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Accurate and instant frequency estimation 
from noisy sinusoidal waves by deep learning
Iman Sajedian1,2 and Junsuk Rho1,3* 

Abstract 

We used a deep learning network to find the frequency of a noisy sinusoidal wave. A three-layer neural network was 

designed to extract the frequency of sinusoidal waves that had been combined with white noise at a signal-to-noise 

ratio of 25 dB. One hundred thousand waves were prepared for training and testing the model. We designed a neural 

network that could achieve a mean squared error of 4 × 10−5 for normalized frequencies. This model was written for 

the range 1 kHz ≤ f ≤ 10 kHz but also shown how to easily be generalized to other ranges. The algorithm is easy to 

rewrite and the final results are highly accurate. The trained model can find frequency of any previously-unseen noisy 

wave in less than a second.

Keywords: Frequency estimation, Deep learning, Neural networks

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made.

1 Introduction

Estimation of the frequency f of a noisy sinusoidal wave 

has been one of the main problems in the field of signal 

processing and communications, due to its vast applica-

tions including power systems [1], communications [2], 

and radar [3–5]. Many theoretical techniques have been 

proposed to solve this problem; examples include dis-

crete Fourier transform [6–9], least squares methods 

[10–12] and phase-locked loops [13, 14]. All of the pro-

posed methods are focused on speed and accuracy of the 

estimation.

Recently deep learning has helped humans in many dif-

ferent areas of science, including medical diagnoses [15, 

16], speech recognition [17, 18], photonics [19–22] and 

image classification [23, 24].

Deep learning which already had been introduced 

in the field of signal processing [25] has also helped 

researchers in many areas such as for finding the ideal 

ratio mask estimation for filtering out the noise from a 

spectrogram [26], real time frequency monitoring [27], 

channel detection in orthogonal frequency-division mul-

tiplexing systems [28, 29], and in getting channel state 

information feedback from massive multiple–input mul-

tiple-output systems [30] as a few examples.

Here, we show how a deep-learning algorithm can find 

f of a sinusoidal wave that is polluted by Gaussian noise. 

Neural networks (NNs), which belong to the family of 

deep-learning methods, can derive meaningful results 

from complicated and complex problems, and may detect 

patterns that human beings do not see in data; finding f 

of a noisy signal is a good example of such a problem. We 

know that a noisy signal is related to its f, but mathemati-

cal identification of that relation can be difficult. NNs 

can find this f with reasonable accuracy and high speed. 

Once an NN model has been trained, it can find f of any 

new given wave in less than a second. So our proposed 

method can easily replace the traditional analytical meth-

ods that are currently used by a neural network model, 

with the advantages of having higher accuracy and a 

faster estimation.

2  Methods

We start by defining the problem. We want to find f of a 

noisy sinusoidal wave

where A is amplitude, t is time, ϕ is phase, and Ω is zero-

mean Gaussian noise with a variance of σ2. So the S(t) 

(1)S(t) = A sin(2π ft + ϕ) + Ω(t),
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which is the noisy wave will be our input and the f which 

is the frequency will be our output. The signal-to-noise 

ratio (SNR), which shows the quality of the signal, is the 

ratio of signal power PS to noise power PN [9]:

and can be expressed in decibels as

which gives us the variance as

So given SNRdB and A we can obtain the variance that 

is needed for calculating the noise function.

2.1  Neural network

Now we discuss the neural network architecture that we 

used to solve this problem. We explain the process in two 

parts. First, we discuss the details of data preparation and 

data preprocessing needed for the model to work more 

efficiently and also the validation process that assures 

that the model works for the unseen data. Then we dis-

cuss the model design that we used.

2.1.1  Data preparation

In NNs, we need three datasets to assure that the model 

works for any new unseen data. These datasets are 

(2)SNR =

PS

PN
=

(
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σ

)2

,

(3)SNRdB = 10 log10 (SNR) = 10 log10
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σ

)2
]

,
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2

=

A
2

10
SNRdB
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.

named training, validation, and testing dataset. The train-

ing dataset is used to train the model at each step. The 

validation dataset is the first unseen data; this set is used 

to check the model at each step, specifically to tune the 

hyperparameters of the model to get the lowest possible 

loss in predicted results. Once the best model is found 

(the one that has the lowest loss on the validation data-

set), it is checked one more time on the test dataset to 

assure that the model works on any unseen data. This 

step assures that the model was not biased to work for 

the validation dataset, and so works for any new unseen 

data [31]. We prepared 100,000 waves for the whole data-

set; we used 72% of the waves as the training dataset, 18% 

as the validation dataset, and 10% as the test dataset.

We considered the range 1 kHz ≤ f ≤ 10 kHz. For each 

wave, we took 2000 samples from each generated wave in 

each f in 1-μs time steps from 0 to 2000 μs; i.e., our whole 

dataset was a 100,000 × 2000 array. This means that 

the input layer of our neural network should have 2000 

nodes. Since we want to find the frequency of each wave, 

the output layer of our neural network should only have 1 

node, which corresponds to the frequency sought.

Neural networks work better if their output is between 

0 and 1 or in other words if their output is normalized, so 

we divided the output layer by the maximum f = 10 kHz 

before the training starts. This made our new output 

range from 0.1
(

=
1KHz

10KHz

)

 to 1
(

=
10KHz

10KHz

)

 . We multiplied 

all results by 10,000 after the training is finished to 

recover the correct values.

2.1.2  Network design

We used a three-layer network with 2, 2, 3 neurons in the 

first, second, and third hidden layer respectively (Fig.  1 

Fig. 1 Schematic of the neural network (NN) model. To prepare the noisy sine wave as the input of the NN model we took 2000 samples from 

each wave. Each data sample is a node in the input layer of the NN model as is shown here. The NN model has three hidden layers with 2, 2, and 3 

neurons in the first, second and third, respectively. The output layer has only one node, which represents the desired frequency. The Nesterov Adam 

optimizer with a learning rate (lr) of 0.001 was used for this model
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right). This architecture was found after trying many 

designs; this one had the lowest loss on the validation 

dataset. We had to use a very small number of neurons to 

prevent the model from overfitting. Many methods can 

be used to prevent overfitting; examples include using 

dropout (or other types of regularization), or reducing 

the complexity of the model, or increasing the amount of 

data [32]. We found that reducing the complexity of the 

model had the best effect and led to very good results. 

For other hyperparameters of the network, we used the 

Nesterov–Adam optimizer with a learning rate of 0.001; 

the metric to measure the loss of the model was mean 

squared error

where n is the number of measurements, Yi are the real 

values and Pi are the predicted values. All codes were 

written in Python with the help of TensorFlow and Keras 

packages. Calculations were performed on a computer 

with a 4-core 3.50-GHz processor, 32 GB of RAM, and an 

NVIDIA GTX 750Ti GPU with 2 GB GDDR5 RAM. The 

procedure of preparing the data and training the final 

model took less than 2 h on this computer. The trained 

model can predict new results in less than a second.

3  Results

We set A = 1 and ϕ = 0 (Eq. 1). We also set SNRdB = 25 as 

a typical setting for a good signal, which leads to σ = 0.5 

[4]. The lowest recorded losses were 9.71818 × 10−6 on 

the training dataset (at epoch190) and 3.75632 × 10−5 

on the validation dataset was (at epoch 50) in normal-

ized values. The evaluated loss on the test dataset was 

1.87709 × 10−4 in normalized values. The model showed 

better progress in the initial epochs but performed rela-

tively poorly at the end (Fig.  2). Since once the training 

is finished only the last model will be saved, we used a 

model monitor to save the best model based on the low-

est validation loss. If this model performs well on the test 

dataset too, we can use it as a working model.

To show the model’s functionality on both low and high 

frequencies, we present the prediction accuracy of the 

model at one frequency at the low end of the frequency 

range and one from the high end. The model performed 

well on both frequencies. The model predicted 1214.5 Hz 

at real f = 1224.7 Hz (error = 10.2 Hz = 0.83%; Fig. 3a), and 

9128.2 Hz at real f = 9129.1 Hz (error = 1.1 Hz = 0.012%; 

(5)MSE =

1

n

n∑

i=1

(Yi − Pi)
2
,

Fig. 3b); zoomed views (Fig. 3c, d) show that these error 

are completely acceptable due to the background noise.

3.1  Generalizing to other frequencies

We can generalize this model for other frequency ranges 

by a method similar to coordinate transformation. 

Assume that the time, frequency, and the sine function 

create a three dimensional space. The idea is to change 

the time and frequency while keeping the sine function 

constant. So in (1) if we keep the value ft constant, the 

final results stay valid. We already have the results for 

1 kHz to 10 kHz. Let’s assume that we wanted the results 

for 1 GHz to 10 GHz:

So the whole process is transforming the coordinate 

system to a new one which has different time and fre-

quency axes but the same sine wave. Since the input of 

the NN model is the sine wave, it cannot distinguish the 

changes made to the time and frequency, we just need 

to keep in mind that the new results is for the trans-

formed coordinate system which is in GHz as is shown 

in Fig. 4.

4  Conclusions

We used deep learning to estimate the frequency of a 

noisy sinusoidal wave. 100,000 noisy waves from 1 to 

10 kHz was provided for training, validating and testing 

(6)

f (KHz) × t(µs) = f (KHz) × 106 × 10−6
× t(µs)

= f (GHz) × t(ps),

Fig. 2 Training loss and validation loss as the model trains. The code 

monitors the model’s progress and saves the model with the lowest 

loss on the validation dataset as the best model. Both of the y-axis 

curves are shown on a logarithmic scale
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the model. We discussed the model architecture and 

the data preprocessing needed for the model to func-

tion efficiently. We investigated the model efficiency on 

high and low frequencies. The model was able to find 

the desired frequencies on the unseen data with a very 

low error, and in a fraction of a second.
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Fig. 3 Accuracy of the NN model: examples a 1214.5 Hz and b 9128.2 Hz, and zoomed views for c 1214.5 Hz and d 9129.1 Hz

Fig. 4 Generalizing the results to other frequencies. A same wave for 

NN input (black), 1 kHz (red), and 1 GHz (blue). The NN model cannot 

see the difference between these input waves
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