
Sajedian and Rho Nano Convergence (2019) 6:27

https://doi.org/10.1186/s40580-019-0197-y

LETTERS

Accurate and instant frequency estimation
from noisy sinusoidal waves by deep learning
Iman Sajedian1,2 and Junsuk Rho1,3*

Abstract

We used a deep learning network to find the frequency of a noisy sinusoidal wave. A three-layer neural network was

designed to extract the frequency of sinusoidal waves that had been combined with white noise at a signal-to-noise

ratio of 25 dB. One hundred thousand waves were prepared for training and testing the model. We designed a neural

network that could achieve a mean squared error of 4 × 10−5 for normalized frequencies. This model was written for

the range 1 kHz ≤ f ≤ 10 kHz but also shown how to easily be generalized to other ranges. The algorithm is easy to

rewrite and the final results are highly accurate. The trained model can find frequency of any previously-unseen noisy

wave in less than a second.

Keywords: Frequency estimation, Deep learning, Neural networks

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made.

1 Introduction

Estimation of the frequency f of a noisy sinusoidal wave

has been one of the main problems in the field of signal

processing and communications, due to its vast applica-

tions including power systems [1], communications [2],

and radar [3–5]. Many theoretical techniques have been

proposed to solve this problem; examples include dis-

crete Fourier transform [6–9], least squares methods

[10–12] and phase-locked loops [13, 14]. All of the pro-

posed methods are focused on speed and accuracy of the

estimation.

Recently deep learning has helped humans in many dif-

ferent areas of science, including medical diagnoses [15,

16], speech recognition [17, 18], photonics [19–22] and

image classification [23, 24].

Deep learning which already had been introduced

in the field of signal processing [25] has also helped

researchers in many areas such as for finding the ideal

ratio mask estimation for filtering out the noise from a

spectrogram [26], real time frequency monitoring [27],

channel detection in orthogonal frequency-division mul-

tiplexing systems [28, 29], and in getting channel state

information feedback from massive multiple–input mul-

tiple-output systems [30] as a few examples.

Here, we show how a deep-learning algorithm can find

f of a sinusoidal wave that is polluted by Gaussian noise.

Neural networks (NNs), which belong to the family of

deep-learning methods, can derive meaningful results

from complicated and complex problems, and may detect

patterns that human beings do not see in data; finding f

of a noisy signal is a good example of such a problem. We

know that a noisy signal is related to its f, but mathemati-

cal identification of that relation can be difficult. NNs

can find this f with reasonable accuracy and high speed.

Once an NN model has been trained, it can find f of any

new given wave in less than a second. So our proposed

method can easily replace the traditional analytical meth-

ods that are currently used by a neural network model,

with the advantages of having higher accuracy and a

faster estimation.

2 Methods

We start by defining the problem. We want to find f of a

noisy sinusoidal wave

where A is amplitude, t is time, ϕ is phase, and Ω is zero-

mean Gaussian noise with a variance of σ2. So the S(t)

(1)S(t) = A sin(2π ft + ϕ) + Ω(t),

Open Access

*Correspondence: jsrho@postech.ac.kr
3 Department of Chemical Engineering, Pohang University of Science

and Technology (POSTECH), Pohang 37673, Republic of Korea

Full list of author information is available at the end of the article

http://orcid.org/0000-0002-2179-2890
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40580-019-0197-y&domain=pdf

Page 2 of 5Sajedian and Rho Nano Convergence (2019) 6:27

which is the noisy wave will be our input and the f which

is the frequency will be our output. The signal-to-noise

ratio (SNR), which shows the quality of the signal, is the

ratio of signal power PS to noise power PN [9]:

and can be expressed in decibels as

which gives us the variance as

So given SNRdB and A we can obtain the variance that

is needed for calculating the noise function.

2.1 Neural network

Now we discuss the neural network architecture that we

used to solve this problem. We explain the process in two

parts. First, we discuss the details of data preparation and

data preprocessing needed for the model to work more

efficiently and also the validation process that assures

that the model works for the unseen data. Then we dis-

cuss the model design that we used.

2.1.1 Data preparation

In NNs, we need three datasets to assure that the model

works for any new unseen data. These datasets are

(2)SNR =

PS

PN
=

(

A

σ

)2

,

(3)SNRdB = 10 log10 (SNR) = 10 log10

[

(

A

σ

)2
]

,

(4)σ
2

=

A
2

10
SNRdB

10

.

named training, validation, and testing dataset. The train-

ing dataset is used to train the model at each step. The

validation dataset is the first unseen data; this set is used

to check the model at each step, specifically to tune the

hyperparameters of the model to get the lowest possible

loss in predicted results. Once the best model is found

(the one that has the lowest loss on the validation data-

set), it is checked one more time on the test dataset to

assure that the model works on any unseen data. This

step assures that the model was not biased to work for

the validation dataset, and so works for any new unseen

data [31]. We prepared 100,000 waves for the whole data-

set; we used 72% of the waves as the training dataset, 18%

as the validation dataset, and 10% as the test dataset.

We considered the range 1 kHz ≤ f ≤ 10 kHz. For each

wave, we took 2000 samples from each generated wave in

each f in 1-μs time steps from 0 to 2000 μs; i.e., our whole

dataset was a 100,000 × 2000 array. This means that

the input layer of our neural network should have 2000

nodes. Since we want to find the frequency of each wave,

the output layer of our neural network should only have 1

node, which corresponds to the frequency sought.

Neural networks work better if their output is between

0 and 1 or in other words if their output is normalized, so

we divided the output layer by the maximum f = 10 kHz

before the training starts. This made our new output

range from 0.1
(

=
1KHz

10KHz

)

 to 1
(

=
10KHz

10KHz

)

 . We multiplied

all results by 10,000 after the training is finished to

recover the correct values.

2.1.2 Network design

We used a three-layer network with 2, 2, 3 neurons in the

first, second, and third hidden layer respectively (Fig. 1

Fig. 1 Schematic of the neural network (NN) model. To prepare the noisy sine wave as the input of the NN model we took 2000 samples from

each wave. Each data sample is a node in the input layer of the NN model as is shown here. The NN model has three hidden layers with 2, 2, and 3

neurons in the first, second and third, respectively. The output layer has only one node, which represents the desired frequency. The Nesterov Adam

optimizer with a learning rate (lr) of 0.001 was used for this model

Page 3 of 5Sajedian and Rho Nano Convergence (2019) 6:27

right). This architecture was found after trying many

designs; this one had the lowest loss on the validation

dataset. We had to use a very small number of neurons to

prevent the model from overfitting. Many methods can

be used to prevent overfitting; examples include using

dropout (or other types of regularization), or reducing

the complexity of the model, or increasing the amount of

data [32]. We found that reducing the complexity of the

model had the best effect and led to very good results.

For other hyperparameters of the network, we used the

Nesterov–Adam optimizer with a learning rate of 0.001;

the metric to measure the loss of the model was mean

squared error

where n is the number of measurements, Yi are the real

values and Pi are the predicted values. All codes were

written in Python with the help of TensorFlow and Keras

packages. Calculations were performed on a computer

with a 4-core 3.50-GHz processor, 32 GB of RAM, and an

NVIDIA GTX 750Ti GPU with 2 GB GDDR5 RAM. The

procedure of preparing the data and training the final

model took less than 2 h on this computer. The trained

model can predict new results in less than a second.

3 Results

We set A = 1 and ϕ = 0 (Eq. 1). We also set SNRdB = 25 as

a typical setting for a good signal, which leads to σ = 0.5

[4]. The lowest recorded losses were 9.71818 × 10−6 on

the training dataset (at epoch190) and 3.75632 × 10−5

on the validation dataset was (at epoch 50) in normal-

ized values. The evaluated loss on the test dataset was

1.87709 × 10−4 in normalized values. The model showed

better progress in the initial epochs but performed rela-

tively poorly at the end (Fig. 2). Since once the training

is finished only the last model will be saved, we used a

model monitor to save the best model based on the low-

est validation loss. If this model performs well on the test

dataset too, we can use it as a working model.

To show the model’s functionality on both low and high

frequencies, we present the prediction accuracy of the

model at one frequency at the low end of the frequency

range and one from the high end. The model performed

well on both frequencies. The model predicted 1214.5 Hz

at real f = 1224.7 Hz (error = 10.2 Hz = 0.83%; Fig. 3a), and

9128.2 Hz at real f = 9129.1 Hz (error = 1.1 Hz = 0.012%;

(5)MSE =

1

n

n∑

i=1

(Yi − Pi)
2
,

Fig. 3b); zoomed views (Fig. 3c, d) show that these error

are completely acceptable due to the background noise.

3.1 Generalizing to other frequencies

We can generalize this model for other frequency ranges

by a method similar to coordinate transformation.

Assume that the time, frequency, and the sine function

create a three dimensional space. The idea is to change

the time and frequency while keeping the sine function

constant. So in (1) if we keep the value ft constant, the

final results stay valid. We already have the results for

1 kHz to 10 kHz. Let’s assume that we wanted the results

for 1 GHz to 10 GHz:

So the whole process is transforming the coordinate

system to a new one which has different time and fre-

quency axes but the same sine wave. Since the input of

the NN model is the sine wave, it cannot distinguish the

changes made to the time and frequency, we just need

to keep in mind that the new results is for the trans-

formed coordinate system which is in GHz as is shown

in Fig. 4.

4 Conclusions

We used deep learning to estimate the frequency of a

noisy sinusoidal wave. 100,000 noisy waves from 1 to

10 kHz was provided for training, validating and testing

(6)

f (KHz) × t(µs) = f (KHz) × 106 × 10−6
× t(µs)

= f (GHz) × t(ps),

Fig. 2 Training loss and validation loss as the model trains. The code

monitors the model’s progress and saves the model with the lowest

loss on the validation dataset as the best model. Both of the y-axis

curves are shown on a logarithmic scale

Page 4 of 5Sajedian and Rho Nano Convergence (2019) 6:27

the model. We discussed the model architecture and

the data preprocessing needed for the model to func-

tion efficiently. We investigated the model efficiency on

high and low frequencies. The model was able to find

the desired frequencies on the unseen data with a very

low error, and in a fraction of a second.

Authors’ contributions

JR and IS initiated the project and conceived the idea. IS did numerical works

and prepared the manuscript. JR guided the entire project. Both authors read

and approved the final manuscript

Funding

This work is financially supported by the National Research Foundation

(NRF) Grants (NRF-2019R1A2C3003129, CAMM-2019M3A6B3030637, NRF-

2018M3D1A1058998, NRF-2015R1A5A1037668) funded by the Ministry of

Science and ICT (MSIT), Republic of Korea.

Availability of data and materials

The datasets used and/or analysed during the current study are available from

the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Fig. 3 Accuracy of the NN model: examples a 1214.5 Hz and b 9128.2 Hz, and zoomed views for c 1214.5 Hz and d 9129.1 Hz

Fig. 4 Generalizing the results to other frequencies. A same wave for

NN input (black), 1 kHz (red), and 1 GHz (blue). The NN model cannot

see the difference between these input waves

Page 5 of 5Sajedian and Rho Nano Convergence (2019) 6:27

Author details
1 Department of Mechanical Engineering, Pohang University of Science

and Technology (POSTECH), Pohang 37673, Republic of Korea. 2 Department

of Materials Science and Engineering, Korea University, Seoul 02842, Republic

of Korea. 3 Department of Chemical Engineering, Pohang University of Science

and Technology (POSTECH), Pohang 37673, Republic of Korea.

Received: 17 May 2019 Accepted: 15 July 2019

References

 1. A. Routray, A.K. Pradhan, K.P. Rao, IEEE Trans. Instrum. Meas. 51, 469 (2002)

 2. F. Classen, H. Meyr, in Proceedings of the IEEE 44th Vehicle Technology

Conference (1994), p. 1655

 3. I. Orovic, S. Stankovic, T. Thayaparan, L. Stankovic, IET Signal Process. 4,

363 (2010)

 4. R. Bamler, IEEE Trans. Geosci. Remote Sens. 29, 385 (1991)

 5. L. Liu, D. McLernon, M. Ghogho, W. Hu, J. Huang, Digital Signal Process.

22, 87 (2012)

 6. C. Candan, IEEE Signal Process. Lett. 18, 351 (2011)

 7. D. Belega, D. Dallet, IET Sci. Meas. Technol. 2, 1 (2008)

 8. L. Palmer, IEEE Trans. Inf. Theory 20, 104 (1974)

 9. A. Serbes, IEEE Trans. Commun. 6, 9 (2018)

 10. M. Rahman, K.-B. Yu, IEEE Trans. Acoust. Speech Signal Process. 35, 1440

(1987)

 11. W.E. Deming, F.F. Stephan, Ann. Math. Stat. 11, 427 (1940)

 12. T. Yardibi, J. Li, P. Stoica, M. Xue, A.B. Baggeroer, IEEE Trans. Aerosp. Elec-

tron. Syst. 46, 425–443 (2010)

 13. E. Robles, S. Ceballos, J. Pou, J.L. Martin, J. Zaragoza, P. Ibanez, IEEE Trans.

Power Electron. 25, 2552 (2010)

 14. L. Wang, Q. Jiang, L. Hong, C. Zhang, Y. Wei, IEEE Trans. Power Electron. 28,

4538 (2013)

 15. D.S. Kermany et al., Cell 172, 1122 (2018)

 16. G. Litjens, T. Kooi, B.E. Bejnordi, A.A.A. Setio, F. Ciompi, M. Ghafoorian, J.A.

Van Der Laak, B. Van Ginneken, C.I. Sánchez, Med. Image Anal. 42, 60

(2017)

 17. G. Hinton et al., IEEE Signal Process. Mag. 29, 82 (2012)

 18. D. Amodei et al., in Proceeding International Conference Machine Learning

(2016), p. 173

 19. I. Sajedian, T. Badloe, J. Rho, Opt. Express 27, 5874 (2019)

 20. I. Sajedian, J. Kim, J. Rho, Microsyst. Nanoeng. 5, 27 (2019)

 21. S. So, J. Rho, ACS Appl. Mater. Interfaces 11, 24264 (2019)

 22. S. So, J. Rho, Nanophotonics 8, 1255 (2019)

 23. T.-H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, Y. Ma, IEEE Trans. Image Process. 24,

5017 (2015)

 24. K. He, X. Zhang, S. Ren, J. Sun, in Proc. IEEE Conf. Comput. Vis. Pattern Recog-

nit. (2016), p. 770

 25. D. Yu, L. Deng, IEEE Signal Process. Mag. 28, 145 (2011)

 26. A. Narayanan, D. Wang, in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.

(2013), p. 7092

 27. L.L. Lai, W. Chan, C. Tse, A. So, IEEE Trans. Power Del. 14, 52 (1999)

 28. H. Ye, G.Y. Li, B.-H. Juang, IEEE Wireless Commun. Lett. 7, 114 (2018)

 29. X. Gao, S. Jin, C.-K. Wen, G.Y. Li, IEEE Commun. Lett. 22, 2627 (2018)

 30. T. Wang, C.-K. Wen, S. Jin, G.Y. Li, IEEE Wireless Commun. Lett. 8, 416 (2018)

 31. J. Hertz, A. Krogh, R. G. Palmer, in Introduction to the theory of neural com-

putation (Addison-Wesley/Addison Wesley Longman, 1991)

 32. H. Demuth, M. Beale, M. Hagan, in Neural network toolbox (Mathworks,

1994)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-

lished maps and institutional affiliations.

	Accurate and instant frequency estimation from noisy sinusoidal waves by deep learning
	Abstract
	1 Introduction
	2 Methods
	2.1 Neural network
	2.1.1 Data preparation
	2.1.2 Network design

	3 Results
	3.1 Generalizing to other frequencies

	4 Conclusions
	References

