So, the multi-feature spaces need to be inte-

grated to complement each other’s advantages for adequately

describing the OD. Considering that the red color plane has an

unobvious contrast for blood vessel and gives a better contrast

of the OD region [17], and the HSV color space can easily

separate the intensity information from the color informa-

tion and retrieve more information [34]. Then, the extended

LSACM uses a multi-dimensional feature space (d = 5)

where the individual vector element is taken from red color

plane, vessel-free red color plane, and each channel from

vessel-free HSV color space, to represent an image point x.

Finally, the extracted OD boundary is shown in Fig.5(b).

FIGURE 5. The extracted OD boundaries. (a) The result obtained by
LSACM-AS, (b) the result obtained by LSACM-A, (c) the result obtained
by LSACM-S.

2) COMBINING LSACM WITH THE INFORMATION OF

SHAPE (LSACM-S)

Considering that the shape of OD is a circular or elliptic

region [29], [35], [36], the shape priori information of the

OD is introduced into the LSACM maintaining the intrinsic

anatomical structure.

First, the elliptic parameterized level set function of the

ODwhich consists of a five-tuple (xd , yd , θd , ad , bd ) is intro-

duced. It can be described as:

φo = 1 −
√

A2

a2d
+
B2

b2d
(6)

where

A = (x − xd ) cos θd + (y− yd ) sin θd

B = −(x − xd ) sin θd + (y− yd ) cos θd

where xd and yd are oval center coordinates, ad is defined

as the scaling factor of semi-major axis length and bd is the

semi-minor axis length, θd is the angle of rotation.

Then, we construct an ellipse constraint term based on the

elliptic parameterized level set function φo for the OD. It can

be shown as follows:

EShapePrior =
∫

�

ν(H (φ(y)) − H (φo(y)))
2dy (7)

where

φo = 1 −
√

A2

a2d
+
B2

b2d

where

A = (x − xd ) cos θd + (y− yd ) sin θd

B = −(x − xd ) sin θd + (y− yd ) cos θd

where ν is the constraint coefficients for ellipse to determine

the weight of elliptic constraint. The term (7) simultaneously

drives φ and φo, and it is symmetric to φ and φo to constrain

the zero level set of φ as an ellipse.

The extended LSACM by integrating the ellipse constraint

term can be expressed as:

E=
n

∑

j=1

∫

�

Fj(y)Mj(φ(y))dy+
∫

�

ν(H (φ(y))−H (φo(y)))
2dy

(8)

where

Fj (y),

∫

�

Kρ (x, y)
(

log
(

σj
)

+
(

(

I (y)−B (x) cj
)2

/

2σ 2
j

))

dx

M1 = H (φ(y)); M2 = 1 − H (φ(y))

where the number of objects n is also set as 2 as in the

previous section. Both of them constantly change with the

curve evolution.

Besides, in order to extract a smoother contour without

drastic protuberance and sunken, the penalizing length item

is used to regularize the zero level contour of the level set

function φ. It can be integrated with formula (8) and the entire

energy functional can be defined as:

ELSACM−S =
n

∑

j=1

∫

�

Fj(y)Mjdy+
∫

�

λ|∇H (φ(y))|dy

+
∫

�

ν(H (φ(y)) − H (φo(y)))
2dy (9)

where λ is the weight length of zero level curve of φ.

We can see that integrating the LSACM with the shape

prior information together can both extract the boundary of

the OD and maintain the intrinsic ellipse structure as shown

in Fig.5(c).

Considering the above appearance and shape information

for OD, in order to fully explore the structure of OD and

extract the robust OD boundary, we combine the multi-view

information by fusing both the appearance and shape of the

OD with LSACM (LSACM-AS) and propose the following

objective function ELSACM−AS :

ELSACM−AS =
1

d

d
∑

i=1

n
∑

j=1

∫

�

Fji(y)Mjdy+
∫

�

λ|∇H (φ(y))|dy

+
∫

�

ν(H (φ(y)) − H (φo(y)))
2dy (10)
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3) ENERGY MINIMIZATION PROCESS FOR LSACM-AS

We use the standard gradient descent method [32] to min-

imize the proposed energy functional in Eq. (10). Seen

from (10), it is a hard work to find aminimizerELSACM−AS for
φ, c1i, c2i, Bi, σ1i, σ2i, xd , yd , θd , ad and bd simultaneously.

Consequently, we solve the minimization problem for each

variable alternatively to find a minimizer of (10).

For a fixed φ, xd , yd , θd , ad , bd , functional Eq. (10) is mini-

mized with respect to the c1i, c2i, Bi, σ1i, σ2i (i = 1, 2, . . . , d)

as:

c1i =

∫

�

[Kρ(x, y) ⊗ Bi(x)]Ii(y)H (φ(y))dy

∫

�

[Kρ(x, y) ⊗ B2i (x)]H (φ(y))dy
(11)

c2i =

∫

�

[Kρ(x, y) ⊗ Bi(x)]Ii(y)(1 − H (φ(y)))dy

∫

�

[Kρ(x, y) ⊗ B2i (x)](1 − H (φ(y)))dy

Kρ(x, y) ⊗ [Ii(y)H (φ(y))]
c1i

σ 2
1i

(12)

Bi(x)=
+Kρ(x, y) ⊗ [(1 − H (φ(y)))]

c22i
σ 2
2i

Kρ(x, y) ⊗ [H (φ(y))]
c21i
σ 2
1i

+Kρ(x, y) ⊗ [Ii(y)(1 − H (φ(y)))]
c2i

σ 2
2i

(13)

σ1i =

√

√

√

√

√

√

∫

�

∫

�

Kρ(x, y)(Ii(y) − Bi(x)c1i)2H (φ(y))dxdy

∫

�

∫

�

Kρ(x, y)H (φ(y))dxdy

(14)

σ2i =

√

√

√

√

√

√

∫

�

∫

�

Kρ(x, y)(Ii(y) − Bi(x)c2i)2(1 − H (φ(y)))dxdy

∫

�

∫

�

Kρ(x, y)(1 − H (φ(y)))dxdy

(15)

Keeping φ, c1i, c2i, Bi, σ1i, σ2i fixed, minimizing the energy

functional Eq.(10) with respect to xd , yd , θd , ad , bd , some

gradient vector flows are obtained:

dxd

dt
= 2ν

∫

�

L(
A cos θd

a2d
+

−B sin θd

b2d
)dy (16)

dyd

dt
= 2v

∫

�

L (
A sin θd

a2d
+
B cos θd

b2d
)dy (17)

dθd

dt
= 2v

∫

�

L(
−AB
a2d

+
AB

b2d
)dy (18)

dad

dt
= 2v

∫

�

L(
A2

a3d
)dy (19)

dbd

dt
= 2v

∫

�

L(
B2

b3d
)dy (20)

where

L = (H (φ) − H (φo))δ(φo) × (
A2

a2d
+
B2

b2d
)−

1
2

Keeping c1i, c2i, Bi, σ1i, σ2i, xd , yd , θd , ad , bd fixed and

minimizing the energy functional Eq.(10) with respect to φ,

we obtain the gradient vector flow as:

∂φ

∂t
= λdiv(

∇φ
√

φ2
x + φ2

y

)δ(φ) −
1

d

d
∑

i=1

(F1i − F2i)δ(φ)

− 2ν(H (φ) − H (φo))δ(φ) (21)

4) REGULARIZE LEVEL SET FUNCTION

In order to keep numerical implementation stable, we need

to regularize the level set function during the iteration [32].

In the paper, a simple and stable approach is used [32] to

regularize the level set function which is completely free of

the costly reinitialization procedure in the level set evolution.

The level set function is regularized by the Eq. (22):

φl+1 = φl + 1t · ∇2φl (22)

where φl is the evolved level set function for OD obtained

from the l-th iteration, 1t is the time steps, ∇2 denotes the

Laplacian operator. The object function (10) is minimized by

solving Eq. (11) ∼ (22).

5) DIFFERENT SEGMENTATION RESULTS ACHIEVED BY

METHODS INTEGRATING INFORMATION OF APPEARANCE

AND SHAPE

Seen from Fig.5(a), in terms of the appearance information

integrated from a multi-dimensional feature space including

the vessel-free information and the unabridged information

for the OD, it can be used to cooperate with the contour evolv-

ing into ideal similar ellipse due to the function of ellipse

constraint item. This process can not only recover the missing

parts of appearance information, but also remove the occlu-

sion parts of appearance information. Hence, the evolution

contour obtained by LSACM-AS is robust to the situations

of the boundary smoothing, the influence of blood vessels

and pathological changes. The boundary of OD extracted by

LSACM-AS is more precise than other methods, such as only

combining the information of appearance (see Fig.5(b)) or

shape (see Fig.5(c)).

C. THE SEGMENTATION OF OPTIC CUP

The OC shape is predicted to be either circular or oval shape,

which is appeared as the area of maximum color contrast

inside the OD [1], [25]. Compared with OD segmentation,

the OC segmentation is more challenging since the dense

blood vessels cover parts of the cup leading to the gradual

change in color intensity between the rim and cup. In this

paper, we use the same manner likes OD segmentation which

is based on multi-view information about the appearance

and shape of OD to segment OC. However, the proposed

approach for segmenting the OD can’t be directly applied
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for segmenting the OC. The main reason is that both the OD

and the OC is a complete bright region (optic nerve head)

compared to the background, and thereby two-phase LSACM

using one level set to represent two objects and four-phase

LSACM using two level set to represent four objects can’t

directly extract the boundary of the OC due to the special

structure relationship. To address this issue, we design a novel

preprocessing approach which introduces a structure prior

information constraint into the contour evolution to achieve

OC segmentation. In this paper, the preprocessing is mainly

to constrain the effective evolution range, i.e., the evolution

of the OC should be done inside the OD region which is

expressed as the region that is the level set function φ greater

than zero (φ > 0). The modified LSACM (MLSACM) by our

preprocessing method is defined as follows:

EMLSACM =
p

∑

j=3

∫

�

fj (y)Mj(ϕ(y))dy (23)

where

fj (y),

∫

�

Kρ (x, y)
(

log
(

σj
)

+
(

(

I (y)−b (x) cj
)2

/

2σ 2
j

))

dx

M3 = H (φ(y))H (ϕ(y)); M4 = H (φ(y))(1 − H (ϕ(y)))

where we set p as 4. j = 3 and j = 4 respectively denote two

different regions in OD including the OC and the neuroretinal

rim. b is the bias field function for calculating the OC. φ is

the level set function for the OD, ϕ is the level set function

for the OC.M3 andM4 are proposed to represent the intrinsic

anatomical structure of the OC. Namely, both of them are the

membership functions for inner and outer regions of the OC

in the OD region extracted by the proposed OD segmentation

method.

Similar to the segmentation of OD, the MLSACM blended

in multi-view information about the appearance and shape of

the OC for extracting the OC boundary is defined as:

EMLSACM−AS =
1

m

m
∑

i=1

p
∑

j=3

∫

�

fji(y)Mjdy+
∫

�

µ|∇H (ϕ(y))|dy

+
∫

�

γ (H (ϕ(y)) − H (ϕo(y)))
2dy (24)

where

fji(y) ,

∫

�

Kρ(x, y)(log(σji) + ((Ii(y) − bi(x)cji)
2/2σ 2

ji ))dx

M3 = H (φ(y))H (ϕ(y)); M4 = H (φ(y))(1 − H (ϕ(y)))

ϕo = 1 −

√

C2

a2c
+
D2

b2c

where

C = (x − xc) cos θc + (y− yc) sin θc

D = −(x − xc) sin θc + (y− yc) cos θc

where c3i = (c31, c32, . . . , c3m), c4i = (c41, c42, . . . , c4m),

bi = (b1, b2, . . . , bm), σ3i = (σ31, σ32, . . . , σ3m) and σ4i =
(σ41, σ42, . . . , σ4m) are five constant vectors. m is denoted as

the sum of feature spaces for theOC segmentation. The values

of the two vectors c3i and c4i respectively are assumed to be

the true signal of the OC and neuroretinal rim in i-th feature

space. The value of vector bi is the bias field function for cal-

culating OC in i-th feature space. bi(x)cji is the spatial varying

mean that is estimated at the local region �j ∩ Ox centered

at each location x in i-th feature space. The values of the two

vectors σ3i and σ4i respectively express standard deviation of

the Gaussian distribution of the OC and the neuroretinal rim

in i-th feature space. The values of c3i, c4i, bi, σ3i and σ4i are

optimally chosen such that the above energy function (24)

is minimized when the evolution contour is near the true OC

boundary. ϕo is the elliptic parameterized level set function of

the OC, xc and yc are oval center coordinates, ac is a scaling

factor of semi-major axis length, bc is a scaling factor of semi-

minor axis length, θc is the angle of rotation. Both of them

constantly change with the level set function ϕ evolving. γ

is a constraint coefficient for ellipse which determines the

weight of elliptic constraint, µ is the weight length of zero

level curve of ϕ. In this subsection, due to the complex OC

appearance (e.g. illumination variations, intertwined blood

vessels), the complete OC can’t be well described by single-

feature space. So, the multi-feature spaces need to be inte-

grated to complement each other’s advantages for adequately

describing the OC. Considering that the intensity information

from the color information can be easily separated and more

information can be retrieved in the HSV color space [34], and

the green color plane provides a better contrast for OC [37].

Then, we use a multi-dimensional feature space (m = 5)

which consists of red color plane, vessel-free green color

plane and each channel from vessel-free HSV color space to

describe an image point x.

The boundary of OC can be extracted by using the standard

gradient descent approach to minimize the proposed energy

functional in Eq. (24). Some minimizers and some gradient

vector flows are given as follows:

c3i =

∫

�

[Kρ(x, y) ⊗ bi(x)]Ii(y)H (φ(y))H (ϕ(y))dy

∫

�

[Kρ(x, y) ⊗ b2i (x)]H (φ(y))H (ϕ(y))dy
(25)

c4i =

∫

�

[Kρ(x, y) ⊗ bi(x)]Ii(y)H (φ(y))(1 − H (ϕ(y)))dy

∫

�

[Kρ(x, y) ⊗ b2i (x)]H (φ(y))(1 − H (ϕ(y)))dy

×Kρ(x, y) ⊗ [Ii(y)H (φ(y))H (ϕ(y))]
c3i

σ 2
3i

(26)

bi(x) =
+Kρ(x, y) ⊗ [Ii(y)H (φ(y))(1 − H (ϕ(y)))] c4i

σ 2
4i

Kρ(x, y) ⊗ [H (φ(y))H (ϕ(y))]
c23i
σ 2
3i

+Kρ(x, y) ⊗ [H (φ(y))(1 − H (ϕ(y)))]
c24i

σ 2
4i

(27)

148190 VOLUME 7, 2019



Y. Gao et al.: Accurate and Efficient Segmentation of Optic Disc and Optic Cup

σ3i =

√

√

√

√

√

√

∫

�

∫

�

Kρ(x, y)(Ii(y)−bi(x)c3i)2H (φ(y))H (ϕ(y))dxdy

∫

�

∫

�

Kρ(x, y)H (φ(y))H (ϕ(y))dxdy

(28)

σ4i

=

√

√

√

√

√

√

∫

�

∫

�

Kρ(x, y)(Ii(y)−bi(x)c4i)2H (φ(y))(1−H (ϕ(y)))dxdy

∫

�

∫

�

Kρ(x, y)H (φ(y))(1 − H (ϕ(y)))dxdy

(29)

dxc

dt
= 2γ

∫

�

Z (
C cos θc

a2c
+

−D sin θc

b2c
)dy (30)

dyc

dt
= 2γ

∫

�

Z (
C sin θc

a2c
+
D cos θc

b2c
)dy (31)

dθc

dt
= 2γ

∫

�

Z (
−CD
a2c

+
CD

b2c
)dy (32)

dac

dt
= 2γ

∫

�

Z (
C2

a3c
)dy (33)

dbc

dt
= 2γ

∫

�

Z (
D2

b3c
)dy (34)

where

Z = (H (ϕ) − H (ϕo))δ(ϕo) × (
C2

a2c
+
D2

b2c
)−

1
2

∂ϕ

∂t
= µdiv(

∇ϕ
√

ϕ2
x + ϕ2

y

)δ(ϕ) −
1

m

m
∑

i=1

(f3i − f4i)H (φ)δ(ϕ)

− 2γ (H (ϕ) − H (ϕo))δ(ϕ) (35)

We also regularize the level set function ϕ using the same

method likes the OD level set function evolution. The level set

function ϕ is regularized by the Eq. (36) after each iteration

of (35)

ϕl+1 = ϕl + 1t · ∇2ϕl (36)

where ϕl is the evolution level set function for OC obtained

from the l-th iteration. The OC boundary can be extracted by

minimizing the objective function in (24).

The final OC boundary extraction results obtained by

three methods are shown in Fig.6. They are respectively the

modified LSACMwith appearance (MLSACM-A), modified

LSACM with shape (MLSACM-S) and modified LSACM

with both of appearance and shape (MLSACM-AS). Seen

from Fig.6, the MLSACM-AS can achieve a satisfied

result (Fig.6(a)) compared with MLSACM-A (Fig.6(b)) and

MLSACM-S (Fig.6(c)). The main reason lies in the fact

that the sufficient appearance information, which include the

vessel-free information and the unabridged information for

the OC, can be used to cooperate with the contour evolving

into ideal similar ellipse due to the function of ellipse con-

straint item. This process can not only recover the missing

FIGURE 6. The extracted OC results. (a) The result obtained by
MLSACM-AS, (b) the result obtained by MLSACM-A, (c) the result obtained
by MLSACM-S.

parts of appearance information of the OC but also remove

the occlusion parts of appearance information caused by

blood vessel. Therefore, our approach is robust to the varying

structure of OC.

IV. SIMULATION RESULTS

A. DATABASE

In this paper, the proposed methods for segmenting the OD

and the OC were tested on the public dataset of retinal

images namely DRISHTI-GS [38]. The dataset totally has

101 images consisting of 31 normal images and 70 glauco-

matous images. These images are generated with 300 degree

field of view and have a resolution of 2896 × 1944. For

each image, the OD and the OC are correctly marked by four

glaucoma experts. To compensate for inter-observer marking

variations, we acquire a majority voting manual marking as

the final ground truth which indicates agreement among at

least three experts [38] to qualitatively assess the presented

methods.

B. IMPLEMENTATION

In the test, first, the evolution contour computed by all meth-

ods for segmenting the OD and the OC uses the initial con-

tours depicted in Section 2. Some parameters for computing

the objective function are empirically set such as ρ = 6,

ν = 1.0, γ = 1.0 and time step Vt = 0.45. All of con-

trastive segmentation methods are calculated in the vessel-

free image. The final segmentation results for the OD and the

OC obtaining by optimizing the proposed objective functions

are respectively shown in Fig.7(c) and Fig 8(c), in which

the Fig.7(a) and the Fig.8(a) depicts the original image. The

marked ground truths are respectively shown in Fig.7(b) and

Fig.8(b).

C. EVALUATION MEASUREMENTS

The proposed OD segmentation method will be compared

with five commonly segmented approaches for the OD,

namely C-V model [16], Local Clustering Criterion (LIC)

model [39], modified Local Binary Fitting (LBF) [25],

LARKIFCM [27], Local Image Fitting model with oval-

shaped constraint (LIFO) [28]. Similarly, using four different

methods including thresholding [16], ellipse fitting [40], clus-
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Algorithm 1 Segmentation for the OD and the OC

LSACM-AS SEGMENTATION STEP:

1. Initialization: Input the set of multi-channel images

including original red channel image, vessel-free red

channel image, vessel-free green channel image and

each channel from vessel-free HSV color space, i =
1, 2, 3, 4, 5, Bi(x) = bi(x) = 1, σji = j (j is taken as

both variable value and index), j = 1, 2, 3, 4, xd =
wide/2, xc = wide/2, yd = height/2, yc = height/2,

θd = θc = 0, ad = (
√

wide2 + height2)/8, ac =
(
√

wide2 + height2)/13, bd = (
√

wide2 + height2)/8,

bc = (
√

wide2 + height2)/13, the level set functions

φl = φ0, ϕl = ϕ0, φlo = φ0
o , ϕ

l
o = ϕ0

o , r , l, t , q denotes

iterations.

2. Respectively update cji, Bi, σji, j = 1, 2, i =
1, 2, 3, 4, 5,using (11) ∼ (15).

3. The five-tuple (xd , yd , θd , ad , bd ) for the elliptical

parameterized level set function of the OD is evolved

by standard gradient descent method according to

(16) ∼ (20), if xrd , y
r
d , θ

r
d , a

r
d , b

r
d satisfy the stationary

condition, then stop; else r = r+1 and return to Step 3.

4. Evolve the level set functions, according to (21), reg-

ularize the level set functions, using (22). If φl satisfy

the stationary condition, stop; otherwise, l = l + 1 and

return to Step 2.

MLSACM-AS SEGMENTATION STEP:

5. Input level set function φ of the OD obtaining in Step 4.

6. Respectively update cji, bi, σjij = 3, 4, i = 1, 2, 3, 4, 5,

using (25) ∼ (29).

7. The five-tuple (xc, yc, θc, ac, bc) for the elliptical

parameterized level set function of theOC is evolved by

standard gradient descent method according to (30) ∼
(34), if x tc, y

t
c, θ

t
c , a

t
c, b

t
c satisfy the stationary condition,

stop; otherwise, t = t + 1 and return to Step 7.

8. Evolve the level set functions, according to (35), reg-

ularize the level set functions, using (36). If ϕq satisfy

the stationary condition, stop; otherwise, q = q+1 and

return to Step 6.

tering [25] and LARKIFCM [27] produce an obvious contrast

to the proposed approach for the OC.

In order to evaluate the overall performance of both the

OD and the OC segmentation approaches, the common quan-

titative analysis methods are used including detected area,

boundary localization and CDR estimation.

First, the detected area assessment is based on the area

overlap between the obtained segmentation region and the

ground truth marked by the expert. Furthermore, to assess

the detected area, the pixel-wise precision and recall values

are required to be computed and defined as:

precision =
TP

TP+ FP
; recall =

TP

TP+ FN

where TP is the value of true positive, FP is the value of false

positive, and FN is the value of false negative. The calculation

FIGURE 7. Obtaining the segmentation results of the OD. (a) Original
color images; (b) the segmentation result achieved by ground truth for the
OD; (c) the segmentation result achieved by proposed method for the OD.

FIGURE 8. Obtaining the segmentation results of the OC. (a) Original
color images; (b) the segmentation result achieved by ground truth for the
OC; (c) the segmentation result achieved by proposed method for the OC.

of them bases on the overlap area between the obtained

segmentation area and the ground truth area. Then, the single

performance measure namely traditional F-score (F), which

is the harmonic mean of precision and recall, is computed as:

F = 2
precision · recall
precision+ recall

The value of F-score always lies between 0 and 1. A good

segmentation performance can be indicated by a high F-score.

Second, the boundary evaluation is based on the distance

between achieved boundary by method and ground truth. Let

Co be the closed boundary curves obtained by an approach

and Cg be the closed boundary curves for the ground truth.

D =
1

k

θk
∑

θ=1

√

(dθ
g )

2 − (dθ
o )

2

where dθ
g and dθ

o respectively indicate the distances from

centroid of curve Cg to points on Cg and Co in the angular
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FIGURE 9. Optic disc segmentation results. First column: original images; second column: Initialized contour; third column: C-V model
results [16]; fourth column: LIC model results [39]; fifth column: Modified LBF [25]; sixth column: LARKIFCM [27]; seventh column: LIFO [28];
eighth column: proposed method. White line: ground truth; blue line: detected result by an approach.

direction of θ ; k expresses the total number of angular sam-

ples. In this paper, the k is set as 4 and the angular directions

respectively are defined as 0o, 90o, 180o and 270o in term

of [17]. Ideally, the value of D should be close to zero.

Third, the CDR estimation is based on the ratio of vertical

diameters of the OD and OC areas. In Glaucoma assessment,

the CDR (two standard disc parameters) is an important

parameter from computing area and contour information.

Here, the CDR error estimation Error is applied as the met-

ric to evaluate a segmentation approach’s performance. The

CDR error estimation is computed as:

Error = |CDRG − CDRT |

where CDRG is the result of CDR calculated from ground

truth and the CDRT is the result of CDR calculated from the

obtained boundary by an approach.

D. OPTIC DISC SEGMENTATION RESULTS

Fig.9 clearly displays the results of OD segmented obtained

by different common methods, in which the white lines

denote the ground truth and the blue lines denote the contour

achieved by the different methods. The original color image is

shown in the first column and the initialized contour obtained

by the aforementioned approach is in the second column. The

first row illuminates a challenging situation for segmentation

on an irregularly shaped OD. Comparing with the other five

methods, the proposed method achieves a more complete and

accurate segmentation results due to the fact that the sufficient

appearance information in irregularly regions is a stronger

cue than the prior shape information. The second, third and

fourth row images present some segmentation results of OD

which are influenced by the peripapillary atrophy (PPA). It is

clearly seen that the CV model is able to extract the OD

boundary and handle with the local gradient variations due

to considering the global information of image, but it can’t

exclude the bright regions belonging to the PPA because a

subtle difference presents between average intensity of the

detected foreground and background regions. According to

the LIC model considers the local information in a neigh-

borhood of each point comparing with the CV model, it can

achieve more accuracy segmentation result for OD. However,

it fails to achieve a satisfying result since the original infor-

mation in vessel-free image is neglected. The precision of

the results obtained by modified LBF model exceed the one

obtained by LIC due to the data obtained frommultiple image

planes, but it fails to deal with the appearance information

missing and is influenced by the severity intensity inhomo-

geneity in image. The main reason is that they overlook the

imperfection of the single-view information and only use

the local mean information [32]. Although the LARKIFCM
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TABLE 1. Optic disc segmentation results.

method can more effectively segment OD due to taking

positive features of the combined approaches, it ignores the

integrated information of the OD e.g. anatomical structure

prior information and fails to accurately differentiate the OD

region from similar regions (extremely bright region of PPA)

around it. The LIFO model can overcome most of influences

caused by bright regions of PPA and the OD segmentation

with smooth boundary owing to constraint of shape prior.

However, it is misled in some regions where shape prior

information plays a leading role on account of insufficient

of the intensity information. Different from these methods,

the proposed approach achieves amore integrity and accuracy

segmentation result due to the fact that it combines the infor-

mation of appearance integrated from a multi-dimensional

feature space and shape together.

In order to further evaluate the performance of these seg-

mentation methods for the OD, Table.1 compares our method

with the others in terms of F-score and boundary-based dis-

tance measures. The proposed method achieves a lower FP

and FN in comparing to the other five methods due to make

full use of the multi-view information based on the appear-

ance and shape of OD and obtains the highest F-score. The

average boundary distance is 8.320 achieved by the proposed

method which is the lowest among all methods as segmented

boundary by us is closer to the ground truth. Hence, based on

the highest F-score and the lowest average boundary distance

obtained by us among all the methods, the segmentation

performance of our method is superior to the other methods.

E. OPTIC CUP SEGMENTATION RESULTS

In this subsection, the obvious results shown in the Fig.10

reveal that the performance of the proposed segmentation

method for OC is superior to others segmentation meth-

ods such as threshold-based approach [16], ellipse fitting

approach [40] and clustering-based approach [25], LARK-

IFCM [27]. According to the segmentation result demon-

strated in the Fig.10, the OC boundary obtained by our

methods has a small deviation from the ground truth both

on the nasal and temporal sides. Whereas, the other methods

achieve larger error referring to ground truth due to suffering

a significant influence caused by dense blood vessels on

the nasal side. The proposed method outperforms the other

methods due to the fact that both the appearance and the

shape information of OC are fully exploited. Comparing to

the state-of-the-art approaches, our method presents some

advantages as below: (1) The introduced LSACM can well

handle the intensity inhomogeneity which is a frequently

occurring phenomenon within the OC and thereby enhancing

the discrimination between the OC and non-OC. (2) A novel

preprocessing approach which is based on a special struc-

ture relationship for the OD and the OC is used to modify

LSACM (MLSACM) to guide the OC contour evolution in

an effective region. (3) The fusion of multi-aspect intensity

information in the proposed model remedies the insufficient

for a single-aspect intensity information, which can overcome

the influence caused by vessel occlusion and reduce loss

of information. (4) The proposed shape prior becomes a

stronger cue than the intensity information in some region

maintaining the intrinsic anatomical structure of the OC to

make the contour robustly evolve found in and around objects

regions. Table.2 depicts the quantitative assessment of the

OC segmentation results in terms of the F-score and average

boundary distance. Seen from the Table.2, it can be inferred

that the proposed approach has a significant improvement in

the segmentation results comparing to the other methods.

F. GLAUCOMA ASSESSMENT

According to the segmented boundary information of the OD

and the OC, the cup to disc ratio (CDR) base on the vertical

diameter of the OD and the OC regions (v-CDR) can be

derived as the key measurement for glaucoma assessment.

However, the OC may be oriented at different angles, the

v-CDR measure is insufficiency. We apply the cup to disc

area ratio (a-CDR) to measure overall segmentation accuracy

obtained in all directions at the same time. Table.3 presents

the mean error µError and the standard deviation of the

148194 VOLUME 7, 2019



Y. Gao et al.: Accurate and Efficient Segmentation of Optic Disc and Optic Cup

FIGURE 10. Optic cup segmentation results. First column: original images; second column: threshold-based [16]; third column: ellipse fitting [40];
fourth column: SWFCM Clustering [25]; fifth column: LARKIFCM [27]; sixth column: Proposed method. Black line: ground truth; green line: derived
result by an approach.

TABLE 2. Optic cup segmentation results.

TABLE 3. Error estimation in v-CDR and a-CDR (mean: µError /standard deviation: σError ).

error σError in estimating of the v-CDR and the a-CDR for

all of the images. Comparing normal images with glaucoma

images in terms of the mean error µError and the standard

deviation of the error σError , the smaller µError and σError
can be achieved in glaucoma images. This indicates that our

method has a high sensitivity in glaucoma detection.
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V. CONCLUSION

In this paper, an automated detection scheme for glaucoma

in terms of different evaluation parameters was presented.

These parameters require the precise segmentation informa-

tion for the OD and the OC respectively obtained by two

proposed methods. For extracting the accurate boundary of

OD, a novel segmentation model is presented. First, LSACM

is introduced to deal with the commonly occurred intensity

inhomogeneity phenomenon. Then, we make full use of the

multi-view information based on the appearance and shape

of OD achieving accurate OD detection in varied condi-

tions. Meanwhile, a novel OC segmentation method is also

presented. First, considering the special structure relation-

ship between the OD and the OC, a novel preprocessing

approach is used to modify LSACM (MLSACM) to guide

the OC contour evolution in an effective region and reduce

the negative effect of non-objects, and it can overcome the

difficulty which is that the traditional ACM can not directly

segment the OC. Second, we extend the MLSACM model

by integrating the local image probability information around

the point of interest from the multi-dimensional feature space

to remedy insufficient for the single-feature space. Finally,

the shape priori constraint information fused in proposed

model becomes a stronger cue than the intensity information

in some regionsmaintaining the intrinsic anatomical structure

of the OC. The DRISHTI-GS database is applied to evaluate

the performance of two novel models for the OD and the

OC. The average F-Score/average boundary distance which

are 0.950/8.320 achieved by the proposed OD segmentation

method and the average F-Score/average boundary distance

which are 0.852/20.390 obtained by the proposed OC seg-

mentation method are superior to ones acquired by others

state-of-the-art approaches.
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