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With the increasing ability to routinely and rapidly digitize whole slide images with slide scanners, 

there has been interest in developing computerized image analysis algorithms for automated detection 

of disease extent from digital pathology images. The manual identification of presence and extent 
of breast cancer by a pathologist is critical for patient management for tumor staging and assessing 

treatment response. However, this process is tedious and subject to inter- and intra-reader variability. 

For computerized methods to be useful as decision support tools, they need to be resilient to data 

acquired from different sources, different staining and cutting protocols and different scanners. The 
objective of this study was to evaluate the accuracy and robustness of a deep learning-based method 

to automatically identify the extent of invasive tumor on digitized images. Here, we present a new 

method that employs a convolutional neural network for detecting presence of invasive tumor on 

whole slide images. Our approach involves training the classifier on nearly 400 exemplars from multiple 
different sites, and scanners, and then independently validating on almost 200 cases from The Cancer 
Genome Atlas. Our approach yielded a Dice coefficient of 75.86%, a positive predictive value of 71.62% 
and a negative predictive value of 96.77% in terms of pixel-by-pixel evaluation compared to manually 
annotated regions of invasive ductal carcinoma.

Detection of tumor cells in a histologic section is the �rst step for the pathologist when diagnosing breast cancer 
(BCa). In particular, tumor delineation from background uninvolved tissue is a necessary prerequisite for sub-
sequent tumor staging, grading and margin assessment by the pathologist1. However, precise tumor detection 
and delineation by experts is a tedious and time-consuming process, one associated with signi�cant inter- and 
intra-pathologist variability in diagnosis and interpretation of breast specimens2–6.

Invasive breast cancers are those that spread from the original site (either the milk ducts or the lobules) into 
the surrounding breast tissue. �ese comprise roughly 70% of all breast cancer cases7,8, and they have poorer 
prognosis compared to the in-situ sub-types7. Isolation of invasive breast cancer allows for further analysis of 
tumor differentiation via the Bloom-Richardson and Nottingham grading schemes, which estimate cancer 
aggressiveness by evaluating histologic characteristics including: tubule formation, nuclear pleomorphism and 
mitotic count1. �erefore, an automated and reproducible methodology for detection of invasive breast cancer on 
tissue slides could potentially reduce the total amount of time required to diagnose a breast case and reduce some 
of this inter- and intra-observer variability9,10.
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Digital pathology refers to the process of digitization of tissue slides. �e process of slide digitization could 
enable more e�cient storage, visualization, and pathologic analysis of tissue slides and could potentially improve 
overall e�ciency of routine diagnostic pathology work�ow11.

Quantitative histomorphometry refers to the application of computational image analysis and machine learn-
ing algorithms to identify and characterize disease patterns on digitized tissue slides12. In the context of breast 
cancer pathology, a number of computational imaging approaches have been recently applied for problems such 
as (i) detection of mitoses13–17, tubules18,19, nuclei19,20, and lymphocytes21, (ii) cancer grading19,22, (iii) correlation 
of quantitative histologic image features and molecular features of breast cancer aggressiveness23, and (iv) identi-
�cation of histologic image features that are predictive of breast cancer outcome and survival24.

�ese previous approaches have typically limited their analysis to only small portions of tissue or tissue 
microarrays (TMAs) as opposed to larger whole slide images. Basavanhally et al.22, looked at the problem of 
computerized Bloom-Richardson grading of estrogen receptor positive breast cancers within manually de�ned 
regions of interest on whole slide images. While some approaches have looked at the problem of classifying 
images as either containing cancer or not25,26, no approach that we are aware of has tackled the problem of auto-
mated delineation of invasive carcinoma on whole slide images.

Neural network learning refers to a class of machine learning methods that is gaining popularity in histopa-
thology image analysis13,17,27–33. A neural network is composed of arti�cial neurons that are arranged in layers 
and interchange information through connections. In recent years, neural network models comprising thou-
sands of neurons arranged in several layers have been shown to perform exceptionally well in computer vision 
and pattern analysis tasks34–37. Multi-level neural network learning approaches have recently acquired the name 
“deep learning” because of their multi-layer architecture. �ese networks are able to learn multiple levels of image 
representation to model complex non-linear relationships in the data, discovering more abstract and useful fea-
tures that make it easier to extract useful information for high-level decision tasks such as segmentation, classi-
�cation and prediction38–40. Because of the large number of parameters involved, deep learning methods require 
a large number of labeled training exemplars in order to be optimally trained. In problems where large num-
bers of training exemplars are available, deep learning methods have shown impressive prediction results, o�en 
outperforming state-of-the-art classi�cation methods36–38. �e advent of digitized whole pathology slides and 
the concomitant increase in the number of publicly available large histopathology image databases, such as �e 
Cancer Genome Atlas, has made digital pathology a good candidate for the application of deep learning based 
classi�cation models13,17,27–33.

In this study, we present a classi�cation approach for detecting presence and extent of invasive breast cancer 
on whole slide digitized pathology images using a ConvNet classi�er38,41,42. To ensure robustness of the classi�er 
to variations in slide preparation, staining, and choice of scanning platform, we trained and validated the classi�er 
with a large number of training exemplars drawn from three di�erent institutions. Additionally the classi�er was 
also independently evaluated on a large number of pathologic and normal cases drawn from �e Cancer Genome 
Atlas (TCGA) and University Hospitals Case Medical Center. �e goal of this study was to quantitatively evaluate 
the accuracy and robustness of a deep learning based machine classi�er to automatically identify the extent of 
invasive breast cancer on digitized whole slide images.

Results
Quantitative evaluation for automatic invasive breast cancer detection. Table 1 shows the detec-
tion performance of the ConvNet classi�er trained with data from Hospital of the University of Pennsylvania 
(HUP) and University Hospitals Case Medical Center/Case Western Reserve University (UHCMC/CWRU) in 
terms of mean and standard deviation of Dice coe�cient, positive predictive value (PPV), negative predictive 
value (NPV), true positive rate (TPR), true negative rate (TNR), false positive rate (FPR) and false negative rate 
(FNR) for the validation data set, in turn comprised of the TCGA and the NC cohorts. Figure 1 shows some 
representative slide images from the validation data set. Figure 1A–C depict the ground truth annotations from 
the pathologists on three whole-slide images from the TCGA data cohort and Fig. 1D–F represent the automatic 
predictions of the fully-trained ConvNet classi�er as a probability map of invasive breast cancer, with the color 
bar re�ecting the probability values, high probability values re�ected in red colors and low probability values in 
blue colors. Finally, three example slides without any malignant pathology and part of the NC cases are illustrated 
in Fig. 1G–I. As may be seen in Fig. 1G–I, the ConvNet classi�er did not identify any regions as having invasive 
breast cancer.

Robustness and reproducibility analysis inside heterogeneous histopathology slides. A 
detailed analysis by subgroups of only a type of invasive breast cancer (i.e. IDC or ILC) and mixture of inva-
sive and other types of in situ lesions (e.g. DCIS and LCIS) is presented in Table 2 for each of ConvNetHUP and 

Data 
set Dice PPV NPV TPR TNR FPR FNR

TCGA 0.7586 ±  0.2006 0.7162 ±  0.2204 0.9677 ±  0.0511 0.8691 ±  0.1582 0.9218 ±  0.0764 0.0782 ±  0.0764 0.1309 ±  0.1582

NC N/A N/A 1 ±  0 N/A 0.9964 ±  0.0110 0.0036 ±  0.0110 N/A

Table 1.  Performance measures for the ConvNet classi�er on the TCGA (pathological, N = 195) and NC 
(normal, N = 21) data cohorts. �e measures included Dice, PPV, NPV, TPR, TNR, FPR and FNR. Note that 
for the normal cases considered, not all the performance measures are shown because the NC data cohort did 
not have cancer annotations.
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ConvNetUHCMC/CWRU classi�ers. Each of ConvNetHUP and ConvNetUHCMC/CWRU was trained with one of either the 
HUP or the UHCMC/CWRU cohorts. �e quantitative performance results for both classi�ers, ConvNetHUP 
and ConvNetUHCMC/CWRU, on the validation CINJ data cohort (ConvNetHUP: Dice =  0.6771, PPV =  0.6464, 
NPV =  0.9709; ConvNetUHCMC/CWRU: Dice =  0.6596, PPV =  0.6370, NPV =  0.9663) are similar. �e results in 
Table 2 are also arranged according to the type of tumors in the sample (mixture or only invasive) and reveal 
that our method has better performance when the whole-slide images have only one type of invasive tumor 
(ConvNetHUP: Dice =  0.7578, PPV =  0.7462, NPV =  0.9654; ConvNetUHCMC/CWRU: Dice =  0.7596, PPV =  0.7462, 
NPV =  0.9614).

Figure 2 illustrates representative examples of whole slide images from the validation CINJ data cohort, 
involving only a single type of invasive tumor. �e detection results obtained via ConvNetHUP classi�er were 

Figure 1. (A–C) Example whole-slide images from test TCGA data cohort with ground truth annotations from 
pathologists, (D–F) the corresponding region predictions produced by the ConvNet classi�er and (G–I) region 
predictions for whole-slide images from the test NC data cohort of normal breast tissue without cancer.

Group N Dice PPV NPV

ConvNetHUP

 All cases 40 0.6771 ±  0.2445 0.6464 ±  0.2870 0.9709 ±  0.0350

 Only invasive 19 0.7578 ±  0.2166 0.7462 ±  0.2480 0.9654 ±  0.0355

 Mixture 21 0.6041 ±  0.2501 0.5560 ±  0.2953 0.5560 ±  0.2953

ConvNetUHCMC/CWRU

 All cases 40 0.6596 ±  0.2527 0.6370 ±  0.2941 0.9663 ±  0.0421

 Only invasive 19 0.7596 ±  0.2074 0.7499 ±  0.2423 0.9614 ±  0.0440

 Mixture 21 0.5691 ±  0.2602 0.5348 ±  0.3045 0.9708 ±  0.0409

Table 2.  Performance of the ConvNetHUP and ConvNetUHCMC/CWRU classi�ers on the CINJ data cohort 
in terms of means and standard deviation of Dice coe�cient, PPV and NPV. �e results in Table 2 are 
organized in terms of all cases in the CINJ cohort (N =  40), a subset of the CINJ cohort with invasive breast 
cancer alone (N =  19), and a mixture of invasive and other in situ subtypes of breast cancer (N =  21).
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compared against the ground truth annotations. Some cases from the CINJ validation data cohort where the 
ConvNetHUP classi�er resulted in a poor detection performance are illustrated in Figs 3 and 4. �e true-positives 
(TP), true-negatives (TN), false-positives (FP) and false-negatives (FN) regions, based on the predictions of the 
ConvNetHUP classi�er, are illustrated in green, blue, yellow and red respectively. Figure 3 shows a case of mucinous 
(colloid) carcinoma, which is a rare type of invasive ductal carcinoma with a very low prevalence (2–3% of the 
total invasive breast cancer cases)43. Figure 4 depicts a challenging case, which is composed of a mixture of inva-
sive and in situ carcinoma elements.

Correspondence and reproducibility analysis among different classifiers and data 
cohorts. Table 3 illustrates the performance measures for the ConvNetHUP and ConvNetUHCMC/CWRU classi�ers 
on the TCGA and NC testing sets. �e consistency of the predictions of both models is estimated by calcu-
lating the correlation coe�cient, r, between the performance measures obtained for each of ConvNetHUP and 
ConvNetUHCMC/CWRU. On the TCGA cohort, the correlation coe�cient in Dice coe�cient for ConvNetHUP and 
ConvNetUHCMC/CWRU was r =  0.8733, re�ecting a high degree of concordance. Figure 5 shows a scatter plot where 
the X axis corresponds to the Dice coe�cient of the predictions generated by ConvNetHUP and the Y axis cor-
responds to the Dice coe�cient of the predictions generated by ConvNetUHCMC/CWRU, each dot corresponds to a 
slide sample from the TCGA data cohort. �e scatter plot in Fig. 5 reveals a well-de�ned cluster with most cases 
aggregating in the upper-right corner. �e scatter plot suggests that both the ConvNetHUP and ConvNetUHCMC/CWRU 
classi�ers have a high degree of agreement in their predictions of the presence and extent of invasive tumor 
regions. Figure 5 also helps identify cases (red circles) where both the ConvNetHUP and ConvNetUHCMC/CWRU dis-
agreed in their predictions. Figure 6 showcases the test images where the classi�ers tended to disagree. A closer 
inspection of these cases suggested, suggests that the lack of concordance is primarily in those cases where the 
staining characteristics substantially deviate from the staining in the cases in the training cohorts. Figure 6A,B 
illustrate a couple of slides characterized by low levels of hematoxylin and high levels of eosin. �e slide shown in 
Fig. 6C illustrates an example of a “black discoloration artifact” due to air bubbles on the slide, a common prob-
lem when the slide has been in storage for a long time. Usually, these cases are not appropriate for diagnosis and 

Figure 2. Example results for the ConvNetHUP classi�er on the CINJ validation data cohort. �e probability 
map predicted by the ConvNetHUP classi�er (second row, (D–F)) was compared against ground truth 
annotations by a pathologist (�rst row (A–C)). �e third row shows the evaluation results of the ConvNetHUP 
classi�er in terms of TP (green), FN (red), FP (yellow), and TN (blue) regions.
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a pathologist would probably reject them in a quality control process ordering for another slide to be cut from 
the tissue sample.

Despite these special cases of disagreement caused by staining issues, both the ConvNetHUP and 
ConvNetUHCMC/CWRU classi�ers yielded similar predictions and performance. However, the ConvNetHUP classi�er 
appears to have a slightly higher con�dence interval associated with the Dice and PPV performance measures. On 
the other hand, NPV and TNR from both classi�ers show high mean values with very small standard deviation. 
Similarly on the NC data cohort, which is exclusively composed of normal breast samples, both the ConvNetHUP 
and ConvNetUHCMC/CWRU classi�ers exhibited a very high mean TNR and a very low FPR, with very low associated 
standard deviation. �is appears to suggest that both classi�ers are able to con�dently and consistently reject 
non-invasive tissue regions.

Example results of the predictions from the ConvNetHUP and ConvNetUHCMC/CWRU classi�ers on the TCGA and 
NC test data sets are presented in Figs 7 and 8. While both the ConvNetHUP and ConvNetUHCMC/CWRU classi�ers 
tend to produce consistent predictions, the ConvNet classi�er, which was trained using the complete training data 
set, had the best overall performance (Fig. 1).

Discussion
�e experimental results show that the method is able to detect invasive breast cancer regions on whole slide 
histopathology images with a high degree of precision, even when tested on cases from a cohort di�erent to the 
one used for training. �e most challenging cases for the method were slides where invasive breast cancer was 
mixed in with in situ disease (which is not surprising and could be reduced by training a more complex network 
that included examples of these precursor lesions).

An important part of the experimental setup was the analysis of the detection sensitivity of the method to 
the data used for training. �e results show that the classi�ers trained with two di�erent data cohorts, HUP and 
UHCMC/CWRU, exhibit highly correlated performance measures (r ≥  0.8) over the independent TCGA test 
data cohort (see Table 3). Despite this, there are some di�erences in the prediction performance of the two clas-
si�ers, possibly suggesting “batch e�ects”44, that originated from the process of ground truth annotation or slide 
digitization. �is is illustrated in Figs 5 and 6, which show representative slides with artifacts due to problems in 
the histotechnique process. �e method shows a very low false positive rate, as evidenced by the results in the NC 
cohort (ConvNetHUP: FPR =  0.0284; ConvNetUHCMC/CWRU: FPR =  0.0454), which comprised only normal breast sec-
tions. �e performance of the ConvNet improved as the number of training samples increased, i.e. the ConvNet 
classi�er trained with both the HUP and UHCMC/CWRU data cohorts yielded the best overall performance 
(Table 1 and Fig. 1).

The ConvNet was used as a patch-based classifier. We addressed the tissue classification task through 
a learned feature approach instead of a hand-cra�ed feature approach13,17,27,29,38,42. However, any statistical or 

Figure 3. Whole-slide image from CINJ validation data cohort diagnosed with a rare type of IDC: 
mucinous carcinoma of the breast. (A) �e comparison between the ground truth annotations and the 
predictions from the ConvNetHUP classi�er reveal both FN (red) and FP (yellow) errors. (B,C) Most of the FN 
regions, i.e. tissues wrongly labeled as non-invasive tumor, correspond to mucinous carcinoma, whilst (D) most 
of FP regions, i.e. tissues wrongly predicted as invasive tumor, are actually invasive mucinous carcinoma that 
was not included in the annotations by the pathologist.
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machine learning classi�er could be used in combination with a set of hand-cra�ed features for tissue classi�ca-
tion. For instance, in addition to successful deep learning methods (i.e. ConvNets and Autoencoders) applied in 
histopathology image analysis13,17,27–29, a set of hand-cra�ed features (color/intensity features, texture features, 
graph-based features, etc.) and machine learning methods (random forests and support vector machines) could 
and have been applied to histopathology image analysis33,45–48. We did a comparative analysis with some of these 
visual features used in histopathology image analysis against three di�erent ConvNet architectures. �e ConvNet 
classi�ers showed better performance in our patch-based image classi�cation task. �ese results are presented in 
subsection: Invasive Breast Cancer Tissue Detection in Whole-Slide Images.

Our study did, however, have its limitations. �ere are some subtypes of invasive breast cancers that our 
method is not able to detect in a precise way such as the rare special histologic subtype mucinous carcinoma that 
comprises around 3% of the invasive breast cancers. In fact, in the test data set there are two cases similar to Fig. 3, 
with mucinous carcinoma that were not detected. Another limitation is that some in situ breast cancer regions 
were incorrectly classi�ed as invasive breast cancer, in situ disease is di�erent from invasive cancer. However, 
the reporting of the presence of both invasive and in situ carcinoma is a critical part of a diagnostic pathology 
workup. It is worth noting though that our approach was able to achieve a very high level of accuracy in terms of 
rejecting non-invasive tissue regions (normal controls) as not being cancer. Exemplars of DCIS and LCIS could, 
in future work, be included as part of an expanded learning set, as it would not doubt improve the classi�cation 
performance and generalizability of the model. Additionally and as part of future work, the learning set could 
be expanded to include other rare variants of invasive ductal carcinoma, such as mucinous invasive carcinomas.

Batch e�ects are one of the main sources of variation in evaluating the performance of automated machine 
learning approaches. �ese batch e�ects include stain variability due to di�erent histology protocols from di�er-
ent pathology labs and variations in the digitization process on account of the use of di�erent slide scanners44. 
Our results suggest a slight batch e�ect with two di�erent data cohorts (ConvNetHUP and ConvNetUHCMC/CWRU). 
Results of Table 2 appears to suggest that the di�erences between both classi�ers is related more to the number of 
samples employed for training each of the classi�ers (HUP, N =  239, and UHCMC/CWRU, N =  110) and possibly 
less related to the constitution of the di�erent histologic subtypes within the training cohorts. However, the use of 
all available training data (HUP and UHCMC/CWRU) results in a more con�dent, accurate and robust ConvNet 
classi�er. Clearly, increasing the training data set size and diversity results in a better and more robust algorithm. 
ConvNet also performs better when a case has only a single morphologic pattern of invasive breast cancer in the 
whole slide images. Cases with a mixture of invasive and in situ breast cancer resulted in a reduction in the overall 
accuracy of the ConvNet classi�er (in situ tumors may be incorrectly classi�ed as invasive carcinoma). One way 

Figure 4. �e most challenging whole-slide image in the CINJ validation cohort achieved the poorest 
performance via the ConvNetHUP classi�er with (A) many FP regions and a Dice coe�cient of 0.0745. (B) Some 
of the FN errors are due to the confounding morphologic attributes of the tumor, arising due to a mixing of 
IDC with fat cells and irregular, in�ltrating looking cribriform glands with DCIS. �e FP regions appear to be 
primarily be due to (C) sclerosing adenosis, and (D) DCIS surrounded by IDC.
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of potentially reducing batch e�ects is to apply color normalization on the digitized images prior to training or 
application of the ConvNet classi�er. To reduce false positive classi�cation errors we are exploring the expansion 
of the current two class ConvNet classi�er into a multiclass predictor. �is will allow for the ConvNet classi�er to 
explicitly deal with the detection of additional subtypes of invasive and in situ breast cancers.

One interesting aspect of our work is that the trained ConvNet classi�er can be easily integrated into other 
computational frameworks such as automated tumor grading of ER+  breast cancer subtypes in histopathology 
images22. Our automated invasive cancer detection algorithm could thus pave the way for creation of decision 
support tools for breast cancer diagnosis, prognosis and theragnosis for use by the pathology community. Future 
studies will address these opportunities. Additionally follow on work will need to systematically compare the 
approach presented in this paper with state of the art visual features and machine learning approaches that have 
been previously applied to the problem of histopathology image analysis.

In conclusion, we presented an automatic invasive breast cancer detection method for whole slide histopathol-
ogy images. Our study is unique in that it involved several hundred studies from multiple di�erent sites for train-
ing the model. Independent testing of the model on multi-site data revealed that the model was both accurate and 
robust. �is method can be applied to large, digitized whole slide images to detect invasive tissue regions, which 
could be integrated with other computerized solutions in digital pathology such as tumor grading.

Methods
Ethics Statement. Data analysis was waived review and consent by the IRB board, as all data was being ana-
lyzed retrospectively, a�er de- identi�cation. All experimental protocols were approved under the IRB protocol 
No. 02-13-42C with the University Hospitals of Cleveland Institutional Review Board, and all experiments were 
carried out in accordance with approved guidelines.

Patients and Data Collection. �is study involved images from �ve di�erent cohorts from di�erent insti-
tutions/pathology labs in the United States of America and TCGA49,50. �e �ve cohorts were used for training, val-
idation and independent testing of our method. �e training data set had 349 estrogen receptor-positive (ER+ )  
invasive breast cancer patients, of which 239 were from Hospital of the University of Pennsylvania (HUP), and 
110 from University Hospitals Case Medical Center/Case Western Reserve University (UHCMC/CWRU). 
Patients from the HUP cohort ranged in age between 20 and 79 (average age 55 ±  10). In the UHCMC/CWRU 

Dice PPV NPV TPR TNR FPR FNR

TCGA

 ConvNetHUP 0.7494 ±  0.2071 0.7071 ±  0.2254 0.9658 ±  0.0514 0.8600 ±  0.1705 0.9188 ±  0.0805 0.0812 ±  0.0805 0.1400 ±  0.1705

 ConvNetUHCMC/CWRU 0.7068 ±  0.2061 0.6464 ±  0.2188 0.9629 ±  0.0584 0.8676 ±  0.1706 0.8880 ±  0.0824 0.1120 ±  0.0824 0.1324 ±  0.1706

 r 0.8733 0.9258 0.8109 0.6345 0.8055 0.8055 0.6345

NC

 ConvNetHUP N/A N/A 1 ±  0 N/A 0.9716 ±  0.0693 0.0284 ±  0.0693 N/A

 ConvNetUHCMC/CWRU N/A N/A 1 ±  0 N/A 0.9546 ±  0.0816 0.0454 ±  0.0816 N/A

 r N/A N/A N/A N/A 0.6876 0.6876 N/A

Table 3.  Comparison and correlation of the ConvNetUHCMC/CWRU and ConvNetHUP classi�ers in terms of 

Dice, PPV, NPV, TPR, TNR, FPR and FNR. Note that for the normal cases considered, not all the performance 

measures are shown because the NC data cohort did not have cancer annotations.

Figure 5. Agreement plot of the Dice coe�cient for the ConvNetHUP (X-axis) and ConvNetUHCMC/CWRU 
(Y-axis) classi�ers for each slide (blue circles) in the TCGA cohort. �e slides with higher disagreement are 
identi�ed with red circles (see Fig. 6).
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cohort, the patient ages ranged from 25 to 81 (average age 58 ±  10). �e validation data set contained 40 ER+  
invasive breast cancer patients from the Cancer Institute of New Jersey (CINJ). �e test data set was composed of 
two distinct subsets of positive and negative controls. For the test data set, we accrued a set of 195 ER+  invasive 
breast cancer cases from TCGA, ages ranging from 26 to 90 (average age 57 ±  13). For the negative controls (NC) 
in the test data set, we used normal breast tissue sections taken from uninvolved adjacent tissue from 21 patients 
diagnosed with invasive ductal carcinoma from UHCMC/CWRU, Cleveland, OH. Patient speci�c information 
pertaining to race, tumor grade, and outcome were not explicitly recorded for this study.

Hematoxylin and eosin (H&E) slides from all the various training, validation and testing cohorts (HUP, CINJ, 
UHCMC/CWRU, TCGA) were independently reviewed by four expert pathologists (NS, JT, MF, HG) to con�rm 
the presence of at least one type of invasive breast cancer tumor. �e normal control H&E slides were reviewed 
by one pathologist (HG). Tumors were categorized into one of the following histological types: invasive carci-
noma were categorized as either invasive ductal carcinoma (IDC) or invasive lobular carcinoma (ILC), while 
pre-invasive carcinoma was categorized as ductal carcinoma in situ (DCIS) or lobular carcinoma in situ (LCIS). 
Only those cases were considered in our study where at least two pathologists concurred on the diagnosis.

Slide Digitization and Pathologists Ground Truth. H&E stained histopathology slides were digitized 
via a whole-slide scanner at 40x magni�cation for this study. An Aperio Scanscope CS scanner was used to dig-
itize cases from the HUP, CINJ and TCGA cohorts. �e Ventana iCoreo scanner was used for scanning the 
UHCMC/CWRU and NC data cohorts. 40x magni�cation corresponds to Aperio’s slides at 0.25 µm/pixel resolu-
tion and to Ventana’s slides at 0.23 µm/pixel.

Expert pathologists provided the ground truth annotations of invasive breast cancer regions for all the data 
cohorts (HUP, CINJ, UHCMC/CWRU, TCGA). �e region annotations were obtained via manual delineation of 
invasive breast cancer regions by expert pathologists using the ImageScope v11.2 program from Aperio and the 
Ventana Image Viewer v3.1.4 from Ventana. To alleviate the time and e�ort required to create the ground truth 
annotations for extent of invasive breast cancer, the pathologists were asked to perform their annotations at 2x 
magni�cation or less. All whole-slide images previously sampled at 40x were thus subsequently downsampled (by 
a factor of 16:1) to a resolution of 4 µm/pixel.

In order to analyze the agreement between expert pathologists, the Dice coe�cient and Cohen’s Kappa coef-
�cient were calculated between NS +  MF and HG manual delineations. �e Cohen’s Kappa coe�cient was deter-
mined to be κ =  0.74851, in turn re�ecting good agreement between the experts52. In addition, the Dice coe�cient 
was calculated to measure the overlap between the cancer annotations between NS +  MF and HG delineations 
and was determined to be DSC =  0.668553. Figure 9 below depicts the Dice coe�cient dispersion between expert 
pathologists. Figure 9 shows that the DSC measure is not a Gaussian distribution and has a median value equal 

Figure 6. (A–C) Slides from the TCGA cohort which revealed disagreement between the predictions of 
the ConvNetHUP and ConvNetUHCMC/CWRU classi�ers. �e predictions of the (D–F) ConvNetHUP and (G–I) 
ConvNetUHCMC/CWRU classi�ers were compared against the ground truth annotations in terms of TP (green), FN 
(red), FP (yellow) and TN (blue) regions.
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Figure 7. (A–C) Example whole-slide images from the TCGA data cohort with corresponding ground truth 
annotations. �e probability maps generated by the ConvNetUHCMC/CWRU and ConvNetHUP classi�ers are shown in 
panels (D–F,G–I) respectively.

Figure 8. �e probability maps obtained via the ConvNetUHCMC/CWRU and ConvNetHUP classi�ers on whole-
slide images of normal breast sections from the UHCMC/CWRU and NC data cohorts are shown in panels 
(A–C,D–F) respectively.



www.nature.com/scientificreports/

1 0SCIeNTIFIC REPORTS | 7:46450 | DOI: 10.1038/srep46450

to 0.7764. �e DSC agreement was found to be greater than 0.7 for a majority of the images studied, where good 
agreement is typically de�ned as when agreement is greater than 60%.

Invasive Breast Cancer Tissue Detection in Whole-Slide Images. Our deep-learning based approach 
for detection of invasive breast cancer on whole-slide images is illustrated in Fig. 10. �e approach comprises 
three main steps: (i) tile tissue sampling, (ii) tile pre-processing, and (iii) convolutional neural network (ConvNet) 
based classi�cation. In this work, a tile is a square tissue region with a size of 200 ×  200 µm. �e tile tissue sam-
pling process involves extraction of square regions of the same size (200 ×  200 µm), on a rectangular grid for each 
whole-slide image. Only tissue regions are invoked during the sampling process and any regions corresponding 
to non-tissue within the background of the slide are ignored. �e �rst part of the tile pre-processing procedure 
involves a color transformation from the original Red-Green-Blue color space representation to a YUV color 
space representation. A color normalization step is then applied to the digitized slide image to get zero mean 
and unit variance of the image intensities, and to remove correlations among the pixel intensity values. Tiles 
extracted from new whole-slide images, di�erent from the ones used for training, are preprocessed using the 
same mean and standard deviation values in the YUV color space learned during training. �e ConvNet clas-
si�er41,42, was trained using a set of image tiles extracted from invasive (positive examples) and non-invasive 
(negative examples) tissue regions, annotated on whole slide digitized images by expert pathologists. Positive 
examples were identi�ed as those in which the detected cancer regions had a minimum of 80% overlap with the 

Figure 9. Dice coe�cient between pathologist annotations for the CINJ data cohort (N = 40). 

Figure 10. Overview of the process of training and testing of the deep learning classi�ers for invasive 
breast cancer detection on whole-slide images. �e training data set had 349 ER+  invasive breast cancer 
patients (HUP N =  239, UHCMC/CWRU N =  110). �e validation data set contained 40 ER+  invasive breast 
cancer patients from the Cancer Institute of New Jersey (CINJ). �e test data set was composed of 195 ER+  
invasive breast cancer cases from TCGA and 21 negative controls (NC).
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manual annotations of the expert pathologists. �ree di�erent ConvNet architectures were evaluated using the 
training data: 1) a simple 3-layer ConvNet architecture, 2) a typical 4-layer ConvNet architecture, and 3) a deeper 
6-layer ConvNet architecture. �e 3-layer ConvNet architecture is constituted as follows, the �rst layer is the 
convolutional and pooling layer and the second is a fully connected layer, where each layer has 256 units (or neu-
rons). �e third is the classi�cation layer with two units as outputs, one for each class (invasive and non-invasive), 
corresponding to a value between zero and one. �e 4-layer ConvNet architecture is comprised of an initial con-
volutional and pooling layer with 16 units, followed by a second convolutional and pooling layer with 32 units, 
the third layer is a fully connected layer with 128 units, and the �nal classi�cation layer comprises two units as 
class outputs (invasive and non-invasive). �e 6-layer ConvNet architecture comprises four convolutional and 
pooling layers with 16 units, a fully connected layer with 128 units, and a �nal classi�cation layer with two units 
as class outputs (invasive and non-invasive). �e 3-layer ConvNet resulted in the best performance and hence was 
selected as the model of choice for all subsequent experiments (Fig. 11). �e implementation of the ConvNets 
classi�er was performed using Torch 7, a scienti�c computing framework for machine learning54.

�e ConvNet classi�er was trained with images from HUP and UHCMC/CWRU. �e training set comprised a 
large number of cases manually annotated by pathologists, i.e. 349 cases (239 from HUP and 110 from UHCMC/
CWRU). �e validation data cohort was the smaller data set with manual annotations from pathologists of inva-
sive tumors (CINJ, N =  40), and the testing data sets were: a publicly available data set with invasive tumors 
(TCGA, N =  195) and normal control cases without breast cancer (NC, N =  21). Our training set comprised a 
total of 344,662 patches, of which 91,952 were from the positive class (invasive) and 252,710 were from the neg-
ative class (non-invasive). We applied data augmentation only to the positive class, the positive class being the 
minority class in terms of number of samples. �e data augmentation process for the positive class comprised of 
duplicating the number of patches with arti�cial rotations and mirroring of patches. �e weights were randomly 
initialized and updated during the training stage by using the stochastic gradient descent algorithm. �is strategy 
was used to “learn” the weights (features) of the network from the training set. �e number of epochs to train 
the ConvNets classi�ers was 25. �e mini-batch size was 32. �e remaining parameters for the ConvNet clas-
si�er were tuned during the training process. �ese parameters included the learning rate, learning rate decay, 
non-linear function and pooling function. �e optimal parameter con�guration was determined to be 1e−3, 1e−7, 
ReLU and L2-norm, respectively. �e best parameter con�guration of the classi�er was identi�ed using the aver-
age area under the ROC curve (AUC) calculated over all slides in the CINJ data cohort, N =  40. �e CINJ data 
cohort was used as the validation data set because it is the smaller pathological data set with manual independent 
annotations from 3 di�erent pathologists of invasive tumors. �e AUC is a non-biased classi�cation measure 
that allows for the evaluation of classi�cation performance independent of a �xed threshold. In this work classi-
�cation performance was evaluated over all the image tiles extracted from all the whole-slide images in the CINJ 
data cohort, tiles that correspond to either invasive or non-invasive tissue classes. Table 4 presents a comparison 
between the ConvNet classi�ers and state of the art handcra�ed visual features (color, shape, texture and topog-
raphy) used in histopathology image analysis. �e classi�cation results associated with these handcra�ed features 
is lower compared to the ConvNet classi�er and also results in more variability. �e comparative evaluation 
helped identify the ConvNet classi�er with the best classi�cation performance and simplest con�guration (Avg. 
AUC =  0.9018 ±  0.0093) for the subsequent experiments involving the independent test set.

Method evaluation. We evaluated the accuracy of the ConvNet classi�er in whole slide images by com-
paring the predictions of invasive regions in the test data set against the corresponding ground-truth regions 

Figure 11. 3-layer ConvNet architecture. 
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annotated by expert pathologists. �e test data sets included the slides in the TCGA and NC cohorts. A quantita-
tive evaluation was performed by measuring the Dice coe�cient, positive predictive value (PPV), negative pre-
dictive value (NPV), true positive rate (TPR), true negative rate (TNR), false positive rate (FPR) and false negative 
rate (FNR) across all the test slides. �ese measures were evaluated for each whole-slide image and the mean and 
standard deviation in performance measures were calculated for each test data cohort.

In addition to training the ConvNet classi�er with the full training data set (HUP and UHCMC/CWRU), two 
additional classi�ers were trained using, in each case, one of the training cohorts: ConvNetHUP trained with the 
HUP cohort and ConvNetUHCMC/CWRU trained with the UHCMC/CWRU cohort. �e motivation was to analyze 
the sensitivity of the classi�er to the training data sets. Both ConvNetHUP and ConvNetUHCMC/CWRU were evaluated 
on both the validation (CINJ cohort) and test data sets (TCGA and NC cohorts) to analyze how and where their 
predictions diverged. Speci�cally we measured the correlation coe�cient r between the prediction performance 
measures for ConvNetHUP and ConvNetUHCMC/CWRU across all slides in each test cohort.
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