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Abstract. In adaptive resolution simulations the same system is con-
currently modeled with different resolution in different subdomains of
the simulation box, thereby enabling an accurate description in a small
but relevant region, while the rest is treated with a computationally
parsimonious model. In this framework, electrostatic interaction, whose
accurate treatment is a crucial aspect in the realistic modeling of soft
matter and biological systems, represents a particularly acute prob-
lem due to the intrinsic long-range nature of Coulomb potential. In
the present work we propose and validate the usage of a short-range
modification of Coulomb potential, the Damped shifted force (DSF)
model, in the context of the Hamiltonian adaptive resolution simu-
lation (H-AdResS) scheme. This approach, which is here validated on
bulk water, ensures a reliable reproduction of the structural and dy-
namical properties of the liquid, and enables a seamless embedding in
the H-AdResS framework. The resulting dual-resolution setup is imple-
mented in the LAMMPS simulation package, and its customized version
employed in the present work is made publicly available.

1 Introduction

The definition of soft matter encompasses a broad spectrum of different systems,
from liquids composed by single atoms or simple polymer molecules [1–4] to large and
complex biomolecular assemblies [5–16]. The structural and dynamical properties of
this ample variety of systems spans an equivalently wide range of length and time
scales, the interplay of which gives rise to a wealth of different properties.
This multi-scale nature, however, poses substantial challenges to modeling and

simulation. In silico experiments are limited by the size of the system and the dura-
tion that can be reached by the simulation. It is often the case that the process of
interest takes place in a typical time interval that is not within the reach of present
day computers. An alternative to overcome such limitation is to employ a simpler
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description of the system, where the level of detail is reduced, for example replacing
a fully atomistic description and representing a group of different atoms as a single
interaction site. These coarse-grained (CG) models [17–22] have provided an extraor-
dinary tool to made mesoscale systems accessible by simulations over time scales that
would not be viable through an atomistic description. Nonetheless, there are several
circumstances in which it is not possible to investigate a certain system or process
by means of a CG model, for example when chemically specific interactions play a
substantial role.
In recent years several strategies have been developed to find a compromise be-

tween model accuracy and computational efficiency. A prominent example of these
approaches are adaptive, dual-resolution simulation schemes [23–33]. These meth-
ods identify a specific, typically small region of the system that necessitates model-
ing at full detail, e.g. atomistic (AT). This subregion is indeed described with the
high-resolution model required, while in the remainder of the system a simpler, ef-
fective CG representation is employed. In modeling liquid systems, a crucial feature
is that the two regions at different resolutions are connected by an open boundary,
which allows the diffusion of molecules (e.g. solvent particles) from one subdomain
to the other. The instantaneous location of a molecule specifies the interactions with
the neighboring molecules, thus allowing the resolution of a molecule to change on
the fly.
Adaptive resolution methods thus enable the simulation of a system whose de-

scription is not bound to be the same everywhere, rather it is more accurate where
strictly necessary, and simpler and computationally more efficient in the rest. Two
advantages can be envisaged: on the one hand, there is an obvious gain in terms of
simulation time, due to the reduced number of degrees of freedom and the simpler
interactions that are employed in the low-resolution subdomain. On the other hand,
these setups can be employed to characterize the physical properties of the system by
systematically changing the size of the high-resolution region, so to effectively probe
the locality of physical phenomena and finite size effects. This strategy enables the
controllable decoupling between the internal degrees of freedom of a chosen subregion
of the system from the rest, yet without modifying the thermodynamical equilibrium
in the high resolution domain [34,35].
Among the methods that have implemented this strategy, a notable place is oc-

cupied by the adaptive resolution simulation (AdResS) [23–26] and the Hamiltonian
adaptive resolution simulation (H-AdResS) [29,30,32,33] schemes. In these setups,
schematically represented in Fig. 1, the resolution of a molecule is determined by the
value of a function, usually dubbed switching function λ, that is equal to 1 in the
high-resolution or atomistic (AT) subregion, 0 in the low-resolution or coarse-grained
(CG) subregion, and smoothly interpolates between these values in an interface re-
gion, dubbed hybrid region (HY). When a molecule is in the AT or CG domains it is
treated as fully atomistic or fully coarse-grained, respectively; in the HY region the
interactions are obtained by interpolation of the AT and CG ones.
The AdResS and H-AdResS methods have been validated on various systems and

in different contexts, and have been shown to effectively and efficiently provide an ac-
curate description of the system in the AT region at a lower computational cost with
respect to an equivalent simulation employing the high-resolution model everywhere.
However, a fundamental problem affects these schemes and limits the range of systems
that are amenable by them, namely the treatment of long-range interactions, such as
electrostatics. Devising an efficient implementation of electrostatics in computer sim-
ulations of systems with periodic boundary conditions is still an open problem, due to
the long-range nature of Coulomb potential. Nonetheless, well-established techniques
are presently available to deal with these interactions in a variety of different physical
contexts. In particular, the Ewald summation (ES) [36] method and its subsequent
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Fig. 1. Setup of a Hamiltonian Adaptive Resolution Simulation. The periodic box is parti-
tioned into three different regions, namely: Coarse-grained (CG), Hybrid (HY), and Atom-
istic (AT). Upper panel: the switching function λ takes values between 0 (CG) and 1 (AT),
thus defining the resolution of a molecule (here water). Lower panel: simulation snapshot
explicitly showing the various subdomains.

variations provide a theoretically sound procedure to decompose the interaction in a
local term, that is treated as a conventional short-range potential, and a non-local,
long-range term that is efficiently computed in Fourier space.
This second term is the critical one, as it is intrinsically incompatible with the

space-dependent decomposition of interactions that characterizes dual-resolution sim-
ulations. In fact, the latter approaches rely on the short-range nature of interaction
potentials in order to provide a local definition of molecular resolution. In the pres-
ence of a non-local term, which requires the simultaneous knowledge of the position of
each particle to compute the forces, this position-based separation of the interactions
is not anymore possible.
The strategy that has been employed so far to circumvent this problem is to

locally approximate the Coulomb interaction by the Reaction Field (RF) [37–39]
potential. The assumption underlying this approach is that beyond a fixed (short)
cutoff distance the effective long range electrostatic contribution is equivalent to that
of a uniform and homogeneous dielectric medium. The standard form of the poten-
tial is thus replaced by a mean-field function, thereby reducing the interaction to a
short-range one. The RF method has been successfully employed in dual-resolution
setups [35,40], however it suffers from two substantial limitations. The first one is that
the assumption of a uniform and homogeneous medium beyond the cutoff distance
is not always valid: this would be the case for heterogeneous interfaces, for example,
polar molecules in proximity of a metal surface, or large biomolecules (protein, DNA
filament) in solution [41]. The second limitation is that the parametrization of the RF
potential necessitates the previous knowledge of the relative dielectric constant of the
medium, which is not always available a priori and would then have to be computed
in an independent simulation. It may also be undesirable to introduce as a parameter
of the model a quantity that is indeed an emergent property of the system. Addition-
ally, it has been shown that an accurate modeling of the system under examination
sometimes necessitates a specific parametrization not only of the dielectric constant,
but also of the underlying force field [39].
Here we approach the problem of electrostatic interaction in dual-resolution,

adaptive simulations making use of an alternative formulation of Coulomb poten-
tial, namely the damped shifted force (DSF) potential [42,43] method. This strategy
allows us to rephrase the electrostatic interaction in terms of finite-ranged, two-body
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analytical potentials, as in the case of the RF. Albeit the computational cost of RF
and DSF would be identical if the same cutoff range is employed, the DSF allows us
to circumvent the limitations intrinsic in both the ES [44–46] and RF methods.
It is generally the case, when making use of adaptive resolution strategies, that

one saves simulation time at the cost of performing an accurate (and computationally
cumbersome) parametrization of the setup, in terms of CG model, approach-specific
parameters, and, as in the case just discussed, a very limited treatment of electrosta-
tic interaction in the high-resolution model. Here we make use of elegant solutions
to these problems that have been already developed and successfully validated, and
can therefore be seamlessly implemented and employed. In the case of DSF, for ex-
ample, the use of this technique would prove to be even advantageous over Ewald
summations for some cases of interest to the computational biochemistry community.
Furthermore, we present and discuss the DSF approach to the H-AdResS scheme in
the comprehensive framework of the implementation of the latter in the LAMMPS [47]
simulation package. The goal of this work is thus twofold: to present and validate the
DSF approach in the context of H-AdResS simulations, and to present the implemen-
tation of these methods in the LAMMPS package, together with some advanced features
whose practical implementation is here discussed in detail for the first time.
The manuscript is organized as follows. In Sect. 2 we discuss in detail the H-AdResS

scheme, with a particular focus on the implementation features; then we briefly report
the formulation of the RF method and the DSF method. In Sect. 3 we list and define
the quantities that have been employed to validate the efficacy and accuracy of the
proposed model. In Sect. 4 we report the details of the setups and the simulations,
while in Sect. 5 we present the results of our study. The conclusions and perspectives
are discussed in Sect. 6. The Appendix, Sect. 6, provides a list of technical details on
the LAMMPS implementation of the H-AdResS method and its usage.

2 Methods

In this Section we review the different computational techniques employed in the
present work. The first part is devoted to the H-AdResS scheme. Most of the funda-
mental and conceptual aspects of this method have been thoroughly discussed in pre-
vious publications [29,30,32,33]. The focus is here given to the computational aspects
of the scheme and, in particular, of the specific implementation in the LAMMPS [47]
simulation package.1

Subsequently, we summarize two of the three methods here used to treat
electrostatic interaction, specifically the Reaction Field and the DSF methods. The
Particle-Particle Particle-Mesh (PPPM) [48] Ewald summation method, not discussed
in detail here, is taken as the golden standard, against which the results of the other
two strategies are compared.

2.1 H-AdResS

In the H-AdResS scheme, the description of the interactions within a system of par-
ticles is given in terms of a global Hamiltonian function H, which has the following
1 The H-AdResSmethod is now a standard feature of the LAMMPS simulation package and can
be cloned from the Git repository https://github.com/lammps/lammps. Alternatively,
the LAMMPS version featuring H-AdResS can be freely downloaded from the address
http://www2.mpip-mainz.mpg.de/∼potestio/software.php.
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form:

H = K + V int +
∑

α

{
λαV

AT
α + (1− λα)V CGα

}
. (1)

The term K is the atomistic kinetic energy, and V int consists of all the intramolecular
bonded interactions (e.g. bond stretching). The resolution of particle α is specified
by the transition function λα = λ(Rα), which is computed on the center-of-mass
coordinates Rα of the molecule.
The value of the switching function is determined by the sizes dat and dhy of the

AT and HY regions, respectively, and of the specific geometry of the AT region. If
the latter is defined as a slab of the simulation box, for example as it is represented
in Fig. 1, dat will correspond to the width of the atomistic subdomain; if a spherical
geometry is employed, dat will correspond to the AT region diameter. In all cases,
the value of dhy indicates the width or thickness of the HY layer embedding the AT
region.
In the present work we employ a rectangular simulation box, and the AT region

is a slab located in the middle of it. The resolution of a molecule is then determined
through the following piece-wise λ function:

λ(x) =

⎧
⎪⎨

⎪⎩

1 |x| ≤ dat/2
cos2

(
π(x−dat/2)
2dhy

)
dat
2 < |x| ≤ dat

2 + dhy

0 |x| > dat + dhy.

(2)

The mid point of the simulation box is set in the origin of the coordinate system. As
it is shown in Fig. 1, in all simulations the width of the AT and HY region is set to
dat = 60 Å and dhy = 25 Å, respectively.

A molecule interacts with its neighboring particles through coarse-grained V CG

and atomistic V AT potentials. The functional form of these potentials is arbitrary,
as well as the order of the interaction (two-body, three-body...) as long as the ex-
tension of the interaction is finite and short-ranged. For simplicity, in the following
we shall restrict the discussion to the most common case of pairwise interactions.
In the Hamiltonian of Eq. (1) the non-bonded potential energy contribution of each
molecule α is given by a weighted sum of two terms V CGα and V ATα , defined as:

V ATα ≡ 1
2

N∑

β,β �=α

∑

ij

V AT (|rαi − rβj |) (3)

V CGα ≡ 1
2

N∑

β,β �=α
V CG(|Rα −Rβ |).

The AT and CG terms of each molecule are weighted by λα or (1−λα), respectively.
As the total non-bonded potential is given by the sum of this linear combination over
all molecules, V ATα and V CGα contain a factor 1/2 to account for the double counting.
The corresponding force acting on atom i of molecule α is given by:

Fαi = F
int
αi +

∑

β,β �=α

{
λα + λβ
2

FATαi|β +
(
1− λα + λβ

2

)
FCGαi|β

}
(4)

− [V ATα − V CGα
]∇αiλα.
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The first term, Fintαi , is due to the interactions with atoms in the same molecule, and
is not subject to resolution-dependent reweighting; the second term is the sum, over
all other molecules β in the interaction range, of the pairwise atomistic and coarse-
grained forces, weighted by the average resolutions of the two molecules. This term
is antisymmetric under molecule exchange, and satisfies Newton’s Third Law by con-
struction. The last term emerges as a consequence of the non-uniformity of space in
the dual-resolution simulation setup, that is, the fact that different interactions are
present in different parts of the system. Because of this, translational invariance is
locally broken, and a force emerges in the hybrid region (where ∇λ �= 0) and acts on
the molecules pushing them in one of the two subdomains, depending on the sign of
the prefactor (V ATα − V CGα ).

The terms V ATα and V CGα contain the different potentials acting on the mole-
cules, and in most cases they represent an atomistic potential that takes into account
chemical specificity, and and effective, coarse-grained potential, which acts on collec-
tive degrees of freedom of the molecules (e.g. the center of mass). The CG poten-
tials are normally potentials of mean force that enclose entropic contributions and
are parametrized over specific thermodynamic properties, e.g. the radial distribution
function (RDF), at a specific state point. These CG interactions and the correspond-
ing reference system follow different equations of state, and, once coupled together
via an open boundary as in the case of H-AdResS, they exchange particles to bal-
ance the differences in equilibrium pressure and chemical potential. As it has been
already thoroughly investigated [29,30,33], models that, for the same temperature
and density, attain different pressure, will determine in the dual-resolution setup a
non-homogeneous density, as the region where the pressure is higher will relax by
pushing molecules in the other region. Furthermore, in the H-AdResS setup the afore-
mentioned drift force term Fdrαi = −

[
V ATα − V CGα

]∇αiλα contributes to determine
an imbalance in the pressure across the HY region, as it pushes molecules in the
subdomain where Helmholtz free energy is locally lower [29,30].
To overcome these effects and enforce a uniform density profile, it is possible to

introduce a new term in the Hamiltonian:

HΔ = H −
N∑

α=1

ΔH(λ(Rα)). (5)

This term acts separately on each molecule in the system and plays two roles: it
removes, on average, the drift force, and enforces a uniform density profile by im-
posing, in each subdomain, the pressure at which each model has, separately, the
correct density. In the following we discuss the computational techniques employed
to parametrize the term ΔH(λ).

2.1.1 Compensation of the drift force (pressure route)

In order to remove, on average, the effect of the drift force, the compensation term
ΔH(λ) has to satisfy the relation:

dΔH(λ)

dλ

∣∣∣∣
λ=λα

=
〈[
V ATα − V CGα

]〉
Rα
. (6)

If this is the case, the total drift force resulting from the modified Hamiltonian reads:

F̂
dr

α =

(
V ATα − V CGα − dΔH(λ)

dλ

∣∣∣∣
λ=λα

)
∇λ (Rα) (7)
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and by construction 〈F̂drα 〉 = 0. It has been shown [29,33] that by compensating the
drift force the hydrostatic pressure is uniform across the whole simulation domain,
while in each of the two regions the densities may differ, as they are the equilibrium
ones at that pressure according to the equation of state of each model. To compute the
appropriate value of the compensation function it is possible to perform a Kirkwood
thermodynamic integration (KTI) [49], since, as it has been demonstrated [29,33],
the potential ΔH(λ) can be approximated in a mean field fashion by the Helmholtz
free energy difference between a system with hybrid Hamiltonian at resolution λ
and the reference (CG) system with λ = 0. However, this procedure requires a free
energy calculation just to parametrize the compensation term, and its accuracy can
be limited when the correlations within the hybrid region are too strong.
A more effective strategy is to compute and balance the drift force locally and

parametrize the compensation on the fly within an iterative scheme [33]. The HY
region is discretized according to the resolution λ in a number Nb of bins of width
δλ = 1/Nb. For each molecule α in a given bin i = floor[λ(Rα)/δλ] of the HY region,
the V CGα and V ATα terms are computed and accumulated in separated local variables
V CGi and V ATi , respectively; also variables NCGi and NATi are defined to keep track
of the number of molecules present in the bin. These computations are performed
simultaneously and in the same routine where the CG and AT forces are calculated
(See 6.3 and 6.4).
This procedure is carried out for all molecules within the HY region and continues

for a time interval of duration Δt. At the end of the n-th interval the average AT and
CG potential terms are computed, defined as V̄ R[i, n] = V Ri /N

R
i , where the index

R ∈ {AT,CG} specifies the resolution. The variables V Ri , NRi are emptied and the
averaging procedure continues. The average values calculated at the end of the n-th
interval Δt are employed to compute the running average VRi,n of the terms, that is:

VRi,n+1 =
n VRi,n + V̄ R[i, n]

n+ 1
(8)

where n is initialized at 0 and VRi,0 = 0.
For n > 0, the running average terms are employed to compute separately the

different components of the force needed to compensate the drift force. Specifically,
at time t such that t0 + nΔt < t ≤ t0 + (n+ 1)Δt a molecule located in bin i of the
HY region will experience the following compensation forces:

FRα,i = s VRi,n∇λ (Rα) (9)

where s = +1 if R = AT and s = −1 if R = CG. At each time step this force is
spread to the atoms of the molecule proportionally to the relative mass of the atom
over the mass of the molecule (see Eq. (23)).
The running average update continues until the compensation forces have con-

verged to a stable value in each bin i; after this point, the update is interrupted and
the resulting compensation is given by a time-independent, resolution-based force
field that can be integrated to compute the corresponding contribution ΔH(λ) to the
total energy of the system.

2.1.2 Compensation of the density imbalance (density route)

The application of the compensation of the drift force in the HY region enforces
a uniform pressure profile across the whole system. However, due to the different
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equations of state of the AT and CGmodels, at equilibrium a density gradient between
the two main subdomains will arise. When one needs a uniform density profile in the
simulation box, it is necessary to modify the compensation term ΔH in order to
establish, in each subregion, the appropriate pressure at which the different models
attain the same density.
This correction can be obtained in an iterative scheme dubbed thermodynamic

force calculation [28], consisting in successively applying to the molecules in the HY
region a force proportional to the density gradient:

Fthn+1 = F
th
n +

c∇ρn(x)
ρ∗

(10)

where the prefactor c has the units of energy and scales the magnitude of the force,
ρ∗ is the reference density, and ρn is the density profile computed at step n of the
iterative procedure. The calculation and application of this force has to be iterative
because a single step will not be sufficient to flatten the density profile; however, the
convergence to a uniform density is guaranteed by the fact that the scheme has a
fixed point when ∇ρ = 0. We note, in passing, that the sum of the contributions
obtained from Eqs. (9) and (10) provides a force whose integral corresponds to the
difference of the chemical potentials between the AT and CG domains. This method
not only ensures the same density in the two subdomains, but also leads to a flat
density profile also in HY region [28,29,33].
In general, the procedure to compute the thermodynamic force consists in an equi-

libration phase of the simulation setup where no compensation is applied (with the
possible exception of the drift force compensation), followed by a production run dur-
ing which an accurate density profile is computed. The latter has to be sufficiently
smooth so to employ its numerical gradient as a force in the following simulation,
which will provide the new density profile and so on. When the density is deemed to
be uniform within a pre-established tolerance, the iterations are interrupted, and
the compensation force is given by the sum of the terms computed up to that
point.
As already mentioned, this scheme has the advantage of “working by default”,

since the new terms of the force systematically reduce the density imbalance and the
amplitude of the next correction with it. However, this simple approach necessitates a
possibly very large number of full simulations employed to compute the density pro-
files at each iteration stage with sufficient accuracy. Here we make use of an improved
strategy to compute the appropriate density compensation, which is iterative as the
regular one but is performed on the fly, and requires substantially less time.
Also in this approach the thermodynamic force is iteratively computed as the nu-

merical gradient of the density and applied to the molecules in the HY region. The
difference lies in the fact that the measurement of the density profile is performed on
a very short time interval ΔT = νδt, where δt is the integration time step and ν is
an integer number of the order of ∼ 102−103. The force is thus obtained according
to Eq. (10).
The advantage of this scheme is that the small deviations of the density from a

uniform profile are immediately corrected for, and the system has no time to equi-
librate into a state of substantial density imbalance. However, it is obvious that the
density profile computed in the small time interval ΔT would be too noisy to make
any use of its numerical gradient. The solution to this problem is to convolute the po-
sition of the center of mass of a molecule with a Gaussian function with a half-width
σ/2 comparable with the typical excluded volume radius of the molecules, so that the
coordinates are spread on a wider range of bins rather than a single one. One thus
has that the density in the bin i covering the coordinate range [xi, xi+1] in a specific
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simulation frame is computed as:

ρ̂i =
∑

α

1

A

∫ xi+1

xi

dy exp

[
− (y − xα)

2

2σ2

]
, (11)

A =

∫ l

−l
dye−

y2

2σ2 .

The parameter l, whose appropriate value depends on the specific system under ex-
amination, controls the range of the Gaussian function; a sensible choice is to set
l = 2.5σ.

2.2 Reaction field

An alternative method to the Ewald summation scheme, aiming at treating electrosta-
tics interactions, assumes a homogeneous polar fluid beyond a cutoff sphere enclosing
an atom i. The charge distribution within the cavity polarizes such a fluid, and this
polarization in turn influences the charge in the sphere (reaction field) [38,50]. The
Coulomb potential is modified as:

VRF (rij) =
qiqj

4πε0rij

[
1 +

εRF − 1
2εRF + 1

(
rij

rc

)3]
, (12)

where rij is the inter-atomic distance, q the electric charge, ε0 vacuum permittivity
and rc the cutoff distance. This expression depends on knowing beforehand macro-
scopic information of the system, namely, its permittivity εRF . Discontinuous jumps
in energy occur when particles enter/leave the sphere of another particle. To tackle
this problem, expression (12) has to be attenuated to zero near the cutoff radius. In
particular [51]:

VRF (rij) =
qiqj

4πε0rij

[
1 +

εRF − 1
2εRF + 1

(
rij

rc

)3]
− qiqj

4πε0rc

3εRF
2εRF + 1

· (13)

Finally, the force acting on atom i, derived from eq. (13), reads:

FRF (rij) =
qiqj

4πε0

[
1

r2ij
− 2 1

r3c

εRF − 1
2εRF + 1

rij

]
rij
rij
· (14)

The RF method has been extensively used and both its advantages and drawbacks
have been widely recognized (for a review see Ref. [41]). So far, it has been the method
of choice for adaptive resolution simulations, mostly for practical reasons. However,
we find that conditions such as the implicit homogeneity of the system required to
describe the neighborhood of every atom in terms of a dielectric function, or the fact
that it might be necessary to modify the force field to reach the desired accuracy,
limit substantially the number of systems we are able to simulate. For such reasons,
we turn our attention to a different method to deal with electrostatic interactions.

2.3 Damped shifted force potential (DSF)

The idea behind the DSF method was introduced in Refs. [42,52], where it was
demonstrated that for a perfect ionic crystal the effective Coulomb interactions are
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short ranged. Moreover, when comparing a straight cutoff method with Ewald calcu-
lations, electrostatic energies are very accurate for characteristic system-dependent
cutoff distances. This tendency is due, in addition to a damped oscillatory behavior,
to an almost exact charge neutrality for such particular cutoff spheres.
By combining short-range nature and charge neutrality, a pairwise summation

method was introduced [42] and shown to give comparable results to standard ES.
However, the use of this method is dubious for molecular dynamics simulations, in par-
ticular because of force discontinuities at the cutoff radius. To solve this problem, the
DSF method was modified so to give continuous potential and forces everywhere [43],
thus becoming a valuable short-range alternative to ES. In DSF, the electrostatic
potential between two charges qi and qj separated by a distance rij is given by the
following expression:

VDSF(rij) =
qiqj

4πε0

[
erfc(αrij)

rij
− erfc(αrc)

rc

+

(
erfc(αrc)

r2c
+
2α

π1/2
exp

(−α2r2c
)

rc

)
(rij − rc)

]
,

(15)

where rij ≤ rc, ε0 is the vacuum permittivity, rc is the cut-off radius, and α is a
damping parameter with dimension of inverse length. erfc(r) is the complementary
error function that takes into account the damping proposed in [42]. The gradient of
potential (15) gives the force acting on atom i

FDSF(rij) =
qiqj

4πε0

[
erfc(αrij)

r2ij
+
2α

π1/2
exp(−α2r2ij)

rij

−erfc(αrc)
r2c

− 2α
π1/2

exp(−α2r2c )
rc

]
rij
rij
·

(16)

We emphasise here that the short range character of electrostatic interactions has been
confirmed by ab initio simulations of water [53]. Moreover, DSF has been successfully
applied in simulations where the Ewald method can introduce spurious electrostatic
effects [54]. This is the case for polarized systems when dipole-dipole interactions in
the simulation box and its replicas are artificially introduced.

3 Computed quantities

Our aim is to validate the effectiveness of the DFS method to accurately reproduce
the electrostatic interaction experienced by water molecules in the liquid phase, and
to show that this approach is perfectly suited to be employed in the framework of an
adaptive dual-resolution simulation.
To this end, we will perform a number of analysis of different structural, thermody-

namical, and dynamical properties of the liquid, namely: radial distribution functions
(RDFs), tetrahedral orientation order parameter, fluctuations of the number of mole-
cules, and velocity autocorrelation functions (VACF). The results obtained in the
dual-resolution setup are compared with the same quantities computed in fully atom-
istic benchmark simulation. In the following, a succinct description of the quantities
under examination is provided.
The orientational order parameter is defined for oxygen atoms in water as [55]:

q = 1− 3
8

3∑

j=1

4∑

k=j+1

(
cosψjk +

1

3

)2
, (17)
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where for a given oxygen atom i one identifies its four nearest neighbors, and computes
the angles ψjk with vertex i and segments ij and ik. For a single molecule −3 < q < 1.
By contrast, for a collection of molecules 0 ≤ 〈q〉 < 1, with 0 corresponding to the
ideal gas case and 1 to a perfect tetrahedral network.
Fluctuations of the number of molecules are calculated using the expression:

Δ2(N)

〈N〉
∣∣∣∣
x

=
〈N2〉 − 〈N〉2
〈N〉

∣∣∣∣
x

(18)

where the subscript x indicates that the simulation box has been divided in slabs of
width 10 Å along the X axis. The average 〈N〉 and standard deviation Δ2(N) in the
number of molecules have been calculated for such slabs.
Finally, the velocity autocorrelation function (VACF) is defined as [50]:

Cvv(t) = 〈vi(t) · vi(0)〉 , (19)

where vi(t) is the velocity of molecule i at time t. To integrate numerically Newton’s
equations of motion, molecular dynamics simulations rely on discrete time algorithms.
Therefore, Eq. (19) should be estimated to take into account such discretization. Here
we use the discrete estimator described in Ref. [56] where the VACF for the tm-th
time step takes the form:

Cvv(tm) =
1

NAA

NAA∑

i=1

1

M −m
M−m−1∑

n=0

vi(tn+m) · vi(tn) , (20)

with M the total number of time steps and tm = mδt, where δt is the integration
time step. This expression is constructed in such a way that it includes all possible
contributions v(t + nδt) · v(t) that result from shifting the time origin by m steps.
The normalization factor 1/(M −m) ensures that the estimator is unbiased. We im-
plemented Eq. (20) following the protocol reported in Ref. [57]. Finally, NAA is the
number of molecules that always remain within a predefined region of the simulation
box. In the case of fully-atomistic simulations, NAA = N , the total number of mole-
cules. The error in the calculation of the VACF is given by 2tcorr/NAAttot [50], with
tcorr the correlation time and ttot the total time of the simulation.

4 Simulation details

In all case studies unless otherwise stated, there are 10240 water molecules in the sim-
ulation box. The time step for the H-AdResS as well as the fully atomistic simulations
is set to δt = 1 fs. The initial configuration for every simulation setup is extracted
from the simulation results of a similar fully atomistic system which is equilibrated
for 50 ps in the isothermal-isobaric ensemble at a temperature T0 = 300K and pres-
sure P0 = 1bar. The atomistic interactions between the atoms of water molecules are
based on the SPC/E model [58–60].
Three different methods have been used to simulate the atomistic Coulomb inter-

actions: particle-particle-particle-mesh (PPPM) Ewald summation [48], reaction field
(RF) [37,38], and damped shifted potential (DSF) [42,43]. For the latter, everywhere
in the present work we used the following parameters, for which the DSF poten-
tial best reproduces the RDFs of the reference ES simulations: damping parameter
α = 0.2 Å−1; cut-off radius rc = 12 Å.
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The Weeks-Chandler-Andersen (WCA) [61] potential is used for the interaction
of water molecules in the coarse-grained domain:

V CG(r) =

{
4ε
[
(σ/r)

12
+ (σ/r)

6
]
r ≤ 21/6σ

0 r > 21/6σ
(21)

where ε = 1.0 kcal/mol and σ = 2.2 Å, which is roughly the excluded volume diameter
of the water molecules in the fully atomistic simulations.
In all H-AdResS cases, the initial equilibrated configuration is simulated for 100 ps

in the Canonical (NVT) ensemble; A uniform temperature profile at 300K is main-
tained throughout the system (data not shown) via a Nosé-Hoover thermostat with
a damping parameter of 0.1 ps. In this step, the equations of motion are integrated
according to the Hamiltonian in Eq. (1) in absence of the compensation terms. The
presence of the drift force in the HY region leads to a pressure imbalance between
two resolutions (see solid blue curve in Fig. 5). After the initial 100 ps, the on-the-fly
calculation of the drift force correction is applied. The resolution range is subdivided
in 20 bins of size Δλ = 0.05. The drift force compensation is updated every 1 ps for
150 ps. At the end of this step, the converged compensation force ultimately cancels
out the drift force and leads to a uniform pressure across the simulation domains (see
red dashed line in Fig. 5), while a density gradient persists across the HY region. To
enforce a uniform density the on-the-fly density balancing method is applied for the
next 300 ps. In this step, the length of the simulation box is uniformly discretized
into slabs of size Δx = 1.5 Å and the thermodynamic force is updated every 0.5 ps.
We employed values of c = 2.0, σ = 6 Å and l = 12 Å for smoothing and scaling the
thermodynamic force.
All simulations are performed with the LAMMPS simulation package, with the ex-

ception of the RF runs, that have been performed on the GROMACS [51] platform.

5 Results and discussion

In this section we report the results of the validation of the DSF method for the
electrostatic interaction in the context of a H-AdResS simulation. The first part is
devoted to the comparison of the two short-range modifications of Coulomb potential
(RF and DSF) with the Ewald summation PPPM scheme, that we take here as
our golden standard. Subsequently, we focus on the DSF method and compare the
properties of water in the AT region of the H-AdResS setup with those measured in
an equivalent domain of a reference fully atomistic simulation.

5.1 All atom simulations

The three methods here under exam to reproduce electrostatic interactions in MD
simulations have been extensively investigated in the past. However, we consider
useful to include this simulations here to provide a self-contained validation of their
performance within the framework of the H-AdResS scheme.
From the point of view of structural properties, PPPM, DSF and RF give identical

results. In particular, RDFs for the three cases can be seen in Fig. 2 where the three
data sets overlap perfectly.
This is also the case for the orientational order parameter q. Figure 3 shows the

normalised distribution of q for the three cases considered where, as expected, a
bimodal character is observed [55]. In such a distribution, low values of q, related to
angular distorsions, indicate local disorder of water molecules. By contrast, since q is
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Fig. 2. Oxygen-Oxygen radial distribution function (RDF), gO−O(r), for SPC/E water using
three different approaches to compute electrostatic interactions. Namely, particle-particle
particle-mesh (PPPM), damped shifted force potential (DSF) and reaction field (RF).

Fig. 3. Normalised distribution of the orientational order parameter. The fraction of mole-
cules with a given value q is given by f(q)dq.

associated to the angular ordering of first neighbours and ignore their radial ordering,
high values of q do not necessarily demonstrate a tetrahedral ordering [62].

The short-time dynamics of water molecules has been investigated by means of the
oxygen VACF. In all three cases under examination we have run a 2 ps long simulation
in absence of the thermostat, with a time step of 1 fs and recording velocities every
10 fs. The error in the VACF is ∼ 1%, and it is estimated using 2tcorr/NAAttot with
tcorr = 1ps [50]. Consistently with the structural results, also the dynamical (equilib-
rium) behavior of the system is not affected by the different method employed to treat
Coulomb interaction. A subtle deviation of the RF from the other two setups is to
be attributed to numerical discrepancies due to the different software (GROMACS [51])
employed in the former case.
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Fig. 4. Normalized velocity autocorrelation function, Cvv(t)/Cvv(0), for SPC/E water using
three different approaches to compute electrostatic interactions, as in Fig. 2.

The reported analysis shows that the DSF scheme is capable of reproducing quan-
titatively accurate structural and dynamical properties of liquid water, in addition
to ionic liquids and other complex systems [43,63–67]. The method is thus a strong
candidate to replace the RF as the “short-range alternative” to Ewald summation in
dual-resolution simulation schemes.

5.2 H-AdResS simulations

The most basic requirement of an adaptive dual-resolution simulation is that the
compensation applied to the molecules in the HY region is sufficient to enforce a
uniform density profile of the fluid across the simulation domain. That this is the
case in the water model under examination is confirmed by the data reported in
Fig. 5, which provide a clear picture of thermodynamic properties of the H-AdResS
setup in terms of pressure and density profiles.
Without any compensation (solid blue line Fig. 5) the system equilibrates in such a

way that both pressure and density (upper and lower panel, respectively) are different
in the AT and CG regions, and therefore different from the reference values. The
situation changes if the drift force is counterbalanced, or in other words, a pressure
correction is included which removes on average the drift force. The profiles in this
case show that the pressure is now the same in both subregions; the density has
improved thanks to the removal of the extra pressure exerted on the molecules in the
HY region, however it is still higher in the AT region (red dashed line Fig. 5).
Finally, after the application of the thermodynamic force to compensate the den-

sity imbalance (dotted green line Fig. 5), we observe that in this setup the pressure is
different in the two bulk subdomains whereas the density is uniform, with a deviation
of one percent from the reference value. In the following, we analyze our results for
the case where both compensations are applied.
From the structural point of view, the fully atomistic and H-AdResS simulations

provide perfectly compatible results. This is evident from Fig. 6, where we report both
sets of multicomponent RDFs which exhibit an excellent overlap. The normalized



Modern Simulation Approaches in Soft Matter Science 15

−80 −60 −40 −20 0 20 40 60 80

0

2

4

6
x 10

4

x(Å)
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Fig. 5. Pressure (top) and density (bottom) profiles for different H-AdResS setup. The blue
(solid) curves represent H-AdResS setup with no compensation in the Hamiltonian. The red
dashed curves illustrate the setup with a constant-pressure route, and the results of the
setup with constant-density route are shown in green dash-dotted curves.
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Fig. 6. RDFs of water molecules at pressure P0 = 1bar and temperature T0 = 300K in
two different simulation setups: fully atomistic simulation (red line with open circles) and
H-AdResS (blue line with dots). From top to bottom, the plots show oxygen-oxygen, oxygen-
hydrogen and hydrogen-hydrogen RDFs. The DSF damping parameter is set to α = 0.2 Å−1,
and the cut-off radius is Rc = 12 Å.

distributions of the orientational order parameter for the fully atomistic and dual-
resolution cases are shown in Fig. 7, and they clearly overlap with great accuracy.
The bimodal profile, observed in both cases, indicates that the tendency of water
molecules to form ordered structures is well preserved in H-AdResS simulations.
A relevant property that has to be correctly reproduced in the AT region in order

to guarantee that the thermodynamics of this subdomain is representative of the ref-
erence simulation is the profile of fluctuations of the number of particles [28,68].
Profiles of fluctuations for fully atomistic and H-AdResS simulations, reported in
Fig. 8, coincide in the AT subdomain. Beyond the hybrid region, as expected, the
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Fig. 7. Normalized distribution of the orientational order parameter for fully-atomistic
and H-AdResS simulations. Only water molecules in the interval −25 Å < x < 25 Å were
considered for the calculation.

Fig. 8. Profile of fluctuations of the number of molecules calculated along the x-axis. Red
circles correspond to a benchmark fully atomistic simulation of water molecules. Blue squares
correspond to an H-AdResS simulation of a slab of water molecules enclosed by a WCA
system. Fluctuations are calculated using sub-volumes of size 10× 40× 40 Å. Vertical lines
are guides to the eye and indicate the location of the AT, HY, and CG regions of the
H-AdResS setup.

profile of fluctuations increases, due to the different isothermal compressibility of the
CG model.
Finally, concerning short-term dynamical properties, we confirm that fully atom-

istic and H-AdResS simulations display consistent VACFs. The measurement has been
performed only in the AT region in both cases, hence the error in the VACF (∼ 3%)
is higher than in the measurement performed for the fully atomistic cases with dif-
ferent electrostatics (Fig. 4). Nonetheless, differences observed in both fully atomistic
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Fig. 9. Normalized velocity autocorrelation function for fully-atomistic (full red line) and
H-AdResS (dashed blue line) simulations of a 2 ps trajectory with a time step of 1 fs. Water
molecules in the interval −25 Å < x < 25 Å were considered for the calculation.

and H-AdResS cases are larger than error bars (∼ 10%) in the 0.2−0.4 ps interval.
To explain this aspect, let us recall that in H-AdResS simulations as presented here,
the density in the atomistic region is approximately 1% above the reference density.
Therefore, differences in VACF appear because we compare systems with slightly
different densities, as indicated by further fully atomistic simulations performed at
higher density (results not shown). Interestingly, this strong density dependence of
the VACF is the matter of recent discussion [69].

6 Conclusions

The appropriate treatment of electrostatic interaction in computer simulations of soft
and biological matter is still an open problem. One of the most challenging issues is
the possibility to find a balance between the accurate description of the potential
and a computationally economic implementation of the corresponding model. If, on
the one hand, the original decomposition of the interaction in short- and long-range
terms devised by Ewald has been substantially optimized, on the other hand some of
the undesired artifacts due to the unphysical periodicity implicit in this treatment are
still cause of concern in specific systems. In the context of adaptive, dual-resolution
simulations Ewald summation-based schemes are in any case practically unviable, as
the long-range term would have to be computed on models featuring substantially
different physical properties. Alternative modifications of Coulomb potential, such as
the reaction field approach, circumvent these problems and provide a computationally
effective short-range interaction; also in this case, however, there are some limitations
originating in the underlying assumption of a uniform medium, which do not always
apply.
The DSF potential, on the other hand, has been shown to reproduce the physical

(structural and dynamical) properties of many charged systems with high accuracy,
albeit being short-range and without the necessity of a pre-parametrization based on
emergent properties of the system, e.g. the dielectric constant. This method is thus
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ideally suited to be employed in the context of dual-resolution simulations, and its
validity has been here demonstrated by means simulations of liquid water. Specifically,
the region of the dual-resolution setup where the fluid was modeled with atomistic
resolution showed quantitatively consistent properties compared to a reference, fully
atomistic simulation.
The possibility to accurately reproduce the effects of Coulomb potential in the

context of adaptive resolution simulations without the need to parametrize the atom-
istic force field, as it would be the case when employing the reaction field, thus opens
the way to the efficient modeling and simulation of complex systems in which elec-
trostatic interaction is known to play a primary role, for example ions in solutions,
ionic liquids, and nucleic acids. Additionally, the flexible and efficient implementa-
tion of the H-AdResS method in the LAMMPS simulation package, equipped with the
DSF method for Coulomb potential, provides a broad community with an effective
instrument to investigate soft and biological matter.

Appendix: LAMMPS implementation

We report here the basic technical details of the H-AdResS implementation in the
LAMMPS simulation package. The software as well as a more detailed documentation
can be downloaded at the web page: http://www2.mpip-mainz.mpg.de/∼potestio/
software.php or cloned from the LAMMPS Git repository https://github.com/
lammps/lammps.

6.1 H-AdResS Atom style

We introduced an atom style called full/hars in which an atom i, in addition to
LAMMPS’s indigenous atom properties (e.g. coordinates xi, velocities vi, charge qi), is
provided the following H-AdResS-specific attributes:

– λi: the resolution of the atom in the system as determined by the value of the
switching function computed on the center of mass coordinate of the molecule to
which atom i belongs.

– ∇λi: the gradient of the switching function.
– xCGα : the center of mass coordinate of molecule α to which atom i belongs.
– Repi: the representation flag indicating which atom in the molecule carries the
information pertaining the whole molecule.

– MolTypei: the molecule type index specifying the CG model parameters of mole-
cule when in the low resolution region.

All these properties are assigned and set by the two files atom vec full hars.
cpp/h.

6.2 Fixing particle resolutions

As the atom passes through different resolutions, the resolution function λi and its
gradient ∇λi have to be updated at each time step. This step is carried out within a
fix file called fix lambdah calc.cpp/h: here, the center of mass coordinates of each
molecule, xCGα , is calculated and then spread to all atoms of that molecule. Depending
on the (user-specified) shape of the hybrid region, also the switching function and
its gradients are computed based on the molecule position and transmitted to the
corresponding atoms.
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6.3 Calculating coarse-grained pairwise interaction

The generalized pairwise coarse-grained potentials and forces are computed based on
Eqs. (3) and (4). Depending on the type of potential, a specific interaction file (with
corresponding header) is introduced. For this study, the interaction between the water
molecules in the CG region is given by a WCA potential which, in turn, is obtained by
assigning a specific set of parameters to a Lennard-Jones potential; accordingly, the
two files pair lj cut hars cg.cpp/h overseeing the computation of Lennard-Jones
interaction in the CG and HY regions are employed. The computation of the forces
among neighboring molecules is restricted to the representative atoms provided with
the details about the molecule properties. Hence, for molecule α the coarse-grained
force due to the interaction with all other neighboring β molecules is computed as:

Fα =
∑

β,β �=α

{(
1− λα + λβ

2

)
FCGα|β

}
+ V CGα ∇αλα. (22)

The force Fαi acting on atom ith is obtained by scaling the molecular force Fα by
each atom’s mass mi divided by the whole molecule’s mass Mα:

Fαi =
mi

Mα
Fα. (23)

6.4 Calculating atomistic pairwise interaction

A procedure similar to the one discussed for the CG potential is carried out for the
atomistic part of the interaction. Depending on the specific atomistic force field, two
files need to be written and added to LAMMPS’s source directory. For our study we
employed Lennard-Jones and DSF Coulomb interactions, and the files pair lj cut
coul dsf hars at.cpp/h have been accordingly created. The pairwise atomistic in-
teractions between neighboring atoms are calculated through:

Fαi =
∑

j∈β,i∈α,i�=j

λα + λβ
2

FATαi|βj . (24)

Since drift forces are acting on the molecules, an additional force contribution is added
to each molecule:

Fα = −
(
∑

i∈α
V ATαi

)
∇αλα. (25)

Afterwards, the computed molecular drift force is spread to the atoms of molecule
α based on Eq. (23). For the intra-molecular interactions, such as bond and angle
potentials, there is no need to modify the corresponding parts of the current LAMMPS
implementation.

6.5 Speedup

The reduced number of interactions in the CG region and their shorter range enable
a reduction of the computational cost of the simulation. In order to quantitatively
demonstrate this gain, we have performed fully atomistic as well as dual-resolution
simulations of water systems of increasing size, and compared their run time. In Fig. 10
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Fig. 10. Computation time in seconds for fully atomistic simulations (red circles) and
H-AdResS (blue squares) is shown for three different simulation box sizes. For the case of
H-AdResS, the length of the atomistic and hybrid region are kept constant as the length of
the simulation box increases. The speedup which is calculated by the computation time ratio
of fully atomistic simulation to H-AdResS is shown in onset.

we show the time necessary to these different setups to perform the same number of
integration steps, namely 105, and the corresponding speedup, calculated as the ratio
of the time of a fully atomistic run over the corresponding dual-resolution one. The
simulated system is the same discussed in the Methods section; the AT interactions
are given by DSF and Lennard-Jones potentials with a cutoff radius of 12 Å, and
the CG model is a purely repulsive WCA. The widths of the AT and HY regions
are kept constant, while the size of the CG domains is systematically increased; the
probed extensions of the CG domain are thus approximately 90, 180, and 270 Å.
By comparing the simulation time of fully atomistic and dual-resolution setups it is
possible to appreciate that the latter has a very weak linear growth as a function
of the CG domain size, indicating that the computational cost of the simulation is
almost completely determined by the computation of AT interactions.
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