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SUMMARY

In this paper we propose accurate parameter and over-identification tests for indirect inference.

Under the null hypothesis the new tests are asymptotically χ2-distributed with a relative error of

order n−1. They exhibit better finite sample accuracy than classical tests for indirect inference,

which have the same asymptotic distribution but an absolute error of order n−1/2. Robust versions

of the tests are also provided. We illustrate their accuracy in nonlinear regression, Poisson

regression with overdispersion and diffusion models.
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1. INTRODUCTION

Statistical models are becoming increasingly complex. Often the likelihood function is not

available in closed form and a standard Bayesian or frequentist likelihood analysis is infeasible.

In the Bayesian framework this has led to the development of sequential Monte Carlo methods for

approximate Bayesian computations; see, for instance, Del Moral et al. (2006), Beaumont et al.

(2009), in the statistical literature and Beaumont et al. (2002), Lopes et al. (2009) and references

therein in genetics. In the frequentist framework, indirect inference is a broad class of estimators

that includes the method of moments and the generalized method of moments estimators (Hansen,

1982) with additively separable orthogonality functions, and simulated method of moments

estimators (Lee & Ingram, 1991; Duffie & Singleton, 1993). Indirect inference estimators were

introduced by Smith (1993) and Gouriéroux et al. (1993), and have now been applied in a variety

of fields, including financial models (Gouriéroux & Monfort, 1996; Billio & Monfort, 2003;

Czellar et al., 2007; Calzolari et al., 2008) and in regression models with measurement error

(Kuk, 1995; Turnbull et al., 1997; Jiang et al., 1999). Good surveys on indirect inference are

provided by Heggland & Frigessi (2004) and Jiang & Turnbull (2004).

In this paper we focus on testing for indirect inference. The procedure can be summarized

as follows. Let y1, . . . , yn be a random sample from a distribution Fθ , where θ ∈ R
p is an

unknown parameter. If the direct estimation of θ is unfeasible, choose a simpler auxiliary estimator
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622 VERONIKA CZELLAR AND ELVEZIO RONCHETTI

μ̃ ∈ R
r (r � p), which can be written as an M-estimator defined by

n∑

i=1

�(yi ; μ̃) = 0, (1)

where � is an appropriate function; see, e.g. (10), (11), (13) and (14) below. Then for a given

one-to-one function μ : R
p → R

r and a given symmetric, positive definite matrix � ∈ R
r × R

r ,

the indirect inference estimator is defined by

θ̂ = arg min
θ

{μ̃ − μ(θ)}T�{μ̃ − μ(θ)}, (2)

i.e. the value of the parameter θ such that μ(θ̂) is closest to μ̃ as measured by the metric defined

by the matrix �. The function μ(θ) is typically chosen as follows.

(i) The function μ(θ) = EFθ
(μ̃), or plimFθ

μ̃, is deterministic and is often called a binding

function (Gouriéroux et al., 1993), a bridge relationship (Turnbull et al., 1997; Jiang et al.,

1999) or a target function (Cabrera & Fernholz, 1999).

(ii) The function μ(θ) = m−1
∑m

s=1 μ̃(s)(θ) is obtained by simulation, where for each s =

1, . . . , m, μ̃(s)(θ) is the auxiliary estimate calculated using simulated data {y
(s)
i (θ)} gener-

ated from Fθ , and m � 1 is fixed.
(iii) An alternative choice obtained by simulation is μ(θ) = arg minμ m−1

∑m
s=1 L[μ; {y

(s)
i (θ)}],

where L is the objective function associated with the auxiliary estimator, i.e. ∂L/

∂μ[μ̃; {yi }] = 0.

Assume that the parameter θ is partitioned into (θT

1 , θT

2 )T, θ1 ∈ R
p1 and θ2 ∈ R

p−p1 and consider

the null hypothesis H0 : θ1 = θ10. In the indirect inference setting, likelihood ratio-type tests are

based on the optimal value of the objective function in (2), i.e.

W (θ̂ , θ̂ c, �∗) = {μ̃ − μ(θ̂ c)}T�∗{μ̃ − μ(θ̂ c)} − {μ̃ − μ(θ̂)}T�∗{μ̃ − μ(θ̂)}, (3)

where �∗ is the inverse of the asymptotic variance-covariance matrix of the auxiliary estimator

under the true data-generating model as defined in Gouriéroux et al. (1993, p. S91), and θ̂ c is the

constrained indirect inference estimator under H0. In contrast with standard likelihood ratio tests,

the factor 2 does not appear in front. Under the null hypothesis nW (θ̂ , θ̂ c, �∗) is asymptotically

χ2
p1

-distributed. The classical test for the validity of the over-identifying conditions (r > p) is

given by the J test:

J (θ̂ , �∗) = {μ̃ − μ(θ̂)}T�∗{μ̃ − μ(θ̂)},

where n J (θ̂) is asymptotically χ2
r−p-distributed. For the simulation-based indirect inference, the

W and J statistics are premultiplied by m/(m + 1). In general, the optimal weighting matrix �∗ is

unknown and needs to be estimated by a consistent estimator, for instance, �̃∗ = Mμ I −1 Mμ, with

Mμ = n−1
∑n

i=1 ∂�/∂μT(yi ; μ̃) and I = n−1
∑n

i=1{�(yi ; μ̃)�T(yi ; μ̃)}. The χ2-approximations

to the distributions of the W and J tests have an absolute error of order n−1/2 and their finite sample

accuracy can be very poor and can lead to misleading inference; see, e.g. Michaelides & Ng

(2000), Duffee & Stanton (2008), and Table 1 and Fig. 1 below.

To improve this, we introduce saddlepoint tests based on indirect inference estimators, which

are also asymptotically χ2-distributed under the null but with a relative error of order n−1. Another

advantage of the saddlepoint tests is that they do not require the knowledge of �∗. We show by

simulation that saddlepoint tests are very accurate down to small sample sizes. They outperform in

accuracy classical tests with both non-simulation-based and simulation-based indirect inference
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Accurate and robust tests for indirect inference 623

estimators. We also introduce robust versions of the saddlepoint tests which provide accurate

inference in the presence of local deviations from the stochastic assumptions of the model. In

some cases they outperform nonrobust saddlepoint and classical tests even when there are no

deviations from the assumed model.

Our paper is related to several earlier contributions, in particular work by Robinson et al.

(2003), Lô & Ronchetti (2009), Kitamura & Stutzer (1997) and Sowell in an unpublished 2009

Carnegie Mellon University technical report. In § 3 we clarify the connection between these

papers and our proposal.

2. SADDLEPOINT TESTS FOR INDIRECT INFERENCE

2·1. Just-identified case

The following proposition introduces a saddlepoint parameter test for just-identified (r = p)

indirect inference estimators.

PROPOSITION 1. Consider the null hypothesis H0 : θ1 = θ10 ∈ R
p1 , where θ = (θT

1 , θT

2 )T. Denote

by θ̂ = (θ̂T

1 , θ̂T

2 )T the indirect inference estimator given by (2) and make the following assumptions.

Assumption 1. The dimension of the auxiliary estimator μ̃ is r = p.

Assumption 2. The indirect inference estimator θ̂ satisfies μ̃ = μ(θ̂).

Assumption 3. The density of θ̂ exists and has the saddlepoint approximation

fθ̂ (t) = (2π/n)p/2 exp[nKψ{λ(t); t}]|B(t)‖
(t)|−1/2{1 + O(n−1)},

where ψ(yi ; θ) ≡ �{yi ; μ(θ)}, Kψ (λ; t) = log EFθ
[exp{λTψ(yi ; t)}], λ(t) is the saddlepoint sat-

isfying ∂Kψ/∂λ(λ; t) = 0, | · | denotes the determinant,

B(t) = exp[−Kψ {λ(t); t}]EFθ
[∂ψ/∂t(yi ; t) exp{λ(t)Tψ(yi ; t)}]

and


(t) = exp[−Kψ {λ(t); t}]EFθ
[ψ(yi ; t)ψT(yi ; t) exp{λ(t)Tψ(yi ; t)}].

Define the saddlepoint test statistic by

S(θ̂1) = inf
θ2

sup
λ

{
− log EF(θ10,θ2)

(exp[λT�{yi ; μ(θ̂1, θ2)}])
}

. (4)

Then, under H0, 2nS(θ̂1) is asymptotically χ2
p1

-distributed with relative error of order n−1.

The proof is based on Robinson et al.’s (2003) test for M-estimators and is given in the online

Supplementary Material.

Remark 1. Sufficient conditions for Assumption 3 are provided by Theorem 2 in

Almudevar et al. (2000), p. 290.

Remark 2. The S test does not depend on �. This is an advantage when compared to the W

test which is asymptotically χ2
p1

-distributed only for an optimal weighting matrix.

Remark 3. By the same arguments as in Lô & Ronchetti (2009, p. 2128), Proposition 1 still

holds when the observations are independent but not identically distributed and the auxiliary

M-estimator is defined by
∑n

i=1 �i (yi ; μ̃) = 0. In this case, denote by F i the distribution of yi
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624 VERONIKA CZELLAR AND ELVEZIO RONCHETTI

and equation (4) becomes

S(θ̂1) = inf
θ2

sup
λ

{
−n−1

n∑

i=1

log EF i
(θ10,θ2)

(exp[λT�i {yi ; μ(θ̂1, θ2)}])

}
.

Remark 4. In the case when the cumulant generating function does not have a closed form, we

can apply Robinson et al.’s (2003) empirical version of the test. It is defined by

Ŝ(θ̂1) = inf
θ2

sup
λ

[
−K w

0 {λ; (θ̂1, θ2)}
]
,

K w
0 (λ; θ) = log

(
n∑

i=1

wi exp[λT�{yi ; μ(θ)}]

)
,

based on the empirical distribution F̂0 = (w1, . . . , wn), which satisfies the null hypothesis

and is closest to F̂ = (1/n, . . . , 1/n) with respect to the backward Kullback–Leibler distance

d(F̂0, F̂) =
∑n

i=1 wi log{wi/(1/n)}, i.e.

wi = exp[λ(θ∗)T�{yi ; μ(θ∗)}]

/
n∑

j=1

exp[λ(θ∗)T�{y j ; μ(θ∗)}], (5)

where θ∗ = (θT

10, θ
∗T

2 )T, θ∗
2 = arg minθ2

[−κ{λ(θ10, θ2); (θ10, θ2)}], κ(λ; θ) = log(1/n
∑n

i=1

exp[λT�{yi ; μ(θ)}]) and λ(θ) = arg maxλ{−κ(λ; θ)}.

2·2. Extension to the over-identified case

We consider the over-identified case, r > p, which plays an important role in certain applica-

tions, in particular in econometrics. The goal is to construct a saddlepoint test that can be used to

test hypotheses both on parameters of the model and on the validity of over-identifying conditions.

We make the following assumptions:

Assumption 4. The function μ(θ) is continuously differentiable in θ ∈ � ⊂ R
p.

Assumption 5. The matrix ∂μT(θ)/∂θ has full column rank for all θ ∈ � ⊂ R
p.

From the first-order conditions of the minimization problem (2), θ̂ satisfies

∂μT(θ̂)

∂θ
�{μ̃ − μ(θ̂)} = M̄(θ̂ )T�1/2{μ̃ − μ(θ̂)} = 0, (6)

where M̄(θ) = �1/2∂μ(θ)/∂θT and �1/2 is a Cholesky decomposition of �, i.e. � = (�1/2)T�1/2.

Define a p-dimensional manifold in R
r as M = {�1/2μ(θ) ∈ R

r | θ ∈ �}. Consistently with

the generalized method of moments literature, we refer to the p-dimensional tangent space

T�1/2μ(θ )M as the identifying space (Sowell, 1996), and to the (r − p)-dimensional orthogonal

complement N�1/2μ(θ )M as the over-identifying space (Hansen, 1982). We use Sowell’s (1996)

spectral decomposition of the idempotent matrix

M̄(θ){M̄(θ)T M̄(θ)}−1 M̄(θ)T = C(θ)

(
Ip 0

0 0(r−p)×(r−p)

)
C(θ)T

such that C(θ)TC(θ) = Ir , C(θ) = {C1(θ), C2(θ)} and write the identifying and over-identifying

spaces as

T�1/2μ(θ )M = {M̄(θ)x | x ∈ R
p} = {C1(θ)x | x ∈ R

p},

N�1/2μ(θ )M = {y ∈ R
r | xT M̄(θ)T y = 0, for all x ∈ R

p} = {C2(θ)ξ | ξ ∈ R
r−p}.
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Accurate and robust tests for indirect inference 625

A construction of the function C(θ) is available in the online Supplementary Material. From

the first-order conditions (6) for any x ∈ R
p, xT M̄(θ̂ )T�1/2{μ̃ −μ(θ̂)}= 0, which implies that

�1/2{μ̃ − μ(θ̂)} ∈ N�1/2μ(θ̂)M. Choosing the associated ξ̂ = C2(θ̂)T�1/2{μ̃ − μ(θ̂)}, we have

μ̃= μ(θ̂) +�−1/2C2(θ̂)ξ̂ . Define the augmented parameter η = (θT, ξ T)T and the function

g(η) = μ(θ) + �−1/2C2(θ)ξ . Since the auxiliary estimator μ̃ is an M-estimator defined by (1),

we can write the augmented indirect inference estimator η̂ = (θ̂T, ξ̂ T)T as an M-estimator:

n∑

i=1

�{yi ; g(η̂)} = 0, (7)

and we can define the Ŝ test based on (7) to test the hypothesis H0 : η1 = η10 in R
r1 .

Specifically, the Ŝ test statistic can be used to perform the following tests. We define a parameter

test for the hypothesis H0 : θ1 = θ10 ∈ R
p1 by marginalizing over θ2 and ξ :

Ŝpar(θ̂1) = inf
θ2,ξ

sup
λ

[
−K ω

0 {λ; (θ̂1, θ2, ξ )}
]
,

where 2nŜpar(θ̂1) is asymptotically χ2
p1

-distributed. We define an over-identification test for the

hypothesis H0 : ξ = 0 in R
r−p by marginalizing over θ :

Ŝover(ξ̂ ) = inf
θ

sup
λ

[
−K ω

0 {λ; (θ, ξ̂ )}
]
, (8)

where 2nŜover(ξ̂ ) is asymptotically χ2
r−p-distributed.

More general hypotheses of the form H0 : h(η) = 0 ∈ R
r1 , r1 � r can be tested using (8), where

inf is taken over {η : h(η) = h(η̂)}. This includes, for instance, testing the validity of a single

orthogonality condition.

3. CONNECTIONS TO THE LITERATURE

Robinson et al. (2003) introduced a saddlepoint test statistic for M-estimators, that is asymptot-

ically χ2-distributed with a relative error of order n−1 under the null hypothesis. We extend their

methodology in two directions by constructing saddlepoint tests for hypotheses on the parameters

in indirect inference and the validity of the over-identifying conditions.

Just-identified (r = p) indirect inference estimators for θ are M-estimators with score function

�{y; μ(θ)}. Therefore, this case can be reinterpreted in the generalized linear models set-up when

the binding function μ(·) is a deterministic and known inverse link function such as the exp(·) for

Poisson regression. A saddlepoint test for generalized linear models in its parametric version was

developed by Lô & Ronchetti (2009) and our proposal can be viewed as an extension to the non-

parametric set-up and to the case where the link function is not deterministic but must be simulated.

The nonparametric over-identification test corresponds to the proposal by Kitamura & Stutzer

(1997). However, our derivation in § 2·2 using a nonparametric version of Robinson et al.’s

(2003) original test explains the good second-order properties of this test beyond the first-order

equivalence. This test can be viewed as an empirical likelihood procedure, where the weights wi

in (5) are obtained by minimizing the backward Kullback–Leibler distance d(F̂0, F̂), in contrast

with minimizing the forward Kullback–Leibler distance d(F̂, F̂0), which leads to the weights

of Owen’s original empirical likelihood (Owen, 2001). However, the latter does not enjoy the

second-order properties of the former. For a comparison in the framework of M-estimators, see

Monti & Ronchetti (1993).

Sowell’s 2009 technical report treats the empirical saddlepoint approximation of the density

of an M-estimator (Ronchetti & Welsh, 1994) as an empirical likelihood function, defines an
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626 VERONIKA CZELLAR AND ELVEZIO RONCHETTI

estimator as the maximum of this function, and derives the corresponding empirical likelihood

ratio test. In the just-identified case, this is the analytic counterpart of bootstrap likelihoods as

defined in Davison et al. (1995), where the saddlepoint approximation is replaced by resampling.

In the set-up of generalized method of moments, Sowell shows that the new estimator is first-

order equivalent to the standard generalized method of moments estimator, but exhibits smaller

higher-order bias. The derivation of more general second-order properties for this estimator and

test seems to be an open problem.

Finally, note that the results derived in § 2·2 connect to the modern theory of sparsity; see, for

instance, Meier et al. (2009) and references therein, and it would be fruitful to deepen this link.

4. ILLUSTRATION OF THE ACCURACY OF SADDLEPOINT TESTS

4·1. Non-simulation-based indirect inference: a nonlinear regression

In this subsection we focus on non-simulation-based indirect inference estimators defined by

a binding function and we compare the accuracy of classical and saddlepoint tests. To illustrate

this point, consider data y1, . . . , yn generated from the model

yi = exp(xiθ) + ǫi , (9)

where xi ∈ R, θ ∈ R is an unknown parameter and ǫ1, . . . , ǫn are independent and identically

distributed standard normal errors. We choose the auxiliary linear model obtained by Taylor

approximation of the right-hand side of (9),

yi = 1 + x̃T

i μ + ui ,

where x̃i = {xi , (xi )
2, . . . , (xi )

r }T, μ = (μ1, . . . , μr )T and u1, . . . , un are independent and iden-

tically distributed standard normal errors. Consider the indirect inference estimator with the

auxiliary least-squares estimator μ̃, characterized by the �i and μ(θ) functions:

�i (yi ; μ) =
(
yi − 1 − x̃T

i μ
)
x̃i , μ(θ) = EFθ

(μ̃) =

(
n∑

i=1

x̃i x̃
T

i

)−1 n∑

i=1

x̃i {exp(xiθ) − 1}. (10)

The resulting indirect inference estimator θ̂ is a generalized method of moments estimator. We

generate 10 000 samples for each of the sample sizes n = 40, 100, 200, 400, from model (9) with

θ = 0·5, and {xi j } from a uniform distribution on [−1, 1]. We consider r = 1, 2, 3 and use the

weighting matrix �̃∗. For r = 1 we compute the W , S, which has an analytic form in this case as

is shown in the Supplementary Material, and Ŝ statistics to test the hypothesis H0 : θ = 0·5. For

r = 2, 3, we compute the W , Ŝpar to test the hypothesis H0 : θ = 0·5 and the J and Ŝover to test

the validity of the over-identifying conditions. Table 1 shows the empirical rejection frequencies

of the W , S, Ŝpar, J and Ŝover tests for a 5% nominal size. In the just-identified case, the S test is

accurate even for sample sizes as small as 40 and, starting from sample sizes of 100, the Ŝ test has

a similar accuracy as the S test. Moreover, in each case the Ŝ tests greatly improve the accuracy

of their classical counterparts and the gain is particularly important for small sample sizes and

increased number of auxiliary parameters.

4·2. The effect of simulation: a Poisson regression with overdispersion

In this section we apply the Ŝ test to Poisson regression with overdispersion and study its

accuracy when it is computed with non-simulation-based and simulation-based indirect inference

estimators. Consider the Poisson regression model with overdispersion:

yi | (zi , εi ) ∼ P{exp(α + βzi + σεi )},
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Accurate and robust tests for indirect inference 627

Table 1. Actual size (%) of classical and saddlepoint tests with nominal size 5%

r = 1 r = 2 r = 3

W Ŝ S W Ŝpar J Ŝover W Ŝpar J Ŝover

n = 40 6·8 6·3 4·9 10·2 6·9 9·1 6·2 15·6 5·0 15·0 4·4

n = 100 5·6 5·4 4·9 6·7 5·9 6·7 5·7 7·9 6·9 8·0 5·3

n = 200 5·5 5·4 5·2 5·9 5·5 6·3 5·8 6·5 6·2 6·4 5·7

n = 400 5·3 5·2 5·2 5·9 5·5 5·4 5·2 6·0 5·7 6·0 5·5

where zi are Bernoulli variables with probability 0·5 and εi are independent and identically

distributed standard normal random variables. This model was estimated through non-simulation-

based indirect inference by Jiang & Turnbull (2004) by using the auxiliary estimator μ̃:

(μ̃1, μ̃2)T = arg max
(μ1,μ2)

n∑

i=1

{yi (μ1 + ziμ2) − exp(μ1 + ziμ2)}, μ̃3 = n−1
n∑

i=1

y2
i .

This estimator is characterized by

�(yi , zi ; μ) = {yi − exp(μ1 + ziμ2), yi zi − exp(μ1 + ziμ2)zi , y2
i − μ3}

T (11)

and

μ(θ) = (α + σ 2/2, β, [{1 + exp(β)} exp(α + σ 2/2) + {1 + exp(2β)} exp{2(α + σ 2)}]/2)T.

In § 4 and in Fig. 1 of the Supplementary Material, we describe how to compute a simulation-based

indirect inference estimator θ̂ (m) using the second procedure for μ(θ) described in § 1.

As an illustration, we choose parameter values α = −1, β = 1 and σ = 0·5 and a sample

size n = 250. We consider the simple hypothesis test H0 : (α, β, σ )T = (−1, 1, 0·5)T at the nom-

inal level 5%. The empirical rejection frequencies of the non-simulation-based W and Ŝ are,

respectively, 11·3% and 7·7%. It appears that for small simulation sizes the χ2
3 -distribution is

not an accurate approximation of the simulation-based Ŝ test. For m < 10, the W tests are more

accurate. For m � 10, the simulation-based Ŝ test overperforms the W tests and for m � 20, the

simulation-based and non-simulation-based Ŝ tests have similar good accuracy.

4·3. Robust saddlepoint tests: the case of diffusion models

An additional problem that arises when estimating and testing through indirect inference

is model misspecification, which can lead to biased estimators and misleading test results.

Dridi et al. (2007) provide a complete discussion of this problem. Here we focus on the lo-

cal robustness properties of indirect inference estimators and tests when the observations {yi } are

generated from a neighbourhood of the structural model of the form (1 − ε)Fθ + εG, where G

is an arbitrary distribution. Local robustness is achieved if the influence function of the indirect

inference estimator is bounded. Since this influence function is proportional to the influence

function of the auxiliary estimator (Genton & de Luna, 2000), and this is an M-estimator defined

by (1), boundedness of � in (1) implies local robustness for the indirect inference estimator.

Hence we construct a robust Ŝ test by (4) with an auxiliary M-estimator based on a bounded �

function. This is an alternative to the W test proposed by Genton & Ronchetti (2003) which is

based on the objective function (3) with robust μ̃ estimators.

To illustrate this point, consider a geometric Brownian motion with drift

dyt = βyt dt + σ yt dWt , (12)

where Wt is a standard Wiener process. Let θ = (β, σ )T and consider the auxiliary model

yt = (1 + μ1)yt−1 + μ2 yt−1ǫt , obtained through a crude Euler discretization of (12), where
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Fig. 1. p-value plots of simulation-based W (long dashes), Ŝ (small dashes), robust W (large dots) and robust

Ŝ (small dots) tests for the model dyt = βyt dt + σ yt dWt with β = −0·05, σ = 0·2 and n = 40 when testing
H0 : (β, σ )T = (−0·05, 0·2)T (first column), H0 : β = −0·05 (second column) and σ = 0·2 (third column). The
upper panels present tests when the original data is generated under the model without contamination while the lower

panels present tests with 5% additive outliers. The simulation size is m = 20.

ǫt are independent and identically distributed standard normal variables. The auxiliary maximum

likelihood estimator is defined by
∑n

t=1 �(rt ; μ̃) = 0, where rt = yt/yt−1 and

�(rt ; μ) =
{

rt − 1 − μ1, (rt − μ1 − 1)2 − μ2
2

}T
. (13)

Let θ̂ be the simulation-based indirect inference estimator of type (iii) as described in § 1 with

L[μ; {r
(s)
t (θ)}] = [

∑
t �{r

(s)
t (θ); μ}]T[

∑
t �{r

(s)
t (θ); μ}], where r

(s)
t (θ) is generated from a fine

Euler discretization with 20 subintervals between yt−1(θ) and yt (θ).

The structural model has the exact discretization rt ∼ logN (β − σ 2/2, σ 2). We simulate

samples according to this distribution and contaminated samples that contain 5% additive outliers

generated from logN (β − σ 2/2, σ 2τ 2), with τ = 5. This particular distribution is used only to

generate the data for the purpose of the simulation study, but not to compute the estimators or

test statistics. This is to simulate the practical situation in which the contamination is unknown

and inference is carried out assuming the structural model (12).
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Our test is based on Genton & Ronchetti’s (2003) robust indirect inference estimator θ̂R , where

the auxiliary estimator μ̃R is defined by the M-estimator with bounded score function

�(rt ; μ) =

{
ψc

(
rt − 1 − μ1

μ2

)
, χc

(
rt − 1 − μ1

μ2

)}T

, (14)

where ψc(z) = min{c, max(−c, z)} is the Huber function, χc(z) = ψ2
c (z) − E�(ψ2

c ), � is the

cumulative function of the standard normal distribution and c = 1·345. In more complex models,

such simple robust indirect inference estimators may not be available. Instead, indirect robust

generalized method of moments estimators can be used, as developed in Czellar et al. (2007).

As an illustration, we choose parameter values β = −0·05 and σ = 0·2, we consider three

hypotheses for the parameters: H0 : (β, σ )T = (−0·05, 0·2)T, H0 : β = −0·05 and H0 : σ = 0·2,

and we study the accuracy of Ŝ and robust Ŝ tests at the model and in the presence of contamination.

Figure 1 shows p-value plots comparing classical W , robust W , Ŝ and robust Ŝ tests for sample

size n = 40 and simulation size m = 20. Under no contamination, the nonrobust and robust Ŝ

tests provide a more accurate inference than the corresponding W tests in all cases but one.

Under contamination, the nonrobust Ŝ test is strongly oversized, even more than the classical

W . On the other hand, the robust Ŝ provides very accurate inference in both contaminated and

noncontaminated cases. The Supplementary Material shows the relative errors of the p-values

of the χ2
2 -approximation for the test H0 : (β, σ )T = (−0·05, 0·2)T for sample sizes n = 40 and

n = 240 without contamination. The robust Ŝ tests are the most accurate tests even in the case

without contamination, and the gain is particularly important in the tails of the distributions.
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GOURIÉROUX, C. & MONFORT, A. (1996). Simulation-Based Econometric Methods. New York: Oxford University

Press.
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