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ACCURATE AND ONLINE-EFFICIENT EVALUATION OF THE A POSTERIORI

ERROR BOUND IN THE REDUCED BASIS METHOD

Fabien Casenave1, Alexandre Ern1 and Tony Lelièvre1,2

Abstract. The reduced basis method is a model reduction technique yielding substantial savings of
computational time when a solution to a parametrized equation has to be computed for many values
of the parameter. Certification of the approximation is possible by means of an a posteriori error
bound. Under appropriate assumptions, this error bound is computed with an algorithm of complexity
independent of the size of the full problem. In practice, the evaluation of the error bound can become
very sensitive to round-off errors. We propose herein an explanation of this fact. A first remedy has
been proposed in [F. Casenave, Accurate a posteriori error evaluation in the reduced basis method.
C. R. Math. Acad. Sci. Paris 350 (2012) 539–542.]. Herein, we improve this remedy by proposing a
new approximation of the error bound using the empirical interpolation method (EIM). This method
achieves higher levels of accuracy and requires potentially less precomputations than the usual formula.
A version of the EIM stabilized with respect to round-off errors is also derived. The method is illustrated
on a simple one-dimensional diffusion problem and a three-dimensional acoustic scattering problem
solved by a boundary element method.
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1. Introduction

In many problems, such as optimization, uncertainty propagation or real-time simulation, one has to evaluate
an objective function for a large number of values of some parameters. Evaluating this objective function often
implies solving a parametrized partial differential equation for a given parameter value. In an industrial context,
one evaluation of the objective function can already be a challenging numerical problem. To keep reasonable
computational costs, various model reduction techniques have been developed to speed up computations. We
focus on the Reduced Basis (RB) method [29, 36]. This method has been applied to many kinds of problems,
including nonlinear problems such as the viscous Burgers equation [40] or the steady incompressible Navier-
Stokes equations [39].
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As described in Section 2, the RB method consists in replacing the sequence P ∋ µ
Eµ�→ uµ �→ Q(uµ) by the

sequence P ∋ µ
Êµ�→ ûµ �→ Q̂(ûµ). Here, P denotes the parameter set, Eµ : µ �→ uµ the model problem, Êµ :

µ �→ ûµ its lower-dimensional approximation, Q(uµ) the quantity of interest, and Q̂(ûµ) its RB approximation.
More specifically, the RB method consists in two steps: (i) A so-called offline stage, where solutions to Eµ

for well-chosen values of the parameter µ are computed. During this stage, N̂ problems of size N are solved
(with N̂ ≪ N), and some quantities related to the N̂ solutions are stored, and (ii) a so-called online stage,
where the precomputed quantities are used to solve Êµ for many values of µ. In this stage, a certification of the
approximation is possible by means of an a posteriori error bound. An important feature in the RB method
is the use of an online-efficient error bound. The notion of online-efficiency is defined in Section 2.4. Moreover,
the error bound must be as sharp as possible to faithfully represent the error. However, as noticed for example
in ([34], pp. 148–149), the error bound is subject to round-off errors, especially for the computation of accurate
solutions. This difficulty can be encountered in complex industrial applications in the following two cases. First
and most importantly, when the stability constant of the underlying bilinear (or sesquilinear) form is very small,
the classical formula for the error bound fails to certify, even at a relatively crude error level, as illustrated in
Section 5 where the stability constant is about 10−6 and the classical error bound stagnates at about 10−4.
Second, in some industrial codes, the single-precision format is used to speed up computations, when high
precision is not needed. In this case, the classical formula for the error bound fails to deliver values below 10−4

for a stability constant of order 1. The purpose of this work is an explanation of these facts and the derivation
of a new method to compute the error bound in an accurate and online-efficient way. Additionally, the new
formula uses potentially less precomputed quantities than the classical formula.

In Section 2, we briefly recall the main ingredients of the RB method, namely (i) the construction of the
reduced problem, (ii) the a posterior error bound, (iii) the notion of online-efficiency, and (iv) the offline stage
during which the vectors of the reduced basis are constructed. We then explain in Section 3 why the classical
formula for computing the error bound is ill-conditioned in regard of round-off errors. In Section 4, we present
our new procedure based on the empirical interpolation method (EIM). A version of the EIM stabilized with
respect to round-off errors is also derived, and the various procedures to compute the error bound are compared
on a simple one-dimensional diffusion problem. In Section 5, we apply this new procedure to a three-dimensional
acoustic scattering problem.

2. The reduced basis method

2.1. The model problem

We suppose that the problem of interest has the following discrete variational form, depending on a param-
eter µ in a parameter set P : for a finite-dimensional space V of dimension N (with N ≫ 1 resulting, e.g., from
discretization), find uµ ∈ V such that

Eµ : aµ(uµ, v) = b(v), ∀v ∈ V , (2.1)

where aµ is an inf-sup stable bounded sesquilinear form on V × V and b is a continuous linear form on V . We
work in complex vector spaces in view of our application to acoustic scattering. In what follows, the complex
conjugate of z ∈ C is denoted z∗. We define the Riesz isomorphism J from V ′ to V such that for all ∀l ∈ V ′ and
all ∀u ∈ V , (Jl, u)V = l(u), where (·, ·)V denotes the inner product of V with associated norm ‖ · ‖V . We denote

βµ := inf
u∈V

sup
v∈V

|aµ(u, v)|
‖u‖V‖v‖V

> 0 the inf-sup constant of aµ and β̃µ a computable positive lower bound of βµ. For

simplicity, we consider that the linear form b is independent of the parameter µ. The extension to µ-dependent
b is straightforward. We refer to the discrete solution uµ as the “truth solution”.
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2.2. The reduced problem

Suppose that a reduced basis, consisting of N̂ solutions uµi
of Eµi

, i ∈ {1, . . . , N̂}, has already been con-
structed. To alleviate the notation, we denote ui the function uµi

. How the parameters µi are chosen is briefly
outlined in Section 2.5. Given a parameter value µ ∈ P , the reduced problem is then a Galerkin procedure
written on the linear space V̂ = Span{u1, . . . , uN̂

} ⊂ V : find ûµ ∈ V̂ such that

Êµ : aµ(ûµ, uj) = b(uj), ∀j ∈ {1, . . . , N̂}. (2.2)

The approximate solution on the reduced basis is written as

ûµ =
N̂
∑

i=1

γi(µ)ui. (2.3)

Recalling the exact and approximate quantities of interest Q(uµ) and Q̂(ûµ), respectively, the quality of the

approximation for a given µ ∈ P is quantified by the error measure ‖Q(uµ)−Q̂(ûµ)‖. When we obtain a satisfying

error measure with N̂ ≪ N , the RB strategy is successful. Two main cases are generally considered: (i) the
so-called general-purpose case, where one is interested in the whole solution: Q = Q̂ = Id and ‖ · ‖ = ‖ · ‖V , and
(ii) the so-called goal-oriented case, where Q is a linear form on V and ‖ · ‖ = | · |. The operator Q̂ is consistently
built so that ‖Q(uµ) − Q̂(ûµ)‖ vanishes for µ = µi, i ∈ {1, . . . , N̂}.

2.3. A posteriori error bound

In the standard RB method, the a posteriori error bound is a residual-based bound. In what follows, we
refer to it simply as error bound. Since this error bound is an upper bound, it provides a way to certify the
approximation made by the reduced basis.

Property 2.1 (General-purpose case). The following error bound holds: For all µ ∈ P,

‖uµ − ûµ‖V ≤ E1(µ) := β̃−1
µ ‖Gµûµ‖V , (2.4)

with Gµ the linear map from V to V such that V ∋ u �→ Gµu := J (aµ(u, ·) − b) ∈ V.

Proof. See [34], Section 4.3.2. �

In the goal-oriented case, one possible approach is to introduce the following dual problem: Find vµ ∈ V such
that

Ed
µ : aµ(w, vµ) = Q(w), ∀w ∈ V . (2.5)

We wrote the dual problem on the same discrete space V , but another space can be considered. A reduced basis
procedure is also carried out for the problem Ed

µ, resulting in an approximation v̂µ of vµ. The approximate

quantity of interest is then defined as Q̂(ûµ) := Q(ûµ) − (Gµûµ, v̂µ)V , where the second term is the so-called
dual-based correction.

Property 2.2 (Goal-oriented case). The following error bound holds: For all µ ∈ P,

∣

∣

∣Q(u) − Q̂(ûµ)
∣

∣

∣ ≤ Ego
1 (µ) :=

(

β̃d
µ

)−1

‖Gµûµ‖V‖Gd
µv̂µ‖V , (2.6)

where Gd
µ is the linear map from V to V such that V ∋ v �→ Gd

µu := J (aµ(·, v) − Q) ∈ V and β̃d
µ is a computable

lower bound of βd
µ = inf

u∈V
sup
v∈V

|aµ(v, u)|
‖u‖V‖v‖V

. Obviously, βd
µ = βµ if aµ is Hermitian.

Proof. See [5], Proposition 23 and [11], Proposition 3.1. �

In what follows, we mainly focus on the general-purpose case. Extensions to the goal-oriented case are
straightforward.
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2.4. Online-efficiency of the RB method

The notion of online-efficiency is central to the RB method.

Definition 2.3. The RB method is said to be online-efficient if in the online stage, (i) the reduced problems
can be constructed in complexity independent of N , and (ii) the error bound can be computed in complexity
independent of N .

Definition 2.4. The sesquilinear form aµ is said to depend on µ in an affine way if there exist d functions
αk(µ) : P → C and d µ-independent sesquilinear forms ak bounded on V × V such that

aµ(u, v) =

d
∑

k=1

αk(µ)ak(u, v), ∀u, v ∈ V . (2.7)

In what follows, we always assume that the affine decomposition (2.7) holds. This decomposition is instrumental
to achieve online-efficiency.

Property 2.5. If aµ depends on µ in an affine way, then the RB method is online-efficient.

Proof. (i) The reduced matrix writes (Âµ)j,i = aµ(ui, uj) and the reduced right-hand side (B̂)j = b(uj), for

all 1 ≤ i, j ≤ N̂ . There holds Âµ =
∑d

k=1 αk(µ)Âk, where (Âk)ij := ak(ui, uj). Therefore, provided the d

matrices Âk and the vector B̂ are precomputed during the offline stage, the reduced problems are constructed
in complexity independent of N .

(ii) The operator Gµ inherits the affine dependence of aµ on µ since, for all u ∈ V ,

Gµu = −Jb +

d
∑

k=1

αk(µ)Jak(u, ·) = G00 +

d
∑

k=1

αk(µ)Gku, (2.8)

where G00 := −Jb ∈ V and Gku := Jak(u, ·) ∈ V for all k ∈ {1, . . . , d}. Using this affine decomposition and
recalling (2.3), we infer

E1(µ) = β̃−1
µ

∥

∥

∥

∥

∥

∥

G00 +

N̂
∑

i=1

d
∑

k=1

αk(µ)γi(µ)Gkui

∥

∥

∥

∥

∥

∥

V

. (2.9)

The scalar product on which the norm in (2.9) hinges can be expanded to provide another formula for the error
bound (see [34], Eq. (4.61)):

E2(µ) = β̃−1
µ

⎛

⎝(G00, G00)V + 2Re

N̂
∑

i=1

d
∑

k=1

γi(µ)αk(µ)(Gkui, G00)V

+

N̂
∑

i,j=1

d
∑

k,l=1

γi(µ)αk(µ)γ∗
j (µ)α∗

l (µ)(Gkui, Gluj)V

⎞

⎠

1
2

,

(2.10)

which is computed in complexity independent of N in the online stage provided that (G00, G00)V , (Gkui, G00)V
and (Gkui, Gluj)V are precomputed during the offline stage, and provided that a lower bound β̃µ of the stability
constant of aµ is also computed in complexity independent of N (which is possible, for example, by the Successive
Constraint Method, see [14, 27]). �
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An important observation made in [9], and that will be useful below, is that the formula (2.10) defining E2

can be rewritten in an equivalent way as

E2(µ) := β̃−1
µ

(

δ2 + 2Re(stx̂µ) + x̂∗t
µ Sx̂µ

)
1
2 , (2.11)

where δ := ‖G00‖V , s and x̂µ are vectors in CdN̂ with components sI := (Gkui, G00)V and (x̂µ)I := αk(µ)γi(µ),

and S is a matrix in CdN̂,dN̂ with coefficients SI,J := (Gkui, Gluj)V (with I and J re-indexing respectively (k, i)

and (l, j), for all 1 ≤ k, l ≤ d and all 1 ≤ i, j ≤ N̂). The t superscript denotes the transposition. The vector s

and the matrix S depend on the reduced basis functions {ui}1≤i≤N̂
but are independent of µ, and the vector x̂µ

depends on the RB approximation ûµ via the coefficients γi(µ). Notice that the term between parenthesis on
the right-hand side of (2.11) is a multivariate polynomial in x̂µ of total degree 2. We would like to stress that
E1(µ) = E2(µ) (in infinite precision arithmetic): the indices 1 and 2 are used to denote two different ways to
compute the same quantity. In particular, E1(µ) is not online efficient, while E2(µ) is.

2.5. The offline stage

Fix a discrete subset of parameters Ptrial ⊂ P . In the offline stage, the parameters µi (from which the
reduced basis is constructed) are chosen by a greedy algorithm as elements of Ptrial. We denote Pselect the set
of these selected parameters; see [34], Section 3.3 for a presentation of the greedy algorithm. At each step of the
algorithm, the new quantities ak(ui, uj) and b(uj) are computed and stored, as well as the new components of
the vector s and of the matrix S to be used in the formula (2.11) for E2. This task, as that of evaluating G00,
typically requires inverting the stiffness matrix in V by solving, for all k ∈ {1, . . . , d} and all i ∈ {1, . . . , N̂}, the
variational problem: find wi,k ∈ V such that

EGi,k : (wi,k, v)V = ak(ui, v), ∀v ∈ V . (2.12)

Then, Gkui = wi,k can be computed. The computation of (Gkui, Gluj)V follows from the solutions of EGi,k

and EGj,l. Since the error bounds are evaluated using the formula E2(µ), for all µ ∈ Ptrial, with the current
state of the reduced basis, finding the maximum of the error bound on Ptrial is of complexity independent of N .
This allows one to consider very large sets Ptrial without increasing too much the complexity of the whole offline
procedure.

3. Round-off errors and online certification

In this section, we explain why the online-efficient error bound (2.11) may be sensitive to round-off errors.

3.1. Elements of floating-point arithmetic

In a computer, real numbers are represented by a finite number of bits, called floating-point representation.
Current architectures are optimized for a format used by a large majority of softwares: IEEE 754 double-
precision binary floating-point format. Let x be a real number. The floating point representation of x is denoted
by fl(x). When a (nonzero) real number is rounded to the closest floating-point number, the relative error on
its floating-point representation is bounded by a number, ǫ, called the machine precision. In double precision,
ǫ = 5×10−16, see [21], Section 1.2. Let x and y be real numbers. When computing the operation x+y, the result
returned by the computer can be different from its theoretical value. Whenever the difference is substantial,
a loss of significance occurs. A well-known case of loss of significance is when x and y are almost opposite
numbers. Suppose that x = −y. We denote by maxfl(x + y) the result that the computer returns when the
maximal accumulation of round-off errors occurs when computing the summation. There holds

|maxfl(x + y)| ≈ 2ǫ|x|. (3.1)
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Figure 1. Schematic illustration of Definition 3.1, with Pselect = {µ1, . . . , µ4}. Left: the formula
Ek is valid for computing the error bound with tolerance tol; right: the formula is not valid as
Ek(µ2) > tol.

When implementing an algorithm, one should ensure that each step is free of such a loss of significance. In some
cases, simply changing the order of the operations can prevent these situations. As an illustration, consider
x = 1, y = 1 + 10−7, and the operation x2 − 2xy + y2. This is a sum of terms where the first intermediate result
in the sum is 14 orders larger than the result. Therefore, a loss of significance is expected. The relative error of
this computation is about 8× 10−4. Computing (x− y)2, which is the factorization of the considered operation,
leads to a relative error of about 10−9. Thus, the terms of the sum are only 7 orders larger than the results,
leading to a less catastrophic loss of significance. In this specific case, the remedy consists in carrying out the
sum before the multiplication. In the RB context, the evaluation of the formula E2 suffers from such a loss of
significance, as we now explain.

3.2. Validity of the formulae E1 and E2 for computing the error bound

Consider the two formulae E1, see (2.9), and E2, see (2.11), for computing the error bound.

Definition 3.1. The formula Ek, k = 1, 2, is said to be valid for computing the error bound with tolerance
tol if

max
µ∈Pselect

(Ek(µ)) ≤ tol. (3.2)

From a theoretical viewpoint, the error ‖uµ − ûµ‖V and the residual Gµuµ vanish for all µ ∈ Pselect. Hence, any
formula for computing the residual-based error bound vanishes as well and therefore is valid with any tolerance.
However, the validity of a formula for computing the error bound is to be considered in the presence of some
adverse phenomenon introducing errors in the computation, see Figure 1. The greedy algorithm in the offline
stage stops when max

µ∈Ptrial

(Ek(µ)) < tolRB, where tolRB denotes the maximum acceptable error made by the RB

approximation. Therefore, if the minimum tolerance for which an error bound Ek is valid is larger than tolRB,
then the greedy algorithm cannot converge and will keep increasing the set Pselect although the error can be
actually very small.

We examine the validity of the formulae E1 and E2 for computing the error bound in the presence of two
independent phenomena: round-off errors and approximate reduced basis functions ui (in the context of inexact
linear algebra solvers for Eµi

).

3.2.1. Round-off errors

We investigate the influence of round-off errors when computing the error bounds E1(µ) and E2(µ). As
observed at the end of Section 3.1, the computation of a polynomial using a factorized form is more accurate
than using the developed form, in particular at points close to its roots. Here, (β̃µE2(µ))2 is a multivariate
polynomial of degree 2 in x̂µ computed in a developed form, whereas the scalar product (Gµuµ, Gµuµ)V used
in the computation of E1(µ) is not developed.

In this section, we neglect the round-off errors introduced when solving Eµ and Êµ, so that the reduced
basis functions ui and the reduced solutions ûµ are considered free of round-off errors. We also suppose that the
computable positive lower bound β̃µ of the inf-sup constant is computed free of round-off errors, see Remark 3.4.
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Proposition 3.2. Let µ ∈ Pselect and let maxfl(β̃µEk(µ)), k = 1, 2, denote the evaluation of β̃µEk(µ) when the

maximum accumulation of round-off errors occurs. There holds

maxfl
(

β̃µE1(µ)
)

≥ 2δǫ,

maxfl
(

β̃µE2(µ)
)

≥ 2δ
√

ǫ,
(3.3)

where δ = ‖G00‖V and ǫ is the machine precision.

Proof. Let µ ∈ Pselect. We present the proof for E1(µ); the proof for E2(µ) is similar. We need to evaluate the

right-hand side of (2.9). Let (ϕρ)1≤ρ≤N denote the basis of V , so that, for instance, G00 =
∑N

ρ=1 (G00)ρ ϕρ. In

exact arithmetics, there holds E1(µ) = 0, so that
∑N̂

i=1

∑d
k=1 γi(µ)αk(µ) (Gkui)ρ = − (G00)ρ for all 1 ≤ ρ ≤ N .

As a result, using (3.1), we obtain

∣

∣

∣

∣

∣

∣

maxfl

⎛

⎝(G00)ρ +

N̂
∑

i=1

d
∑

k=1

γi(µ)αk(µ)(Gkui)ρ

⎞

⎠

∣

∣

∣

∣

∣

∣

≈ 2|(G00)ρ|ǫ.

Since computing the V-norm on the right-hand side of (2.9) can only increase the round-off errors, we infer the
desired lower bound. �

Remark 3.3 (Validity of the formulae E1 and E2). We indeed observe in our simulations that the round-off
errors on E1 scale like ǫ, while the round-off errors on E2 scale like

√
ǫ, see Section 4.3. Then, if we suppose that

the lower bounds are reached in (3.3), the formulae E1 and E2 are valid for computing the error bound with
tolerance tol if, respectively,

for E1, 2
(

β̃min

)−1

δǫ ≤ tol,

for E2, 2
(

β̃min

)−1

δ
√

ǫ ≤ tol,

(3.4)

where β̃min = inf
µ∈Pselect

(β̃µ).

Remark 3.4 (Inf-sup constant). The computable positive lower bound β̃µ of the inf-sup constant suffers from
round-off errors as well. However, since it is a multiplicative factor, the quality of its computation does not
severely affect the quality of the error bound. Moreover, the value of the inf-sup constant does not depend on
the size of the reduced basis, contrary to ‖Gµûµ‖V . Therefore, there is no phenomenon susceptible to degrade
the accuracy of its computation with the increase of the size of the reduced basis. If the Successive Constraint
Method is used, the procedure to compute β̃µ is carried out before the greedy algorithm of the RB method.

Remark 3.5 (Improved floating-point arithmetic). Increasing the machine precision from ǫ to ǫ2 (quadruple-
precision) for computing the coefficients in (2.11), as well as for the evaluation of the multivariate polynomial
in x̂µ, is a first solution to recover a good precision with the formula E2. There are also methods allowing one
to double the precision of the evaluation of a polynomial while keeping the double-precision format, namely
compensated schemes. For instance, the compensated Horner scheme in double-precision [28] doubles the preci-
sion and is faster than the full quadruple precision implementation. However, this corresponds to representing
the result of the intermediate operations by two doubles, one for the value in double-precision and another one
for the subsequent digits. Therefore, these strategies are equivalent to quadruple precision (except for the com-
putational savings in evaluating the error bound). Moreover, since current architectures are optimized for the
double-precision format, changing the floating-point arithmetic can potentially degrade software performance.
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Remark 3.6 (Goal-oriented case, round-off errors). The same analysis can be carried-out in the goal-oriented
case. Let µ ∈ Pselect. There holds

maxfl
(

β̃d
µEgo

1 (µ)
)

≥ 2δςǫ2,

maxfl
(

β̃d
µEgo

2 (µ)
)

≥ 2δςǫ,
(3.5)

where ς := ‖Q‖V′. We indeed observe in our simulations that the round-off errors on Ego
1 scale like ǫ2, while the

round-off errors on Ego
2 scale like ǫ, see Section 5. If we suppose that the lower bounds are reached in (3.5), then

the formulae Ego
1 and Ego

2 are valid for computing the error bound with tolerance tol if, respectively,

for Ego
1 , 2

(

β̃d
min

)−1

δςǫ2 ≤ tol,

for Ego
2 , 2

(

β̃d
min

)−1

δςǫ ≤ tol,

(3.6)

where β̃d
min = inf

µ∈Pselect

(β̃d
µ).

3.2.2. Approximate reduced basis functions

In large-scale simulations, the accuracy of the RB procedure is also limited by the numerical method used for
computing the reduced basis functions. We want here to illustrate this fact on a simple example where we suppose
that the approximation of the reduced basis functions comes from an iterative solver with prescribed stopping
criterion. We recall that for a given value µ ∈ Pselect, Eµ consists in solving a linear system of size N of the form
AµUµ = B. Thus, for µ ∈ Ptrial, the formulae E1 and E2 for the error bound are based on the computation of

the residual of Eµ for the reduced solution ûµ. Indeed, it is easy to see that ‖Gµûµ‖V = ‖AµÛµ −B‖∗V′ , where

for all Φ ∈ CN , ‖Φ‖∗V′ = sup
V ∈CN

|(V,Φ)
CN |

‖
∑

N
i=1

Viϕi‖V
, recalling that (ϕρ)1≤ρ≤N are the basis functions in V , see [18],

Section 9.1.5.
In this section, we suppose that the formulae E1 and E2 are free of round-off errors (therefore, for all µ ∈ Ptrial,

E1(µ) = E2(µ)), but the problem Eµ is not solved exactly, leading to approximate reduced basis functions such
that the residuals do not vanish. Hence, for all µ ∈ Pselect, E1(µ) = E2(µ) and these error bounds are nonzero
owing to inexact linear algebra solves. The reduced problems Êµ are supposed to be solved freely of round-off
errors.

Proposition 3.7 (Approximate reduced basis functions). If the reduced basis functions are computed using an

iterative solver with the following stopping criterion on the normalized residual:

∀µ ∈ Ptrial,
‖AµUµ − B‖∗V′

‖B‖∗V′

≤ ξ, (3.7)

then the formulae E1 and E2 are valid for computing the error bound with tolerance tol if

β̃−1
minδξ ≤ tol. (3.8)

Proof. Let k ∈ {1, 2}, let µ ∈ Pselect and suppose that the stopping criterion (3.7) is satisfied. Then, ûµ = uµ, but

uµ does not exactly solve Eµ. First, by definition of the ‖ · ‖∗V norm, ‖B‖∗V′ = sup
V ∈CN

|b(∑N
i=1

Viϕi)|
‖
∑

N
i=1

Viϕi‖V
= ‖b‖V′ =

‖G00‖V = δ. Then, ‖Gµûµ‖V = sup
v∈V

(Gµûµ,v)V
‖v‖V

= sup
v∈V

aµ(ûµ,v)−b(v)
‖v‖V

= sup
V ∈CN

(V,AµÛµ−B)
CN

‖
∑

N
i=1

Viϕi‖V
= ‖AµÛµ − B‖∗V′ .

Therefore,

Ek(µ) = β̃−1
µ ‖Gµûµ‖V = β̃−1

µ ‖AµÛµ − B‖∗V′ = β̃−1
µ ‖AµUµ − B‖∗V′ ≤ β̃−1

µ ‖B‖∗V′ξ = β̃−1
µ δξ ≤ β̃−1

minδξ.

Hence, if β̃−1
minδξ ≤ tol, the validity of E1 and E2 follows from Definition 3.1. �
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Since the ‖ · ‖∗V′ norm is hard to compute, the stopping criterion (3.7) uses in practice the Hermitian norm
in CN or the V-norm of the corresponding functions in V .

Remark 3.8 (Goal-oriented case, approximate reduced basis functions). The formulae Ego
1 and Ego

2 are valid

for computing the error bound with tolerance tol if
(

β̃d
min

)−1

δγξ2 ≤ tol.

3.2.3. Synthesis

Taking into account the round-off errors in the computation of the error bound and the stopping criterion of
an iterative solver, and supposing that the bounds (3.3) and (3.5) are reached, the formulae E1 and E2 are valid
for computing the error bound with tolerance tol if, respectively,

for E1, 2β̃−1
minδ max (ξ, ǫ) ≤ tol,

for E2, 2β̃−1
minδ max

(

ξ,
√

ǫ
)

≤ tol,
(3.9)

and the formulae Ego
1 and Ego

2 are valid for computing the error bound with tolerance tol if, respectively,

for Ego
1 , 2

(

β̃d
min

)−1

δγ max
(

ξ2, ǫ2
)

≤ tol,

for Ego
2 , 2

(

β̃d
min

)−1

δγ max
(

ξ2, ǫ
)

≤ tol.

(3.10)

Focusing on round-off errors, the formula E1 for computing the error bound is valid for tolerances scaling as ǫ,
but is not online-efficient, whereas the formula E2 is online-efficient but is valid only for (significantly) higher
tolerances, namely tolerances scaling as

√
ǫ.

4. New procedures for accurate and online-efficient evaluation

of the error bound

In this section, online-efficient methods, that are valid for tolerances scaling as ǫ, are devised to evaluate the
error bound.

4.1. Procedure 1: rewriting E2

We first present the procedure proposed in [9]. We consider that a reduced basis of size N̂ has been constructed.
Let σ := 1 + 2dN̂ + (dN̂ )2. For a given µ ∈ Ptrial and the resulting ûµ ∈ Span{u1, . . . , uN̂

} solving the reduced

problem, we define X̂(µ) ∈ Cσ as the vector with components (1, x̂µI
, x̂∗

µI
, x̂µI

x̂µJ
), where x̂µI

= αk(µ)γi(µ)
(we recall that γi(µ) are the coefficients of the reduced solution in the reduced basis, see (2.3), and αk(µ) the
coefficients of the affine decomposition of aµ in (2.7)), with 1 ≤ I, J ≤ dN̂ (with I = i + N̂(k − 1) such that

1 ≤ i ≤ N̂ , 1 ≤ k ≤ d, and with J = j + N̂(l− 1) such that 1 ≤ j ≤ N̂ , 1 ≤ l ≤ d). We can write the right-hand
side of (2.11) as a linear form in X̂(µ) as follows:

δ2 + 2Re(stx̂µ) + x̂∗t
µ Sx̂µ =

σ
∑

p=1

tpX̂p(µ), (4.1)

where tp is independent of µ (as δ, s, and S are independent of µ) and X̂p(µ) is the pth component of X̂(µ).
Now, in the offline stage, we take σ values (e.g. random values) µr ∈ Ptrial, r ∈ {1, . . . , σ}, of the parameter µ.

Then, we compute the vectors X̂(µr) and the quantities

Vr :=

σ
∑

p=1

tpX̂p(µr). (4.2)
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Finally, we define T ∈ Cσ×σ as the matrix whose columns are formed by the vectors X̂(µr), that is, Tpr = X̂p(µr)
for all 1 ≤ p, r ≤ σ. We assume that T is invertible, which always happens to be the case in our simulations.

Now, suppose that in the online stage we want to evaluate the error bound for the RB solution ûµ computed

at a certain parameter µ ∈ Ptrial. Then, we evaluate the vector X̂(µ) and solve the linear system

Tλ(µ) = X̂(µ), (4.3)

yielding λ(µ) ∈ Cσ. We then obtain X̂(µ) =
∑σ

r=1 λr(µ)X̂(µr) and

σ
∑

p=1

tpX̂p(µ) =

σ
∑

p,r=1

tpλr(µ)X̂p(µr) =

σ
∑

r=1

λr(µ)Vr. (4.4)

This yields the following new formula for computing the error bound:

E3(µ) := β̃−1
µ

(

σ
∑

r=1

λr(µ)Vr

)
1
2

, (4.5)

where the quantities Vr = ‖Gµr
ûµr

‖2
V can be precomputed. Thus, computing E3 requires solving (4.3) and

summing the σ precomputed quantities Vr . Since the complexity of this procedure is independent of N , the
formula E3 is online-efficient for computing the error bound.

Remark 4.1 (Goal-oriented case). For the goal-oriented case, the procedure is carried out independently on
the two multivariate polynomials ‖Gµûµ‖2

V and ‖Gd
µv̂µ‖2

V .

Notice that E1(µ), E2(µ), and E3(µ) are equal in exact arithmetic. As pointed out in [9], the matrix T

exhibits in practice large condition numbers, and there is no guarantee that T is actually invertible. We will
see in Section 5 for a three-dimensional acoustic scattering problem that E3 can be in practice as ill-behaved
as E2. Moreover, there is no a priori method for selecting the parameters µr for which the quantities Vr are
precomputed. In the next section, we propose a new procedure that solves these problems.

4.2. Procedure 2: improvement on Procedure 1 using the EIM

In the formula E3, a potentially ill-conditioned problem Tλ(µ) = X̂(µ) is solved in order to exactly repre-
sent X̂(µ) by the linear combination

∑σ
r=1 λr(µ)X̂(µr). Following a suggestion by Patera [33], we propose to

approximate X̂(µ) by means of an interpolation procedure. We want to modify the formula E3 by an inter-
polation formula relying on a better conditioned linear system. The price to pay is that the new formula E4

will not be equal to E1 in exact arithmetic; the interpolation errors are however marginal, as further discussed
in Remark 4.7. We also look for a way to choose the parameters µr for which the quantities Vr have to be
precomputed. We refer to these values for µr as “interpolation points”, and to the set of these points as Pinter.

Consider the function of two variables (p, µ) �→ X̂p(µ), for all p ∈ {1, . . . , σ} and all µ ∈ Ptrial. We look for
an approximation of this function in the form

∀µ ∈ Ptrial, ∀p ∈ {1, . . . , σ}, X̂p(µ) ≈
σ̂
∑

r=1

λσ̂
r (µ)X̂p(µr), (4.6)

for a certain parameter σ̂ ≤ σ. The empirical interpolation method (EIM) (more precisely the discrete EIM
since p is a discrete variable) provides a numerical procedure to construct this approximation and to choose the
interpolation points (see [3, 30]).

For completeness, we briefly describe the EIM and adapt the notation of [30] to the present context.
The EIM is an offline-online procedure. During the offline stage, σ̂ basis functions are computed, denoted
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qj : Ptrial ∋ µ �→ qj(µ) ∈ C, for all j ∈ {1, . . . , σ̂}. These basis functions will be used in the online stage to carry
out the interpolation. We define qσ̂ as the vector-valued map Ptrial ∋ µ �→ qσ̂(µ) := (qj(µ))1≤j≤σ̂ ∈ Cσ̂. During
the offline stage, σ̂ interpolation points µr ∈ Ptrial are also selected; these points are collected in the set Pinter.
Notice that Pselect, the set of parameter values selected by the greedy algorithm of the RB method, is different
from Pinter. During the online stage, the matrix Bσ̂ ∈ C

σ̂,σ̂, where Bσ̂
ij = qi(µj), for 1 ≤ i, j ≤ σ̂, is constructed.

Letting µ ∈ Ptrial, we solve for λσ̂(µ) ∈ Cσ̂ such that

Bσ̂λσ̂(µ) = qσ̂(µ), (4.7)

and compute the rank-σ̂ interpolation operators defined as follows.

Definition 4.2. Let 1 ≤ k ≤ σ̂. The rank-k interpolation operator Ik is defined such that

IkX̂(µ) :=
k
∑

r=1

λk
r (µ)X̂(µr), (4.8)

where λk(µ) ∈ Ck solves Bkλk(µ) = qk(µ).

Equation (4.8) defines an interpolation in the sense that IkX̂pr
(µ) = X̂pr

(µ) for all 1 ≤ r ≤ k and all

µ ∈ Ptrial. The formula X̂p(µ) ≈ (I σ̂X̂)p(µ), for all µ ∈ Ptrial and all p ∈ {1, . . . , σ}, provides the approximate
interpolation formula searched for in (4.6).

Definition 4.3. The residual operator δσ̂ is defined by

δσ̂ := Id − I σ̂. (4.9)

Algorithm 1 presents the construction of the function qσ̂ by a greedy algorithm during the offline stage.

Algorithm 1 Offline stage of the EIM

1. Choose σ̂ > 1 [Number of interpolation points]
2. Set k := 1
3. Compute p1 := argmax

p∈{1,...,σ}

‖X̂p(·)‖ℓ∞(Ptrial)

4. Compute µ1 := argmax
µ∈Ptrial

|X̂p1
(µ)| and set Pinter = {µ1} [First interpolation point]

5. Set q1(·) :=
X̂p1

(·)
X̂p1

(µ1)
[First basis function]

6. Set B1
11 := 1 [Initialize B matrix]

7. while k < σ̂ do

8. Compute pk+1 := argmax
p∈{1,...,σ}

‖(δk
X̂)p(·)‖ℓ∞(Ptrial)

9. Compute µk+1 := argmax
µ∈Ptrial

|(δk
X̂)pk+1

(µ)| [(k + 1)-th interpolation point]

10. Set Pinter := Pinter ∪ {µk+1} [Update of Pinter]

11. Set qk+1(·) :=
(δkX̂)pk+1

(·)
(δkX̂)pk+1

(µk+1)
[(k + 1)-th basis function]

12. B
k+1
ij := qj(µi), 1 ≤ i, j ≤ k + 1 [(k + 1)-th B matrix]

13. k ← k + 1 [Increment the size of the interpolation]
14. end while
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Definition 4.4. The new formula for computing the error bound is

E4(µ) := β̃−1
µ

(

σ̂
∑

r=1

λσ̂
r (µ)Vr

)

1
2

, (4.10)

where λσ̂(µ) is the solution to (4.7). We recall that Vr = ‖Gµr
ûµr

‖2
V .

Proposition 4.5. The computation of the formula E4 is well defined, and this formula is online-efficient.

Proof. Owing to [30], Theorem 1, the matrix B is lower triangular with diagonal unity. Hence, detB = 1 and
B is guaranteed to be invertible. The online procedure of EIM, consisting in solving a linear system defined by
the matrix B, is thus well defined. Then, since the EIM procedure in carried out on X̂p(µ), for all p ∈ {1, . . . , σ}
and all µ ∈ Ptrial, all the computations involved are of complexity independent of N , even the offline part of
the EIM. Finally, the complexity of the online part of EIM only depends on σ̂. �

Remark 4.6 (Stopping criterion in Algorithm 1). For ease of presentation, we chose a simple stopping criterion
based on an a priori fixed maximum number of interpolation points. In practice, one possibility is to stop the
algorithm when the maximal approximation error in the EIM is below a prescribed value, by monitoring the
quantity (δkX̂)pk+1

(µk+1).

Remark 4.7 (Interpolation errors). As already observed, E4 does not equal E1 in exact arithmetics owing to
interpolation errors (when σ̂ < σ). Thus, although Algorithm 1 yields an accurate approximation of X̂p(µ), a

given interpolation error on X̂p(µ) does not directly translate into a bound on the difference between E1(µ) and
E4(µ) (the latter depending also on δ, s, and S, as well as on β̃µ). We observe in our numerical experiments
that these latter errors are lower than the errors incurred in the evaluation of E2 (due to round-off errors) and
in the evaluation of E3 (due to the poor conditioning of T ).

4.3. Illustration

Consider as in [9] a one-dimensional linear diffusion problem, namely the boundary value problem
−u′′ + µu = 1 on ]0, 1[ with u(0) = u(1) = 0, with parameter µ ∈ P := [1, 100]. The analytic solution is

u(x) = − 1

µ
(cosh (

√
µx) − 1) +

cosh
(√

µ
)

− 1

µ sinh
(√

µ
) sinh (

√
µx) . (4.11)

The Lax–Milgram theory is valid, and the coercivity constant is bounded from below by 1 in the H1-norm. The
error bound is given by E1(µ) = ‖Gµûµ‖H1(]0,1[). Lagrange P1 finite elements are used with uniform mesh cells
of length 0.005. The set Ptrial consists of 1000 points uniformly distributed in P . The RB method is carried
out until the formula E2 suffers from round-off errors, which already happens for a reduced basis of size N̂ = 7
(since d = 2, we obtain σ = 225). A direct solver is used, so that the only adverse phenomenon to compute the
error bound are round-off errors.

In Figure 2, we see that the classical formula E2 is not valid for computing the error bound with any tolerance
below 10−7, whereas the formulae E1, E3 and E4 are valid with tolerances down to 10−14. The difference is of 7
orders of magnitude; given that

√
ǫ ≈ 10−7, this is consistent with Remark 3.3 and Section 4.1.

In Figure 3, we observe that instabilities occur in the formula E3, especially for parameter values close to the
elements of Pselect. This is due to the poor conditioning of the matrix T when solving (4.3). The new formula E4

based on the EIM is seen to introduce much less numerical errors than E3.
In Figure 4, we plot max

µ∈Pselect

(E4(µ)) as a function of σ̂. From this figure and Definition 3.1, we deduce that

for σ̂ ≥ 23, the formula E4 is valid for any tolerance larger than 10−12. If we want to consider a tolerance of the
order of 10−14, we need σ̂ > 23.
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Figure 2. Error bound curves with respect to the parameter. The formula E4 is computed
with σ̂ = 23.

Figure 3. Comparison of the formulae E3 and E4, with respect to the formula E1.

4.4. Procedure 3: improvement of Procedure 2 using a stabilized EIM

In practice, round-off errors are accumulated during the loop in Algorithm 1, and if we keep increasing the
number of interpolation points, the coefficients of the matrix B suffer from round-off errors, so that the relation
det(B) = 1 no longer holds. The matrix B becomes non invertible at some stage. To solve this problem, we now
propose a numerical stabilization of EIM based on the following property:

Property 4.8. There holds

∀i < j, Ij ◦ Ii = Ii, (4.12)

where the interpolation operators Ij are defined by (4.8).

Proof. Using [30], Lemma 1, IiX̂ ∈ Span (q1, . . . , qi) and Iiv = v for all v ∈ Span (q1, . . . , qi). Therefore,
Ij ◦ IiX̂ = IiX̂ for all i < j. �

In our numerical experiments, we observe that, as the number of iterations of the greedy procedure for the
EIM grows, the relation (4.12) is no longer verified numerically, due to accumulation of round-off errors. These
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Figure 4. max
µ∈Pselect

(E4(µ)) as a function of σ̂.

Table 1. Comparison between stabilized Gram–Schmidt and stabilized EIM.

stabilized Gram–Schmidt stabilized EIM

global input (v1, . . . , vσ̂) basis of C
σ̂ v : Ptrial → C

σ̂

classical residual at step k δkvk = vk − Πkvk (δkv)(µ) = v(µ) − (Ikv)(µ)

δ
k,1
stabvk = vk − Π1vk (δk,1

stabv)(µ) = v(µ) − (I1v)(µ)

intermediate residuals at step k δ
k,2
stabvk = δ

k,1
stabvk − Π2δ

k,1
stabvk, (δk,2

stabv)(µ) = (δk,1
stabv)(µ) − I2(δk,1

stabv)(µ),

...
...

δ
k,k
stabvk = δ

k,k−1
stab vk − Πkδ

k,k−1
stab vk (δk,k

stabv)(µ) = (δk,k−1
stab v)(µ) − Ik(δk,k−1

stab v)(µ)

stabilized residual at step k δk
stabvk = δ

k,k
stabvk (δk

stabv)(µ) = (δk,k
stabv)(µ)

(δ1
stabv1, δ

2
stabv2, . . . , δ

σ̂
stabvσ̂)

global output (I σ̂v)(µ)
orthogonal basis of Span(v1, . . . , vσ̂)

numerical instabilities can be compensated in the same fashion as the Gram–Schmidt orthonormalization pro-
cedure is stabilized (see [22], Chap. 5.2.8). The Gram–Schmidt algorithm transforms a linearly independent
family of vectors {vi} into an orthonormal basis {ui}. To simplify the presentation, we suppose in what follows
that the normalization step is not carried out. Consider the orthogonalization step for the kth vector. We de-
note by Πk the projection operator on Span(u1, . . . , uk), and δk := Id − Πk. For the EIM, we suppose that
(k − 1) interpolation operators Ii, 1 ≤ i ≤ k − 1, have been constructed, and we wish to construct the kth
interpolation operator Ik. A comparison between the stabilized Gram–Schmidt orthonormalization procedure
and the proposed stabilization for the EIM is presented in Table 1.

Proposition 4.9. Let k ∈ N∗. In exact arithmetic, the following relations hold for the residuals defined in

Table 1: δk
stabv = δkv.

Proof. We prove by recursion that, for all i ≤ k, δ
k,i
stab = δi. The case i = 1 is clear from the definition of the

first intermediate residual in Table 1. Let i ≤ k and suppose that δ
k,i−1
stab = Id − Ii−1 for the EIM. There holds

δ
k,i
stab = δ

k,i−1
stab − Ii ◦ δ

k,i−1
stab = Id − Ii−1 − Ii + Ii ◦ Ii−1 = Id − Ii = δi, (4.13)
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Figure 5. Determinant (left) and condition number (right) of the matrix Bσ̂ as a function of σ̂,
for the classical EIM, the classical EIM with unique choice, and the stabilized EIM. The classical
EIM curves stop at 21 interpolation points since Bσ̂ becomes non invertible at 22 points.

since Ii ◦ Ii−1 = Ii−1 owing to Property 4.8. The results follow from the case i = k. The same relation is proved
likewise for the Gram–Schmidt procedure, for which Πi ◦ Πi−1 = Πi−1 holds as well. �

Definition 4.10 (Stabilized EIM). The stabilized EIM consists in the same offline procedure as the one de-
scribed in Section 4.2, except that the residuals δk are replaced by the stabilized residuals δk

stab defined in
Table 1. The online stage is the same as that of the classical EIM.

The stabilized Gram–Schmidt procedure generates a set of vectors much less polluted by round-off errors
(see [4,20]). By analogy we expect that the stabilized EIM produces a more accurate interpolation procedure than
the classical EIM, that is, much less polluted by round-off errors. This is numerically verified in Figure 5, where
det(Bσ̂) and cond(Bσ̂) are represented as a function of σ̂. We consider the test case described in Section 4.3,
where we recall that N̂ = 7, d = 2, and σ = 225. If the method is stable, then det(Bσ̂) = 1 should hold
throughout the process. Figure 5 shows that the stabilized EIM behaves as intended. The classical EIM curve
stops since the matrix Bσ̂ becomes noninvertible at some point: a parameter already in Pinter has been selected
by the greedy algorithm. Invertibility can be recovered artificially by ensuring that the new interpolation point
is not an element of the current set Pinter. We call this procedure EIM with unique choice. However, this fix is
not completely satisfactory, since det(Bσ̂) = 1 is not satisfied. Moreover, cond(Bσ̂) is much more ill-behaved
with this procedure than with the stabilized EIM.

Remark 4.11 (Computational cost and variant of stabilized EIM). The computational cost of the stabilized
EIM is more than that of the classical EIM, since the stabilized residual requires as many calls to a classical
residual as the number of selected interpolation points (i.e. the scaling with σ̂ is σ̂2 for the stabilized EIM as
opposed to σ̂ for the classical EIM). One can think of a cheaper procedure by monitoring det(Bσ̂) and adding
some intermediate residuals δ

k,j
stab until det(Bσ̂) is close enough to 1.

4.5. Summary

The advantages and drawbacks of the four considered formulae for computing the error bound are summarized
in Table 2. To estimate the computational complexity of the methods, we keep only the leading order in operation
count. We denote the complexity of the resolution of (2.12) by Nsol. The linear systems of size σ, σ̂, and N̂ are
supposed to be solved by a direct solver, hence with complexity proportional to σ3, σ̂3, and N̂3, respectively.
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Table 2. Comparison of the considered formulae for computing the error bound.

Property E1 E2 E3 E4

Online efficient No Yes Yes Yes

Unconditionally well-posed Yes Yes No Yes

Dependence on ǫ of the observed accuracy ǫ
√

ǫ ǫ, if well-posed ǫ

Yes, if σ̂ = σ
Equals E1 in exact arithmetics – Yes Yes

No, if σ̂ < σ

σ̂4σM + σ̂Nsol with classical EIM
Complexity of the offline stage – (dN̂ + 1)Nsol σNsol

σ̂5σM + σ̂Nsol with stabilized EIM

Complexity of the online stage – N̂3 + σ N̂3 + σ3 N̂3 + σ̂3

Figure 6. Geometry for the three-dimensional acoustic scattering problem.

For the offline stage of E2 and E3, we have to evaluate respectively dN̂ + 1 and σ times the functional Gµ,
which requires to solve (2.12). For the offline stage of E4, let M denote the cardinality of Ptrial. The k-loop in
Algorithm 1 requires at each step to compute a maximum over σ different ℓ∞(Ptrial) norms, and then to solve
a linear system of size k, leading to a complexity of σ̂4σM + σ̂Nsol. If the stabilized EIM is used instead for E4,
each residual evaluation in the k-loop requires solving k linear systems of size 1 to k, leading to a complexity of
σ̂5σM + σ̂Nsol. For the online stage, all the formulae require to solve the problem Êµ of size N̂ . Moreover, E2

additionally requires a linear combination of size σ, whereas E3 and E4 require to solve a linear system of size σ

and σ̂ respectively. We notice that if Nsol ≫ σ̂4σM and σ̂ < dN̂ + 1, then the offline stage of E4 with stabilized
EIM requires less precomputations than the offline stage of E2.

5. Application to a three-dimensional acoustic scattering problem

5.1. Formulation of the problem

We consider a ball Ωi ⊂ R3 with boundary Γ and Ωe := R3\Ωi, see Figure 6. We consider a monopole source
located in Ωe. The surface of the ball is impedant, meaning that any incident wave will be partially absorbed and
partially scattered. The proportion of absorbed and scattered parts is quantified by the impedance coefficient µ,
which is used in a Robin boundary condition at Γ . We are interested in the computation of the scattered field psc

in Ωe. We denote pinc the known pressure field created by the source in the absence of the sphere; the total
acoustic field in Ωe is the sum of pinc and psc.
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We define the distribution v : Ωe ∪ Ωi −→ C such that v|Ωi = −pinc, v|Ωe = psc. We denote λ and χ the

jumps of the Neumann and Dirichlet traces of v across Γ . The Robin boundary condition writes λ + ik
µ

χ = 0.

Since v solves the homogeneous Helmholtz equation in Ωe and in Ωi and satisfies the Sommerfeld radiation
condition at infinity, there holds

v = −Sλ + Dχ in Ωe ∪ Ωi, (5.1)

where S and D are respectively the single- and double-layer potentials. Taking the interior Dirichlet and Neu-
mann traces of v in equation (5.1) and injecting the Robin boundary condition, we obtain

[

N − ik
2µ

I D̃

D −S − iµ
2k

I

] [

χ
λ

]

=

[

γ−
1 pinc

−γ−
0 pinc

]

, (5.2)

where k is the wave number of the monopole source, N , D̃, D and S are classical boundary integral operators
(see [37]), and γ−

0 pinc and γ−
1 pinc are respectively the interior Dirichlet and Neumann traces of the known

function pinc. Solving one of these two equations, together with the Robin boundary condition, is sufficient. The
software we are using, ACTIPOLE (see [16, 17]), deals with the block system defined in (5.2), which presents
the advantage of being invertible for all frequencies of the source, when the surface Γ is Lipschitz. We denote
Aµ the block operator defined by the left-hand side of (5.2). From [26, 31, 37], we infer that Aµ is a bounded

bijective operator from H
1
2 (Γ )×L2(Γ ) into H− 1

2 (Γ )×L2(Γ ) (see also [10]). The variational form is as follows:
find (χ, λ) ∈ H

1
2 (Γ ) × L2(Γ ) such that for all (χ̂, λ̂) ∈ H

1
2 (Γ ) × L2(Γ ),

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

Nχ − ik

2µ
χ, χ̂

)

+
(

D̃λ, χ̂
)

= (γ1pinc, χ̂) ,

〈

λ̂, Dχ
〉

−
〈

λ̂, Sλ +
iµ

2k
λ

〉

= −
〈

λ̂, γ0pinc

〉

,

(5.3)

where (·, ·) denotes the H
1
2 (Γ ) × H− 1

2 (Γ ) duality product and 〈·, ·〉 denotes the L2(Γ ) inner product.
Let M be a shape-regular triangular mesh of Γ with meshsize h, and let V 1

h and V 0
h be respectively the

spaces spanned by continuous piecewise affine polynomials on M and piecewise constant polynomials on M.
Let (φi)1≤i≤P and (ψj)1≤j≤P ′ be the usual bases of V 1

h and V 0
h of size P and P ′, respectively. The product

space V 1
h × V 0

h is a conforming approximation of H
1
2 (Γ ) × L2(Γ ). The discrete problem is derived from a

Galerkin procedure on V 1
h × V 0

h using the boundary element method (BEM). From [26], the obtained discrete
approximation of the problem (5.3) is inf-sup stable for h small enough (see also [10]). A direct solver is used,
in double-precision format.

5.2. Application of the RB method

The RB method has recently been applied to problems solved by means of integral equations in electromag-
netism, see [13, 19]. In these works, the classical a posteriori error bounds were used. We are here interested in
the application of our improved a posteriori error bounds to such problems. We take as parameter for the RB
method the value of the impedance µ, which is supposed here to be a positive real number. To recover an affine
dependence on the parameter µ, we write the BEM matrix in the form Aµ = a1(µ)A1 + a2(µ)A2 + a3(µ)A3, so
that d = 3 in the affine decomposition (2.7) with a1(µ) = 1, a2(µ) = 1

µ
and a3(µ) = µ. Specifically,

A1 =

⎡

⎢

⎣

(Nφi, φj) 1 ≤ i ≤ P
1 ≤ j ≤ P

(

D̃ψj , φi

)

1 ≤ i ≤ P

1 ≤ j ≤ P ′

〈Dφj , ψi〉 1 ≤ i ≤ P ′

1 ≤ j ≤ P

〈−Sψi, ψj〉 1 ≤ i ≤ P ′

1 ≤ j ≤ P ′

⎤

⎥

⎦
, (5.4)

A2 =

⎡

⎢

⎣

− ik
2 (φi, φj) 1 ≤ i ≤ P

1 ≤ j ≤ P

(0) 1 ≤ i ≤ P

1 ≤ j ≤ P ′

(0) 1 ≤ i ≤ P ′

1 ≤ j ≤ P

(0) 1 ≤ i ≤ P ′

1 ≤ j ≤ P ′

⎤

⎥

⎦
, A3 =

⎡

⎢

⎣

(0) 1 ≤ i ≤ P
1 ≤ j ≤ P

(0) 1 ≤ i ≤ P

1 ≤ j ≤ P ′

(0) 1 ≤ i ≤ P ′

1 ≤ j ≤ P ′

− i
2k

〈ψi, ψj〉 1 ≤ i ≤ P ′

1 ≤ j ≤ P ′

⎤

⎥

⎦
. (5.5)
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Figure 7. Real part of the pressure field for the BEM solution (left) and the RB solution
(right), with a basis of size 10. The difference between the two fields is less than 10−15 in
infinity norm.

In the general-purpose RB, the quantity of interest is the pair of potentials (χ, λ) on Γ . For the goal-oriented
case, we consider the value of the pressure at a given point in Ωe. If this point is far enough from Γ , approxi-
mations can be made in the representation formula for the pressure. This is the far-field approximation, which
consists in a linear form Q acting on the solution pair (χ, λ) as

Q(χ, λ) =

⎛

⎜

⎜

⎜

⎝

−ik
e−ik‖x‖2

4π‖x‖2

(

e
−iky· x

‖x‖2

x

‖x‖2
· n(y), χ(y)

)

ik
e−ik‖x‖2

4π‖x‖2

∫

Γ

(

e
−iky· x

‖x‖2 , λ(y)
)

⎞

⎟

⎟

⎟

⎠

∈ C
2. (5.6)

For simplicity, we take the Euclidian norm of vectors in CP+P ′

instead of the H
1
2 (Γ ) × L2(Γ ) norms of the

reconstructed functions. This way, the Riesz isomorphism J is simply the identity. Therefore, the computation
of the terms Gµuµ, as well as that of the terms Gkui, does not require to invert the stiffness matrix as in (2.12).
The Successive Constraint Method is used to compute a lower bound of the inf-sup constant, which is around
10−6 in the present examples.

We define two test cases: (i) one impedant sphere (d = 3), with N = 584 and µ ∈ P := [0.9, 1.1], (ii) two
impedant spheres (d = 5), with N = 1561 and µ ∈ P := [0.99, 1.01]2. We present visualizations of the scattered
pressure field, at a random value of the parameter µ, for test case (i) with #Ptrial = 100 and N̂ = 10 in Figure 7
and for test case (ii) with #Ptrial = 225 and N̂ = 10 in Figure 8.

5.3. Error bound curves

We present the error bound curves for test case (i) with a general-purpose RB, #Ptrial = 100, (N̂ , σ̂, σ) =
(2, 7, 49), (3, 10, 100), (4, 20, 169), and (5, 30, 256) in Figure 9 and for test case (ii) with a goal-oriented RB,
#Ptrial = 225, N̂ = 8, σ̂ = 60, and σ = 1681 in Figure 10.

In test case (i), the classical formula E2 exhibits quite poor performances, since it cannot compute values
below 10−4. This is explained by the values of the inf-sup constant which are around 10−6. Furthermore, in
agreement with Remark 3.3, the lowest computable values of E1 and E2 differ by 8 orders of magnitude. In test
case (ii), the behavior of formula E3 is quite poor, and we do not observe the level of accuracy we observed
so far for E3. Here, the matrix T defined in (4.3) is so ill-conditioned that the numerical errors introduced by
its resolution are larger than the ones introduced by the formula E2. Furthermore, the formula E4 exhibits,
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Figure 8. Real part of the pressure field for the BEM solution (left) and the RB solution
(right), with a basis of size 10. The difference between the two fields is less than 10−15 in
infinity norm.

Figure 9. Error bound curves with respect to the impedance coefficient, with N̂ equal to 2,
3, 4, and 5 (from left to right and top to bottom). The curve for E2 computed in quadruple
precision superimposes to E1.
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e)

a)

c)

b)

d)

Figure 10. Error bound curves (logarithmic scale) as a function of the impedance coefficients:
a) E1, b) E2, c) E3, d) E4, and e) E2 computed in quadruple precision.



ACCURATE AND ONLINE-EFFICIENT EVALUATION OF THE A POSTERIORI ERROR BOUND IN RB METHOD 227

Figure 11. Error bound curve for E4 with respect to the impedance coefficient, with N̂ = 5
and σ̂ equal to 14, 30, 40, and 50 (from left to right and top to bottom).

as before, a very good performance. We see in Figure 10 that argmax
µ∈Pselect

(E4(µ)) = (1, 1) and E4(1, 1) ≈ 10−16;

therefore, the formula E4 with σ̂ = 60 is valid for computing the error bound in Algorithm 1 with tol = 10−16.
The behavior of E4 when σ̂ increases is investigated in Figure 11 for test case (i). We consider the values

σ̂ = 14, 30, 40 and 50. These four values lead to the same local maxima, and increasing σ̂ allows the formula
E4 to be valid for smaller tolerances (respectively 5 × 10−8, 10−8, 8 × 10−9 and 2 × 10−9). Another interesting
observation comes from considering the fourth plot in Figure 9 and the first plot in Figure 11: the classical
formula E2 requires 16 offline resolutions of (2.12) and stagnates at 10−4 while the formula E4 with σ̂ = 14 only
requires 14 offline resolutions of (2.12) and is valid for tolerances down to 5 × 10−8. This shows that at least
in some regimes, the new formula E4 is valid for lower tolerances than the classical formula E2, and requires
less precomputations. However, contrary to E2, using E4 requires that all the quantities Vr defined in (4.2) be
recomputed when adding a new vector to the reduced basis.

Conclusion

In this work, we have extended the ideas of [9] by proposing a more stable numerical procedure, using the
empirical interpolation method, to represent the a posteriori error bound in the reduced basis method as a
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linear combination of its values at given parameter values, called interpolation points. Moreover, the proposed
method provides a way of choosing the interpolation points, and yields better accuracy levels than the classical
a posteriori error bound and than the procedure proposed in [9]. Besides, our new procedure may require less
precomputations than the classical a posteriori error bound. The new error bound derived herein can be of
particular interest in two situations: (i) when the stability constant of the original problem is very small (this
is the case in many practical problems), (ii) when very accurate solutions are needed.

Acknowledgements. This work was partially supported by EADS-IW. The authors wish to thank Anthony Patera (MIT)
for fruitful discussions.
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