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Accurate construction of polygenic scores (PGS) can enable early diagnosis of diseases and facilitate the development of personalized

medicine. Accurate PGS construction requires prediction models that are both adaptive to different genetic architectures and scalable

to biobank scale datasets with millions of individuals and tens of millions of genetic variants. Here, we develop such a method called

Deterministic Bayesian Sparse Linear Mixed Model (DBSLMM). DBSLMM relies on a flexible modeling assumption on the effect size dis-

tribution to achieve robust and accurate prediction performance across a range of genetic architectures. DBSLMM also relies on a simple

deterministic search algorithm to yield an approximate analytic estimation solution using summary statistics only. The deterministic

search algorithm, when paired with further algebraic innovations, results in substantial computational savings. With simulations, we

show that DBSLMM achieves scalable and accurate prediction performance across a range of realistic genetic architectures. We then

apply DBSLMM to analyze 25 traits in UK Biobank. For these traits, compared to existing approaches, DBSLMM achieves an average

of 2.03%–101.09% accuracy gain in internal cross-validations. In external validations on two separate datasets, including one from Bio-

Bank Japan, DBSLMM achieves an average of 14.74%–522.74% accuracy gain. In these real data applications, DBSLMM is 1.03–28.11

times faster and uses only 7.4%–24.8% of physical memory as compared to other multiple regression-based PGS methods. Overall,

DBSLMM represents an accurate and scalable method for constructing PGS in biobank scale datasets.

Introduction

The polygenic score (PGS) for a phenotype, in its simplest

form, is a weighted summation of the estimated genetic ef-

fect sizes across genome-wide single nucleotide polymor-

phisms (SNPs).1–4 Through aggregating the contribution

of many SNPs toward the phenotype of interest, PGS can

be used to construct an individual’s inherited component,

which is his/her genetic predisposition, underlying the

phenotype.5–7 By estimating the genetic predisposition,

PGS serves both as the earliest measurable predictor and

as the most stable predictor for disease and disease-related

complex traits.8–10 PGS is commonly referred to as the

polygenic risk score (PRS) when the phenotype of interest

is a disease status.2,11 PGS has a long-standing history both

in animal breeding programs and in human genetics.12

PGS has also been widely applied to a range of genetic ap-

plications that include disease risk prediction,13–25 genetic

prediction of complex traits,14,15,17,19,26–30 prioritization of

preventive interventions,31–36 understanding missing her-

itability,37–40 modeling polygenic adaptation,41 genomic

selection in animal breeding programs,42,43 transcrip-

tome-wide association studies (TWASs),44–46 and, more

recently, Mendelian randomization analysis.47–49 Accurate

construction of PGS can facilitate disease prevention and

intervention at an early stage and can aid in the develop-

ment of personalized medicine.

Various statistical methods have been developed for con-

structing PGS.50 Different PGS methods often differ in

their modeling assumptions on the SNP effect size distribu-

tion15,28 (a detailed review is provided in the Supplemental

Material andMethods). Previous studies have shown that a

flexible effect size modeling assumption is key for con-

structing accurate PGS across a range of phenotypes with

different genetic architectures.15,28 However, achieving

flexible effect size modeling is challenging computation-

ally on large-scale genome-wide association studies

(GWASs) that are being conducted today. Specifically, the

sample size of GWASs has been steadily and rapidly

increasing in the past years, with biobank scale datasets

becoming increasingly common. These large biobank-scale

datasets include UK Biobank (UKB),51 BioBank Japan

(BBJ),52 China Kadoorie Biobank,53 FINNGEN,54 and

All of Us,55 each containing hundreds of thousands of in-

dividuals and tens of millions of genetic markers. Many ex-

isting PGS approaches, especially the ones with flexible

modeling assumptions on the effect size distribution

(e.g., Bayes alphabetic methods,42 Bayesian sparse linear

mixed model [BSLMM],15 and Dirichlet process regression

model [DPR]28), often rely on computationally expensive

algorithms such as Markov chain Monte Carlo (MCMC)

and are thus unscalable to large-scale biobank datasets.56

Indeed, only a limited number of PGS methods, often

the ones with relatively simple effect size assumptions,

are scalable to biobank datasets. Notable scalable PGS

methods include SBLUP,27 LDpred,13 lassosum,16 and

CþT procedure.18,57 These scalable PGS methods often

use summary statistics in terms of marginal z-scores or

marginal effect size estimates commonly available from

biobank datasets. In addition, these methods also rely on

a reference panel—obtained either directly from the data

or from an external reference panel—to calculate the
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necessary linkage disequilibrium (LD) matrix for model

fitting. However, even these scalable methods, with the

only exception of the CþT procedure, are not easily appli-

cable to biobank scale data. For example, LDpred and

SBLUP, even with low computing cost settings, remain

computationally costly and require a large amount of

physical memory (> 50 GB) for constructing PGS. Such

large physical memory requirements are not readily acces-

sible even on large computing clusters. For example, the

state-of-art University of Michigan Center for Statistical

Center computing cluster, which has successfully hosted

and is currently hosting many large-scale GWAS data and

analyses (e.g., 1000 Genomes projects, TOPMed project,

various T2D consortium projects, etc.), only has a limited

number of nodes with large physical memory (Table S1).

Consequently, there is a pressing need to develop compu-

tationally scalable PGS methods with both low memory

cost and relatively flexible modeling assumptions to

enable accurate PGS construction in large-scale biobank

datasets.

Here, we develop a scalable computing method for

accurate PGS construction in biobank scale datasets. Our

method makes use of summary statistics and relies on a

flexible modeling assumption on the effect size distribu-

tion similar to that used in BSLMM,15 an accurate but un-

scalable prediction model commonly applied to GWASs

and TWASs. The flexible effect size modeling assumption

allows us to maintain robust and accurate prediction

performance across a range of genetic architectures.

Different from the MCMC approach used previously to

fit BSLMM, however, our method relies on a simple deter-

ministic search algorithm to yield an approximate analytic

solution using summary statistics only, which, when

paired with other algebraic innovations, results in orders

of magnitude of computational speed improvement and

physical memory savings as compared to BSLMM. We

refer to our methods as the Deterministic BSLMM

(DBSLMM). We examine the performance of DBSLMM

and compare it with other scalable PGS methods in both

simulations and applications to 25 traits in UKB.

Material and Methods

Overview of DBSLMM

DBSLMM is described in detail in the Supplemental Material

and Methods. Briefly, DBSLMM follows closely the effect size

assumption made in BSLMM, an accurate but unscalable

method commonly used for PGS construction15 and TWAS

applications.28,44,47 In particular, DBSLMM assumes that all

SNPs have non-zero effects on the phenotype (i.e., in line

with the polygenic/omnigenic assumption58), but that some

SNPs have larger effect sizes than the others (i.e., in line

with the core gene concept in the omnigenic model58). The

DBSLMM modeling assumption on SNP effect size distribution

represents a hybrid between the sparse modeling assumption

(e.g., in Bayesian variable selection model59) and the poly-

genic/omnigenic modeling assumption (e.g., in linear mixed

models26). By including both the sparse model and the poly-

genic model as special cases, the DBSLMM modeling assump-

tion allows for adaptive PGS construction according to the un-

derlying genetic architecture and thus can achieve accurate

prediction performance across a range of phenotypes.15

Different from BSLMM, however, DBSLMM does not rely on

individual-level genotypes and phenotypes. Instead, DBSLMM

requires only summary statistics in terms of marginal z-scores

and a SNP correlation matrix that is constructed either directly

from the data through a subsampling strategy or based on an

external reference panel.60 In addition, different from BSLMM,

DBSLMM avoids the time-consuming MCMC algorithm for

parameter estimation. Instead, DBSLMM first relies on a scalable

deterministic searching algorithm to efficiently and effectively

select a subset of SNPs with potentially large effects. Then,

DBSLMM obtains the SNP effect size estimates for all genome-

wide SNPs through an analytic solution. When further paired

with a block-diagonal matrix approximation to the SNP correla-

tion matrix as well as a fast preconditioned conjugate gradient

algorithm for solving linear systems, the analytic solution

allows us to construct PGS and performs genetic predictions of

phenotypes in a computationally efficient fashion.61,62 With

these innovations, the computational complexity of DBSLMM

becomes approximately linear respective to both the sample

size and the SNP number, making DBSLMM scalable to biobank

scale data with hundreds of thousands of individuals and tens

of millions of SNPs. DBSLMM is freely available (see Web

Resources).

Compared Methods

We compare DBSLMM with four previously developed PGS

methods that can be applied to analyze UKB scale data. All these

four methods make use of summary statistics.

The first method is CþT, which uses informed clumping and p

value thresholding. We use the PLINK software (v.1.90b6.9) to

perform clumping and thresholding, where we set the region

size to be 1 MB and the LD threshold to be r2 ¼ 0:1. In clumping,

we explore ten different p value thresholds according to Lloyd-

Jones et al.:29 5 3 10�8, 1 3 10�6, 1 3 10�4, 0.001, 0.01, 0.05,

0.1, 0.2, 0.5, and 1.0. For example, when the p value threshold

is 0.1, we use the PLINK clump command as –clump-kb 1000

–clump-r2 0.1 –clump-p1 0.1. We then use cross-validation to

obtain the optimal p value threshold in both simulations and

real data applications. With clumping, in the real data applica-

tions, the total number of SNPs analyzed ranges from 35 (for RA)

to 157,269 (for CAD) in UKB.

The second method is LDpred. We use the LDpred python soft-

ware (v.1.0.1) for fitting. LDpred contains two tuning parameters:

the radius parameter and the non-zero effect proportion param-

eter. For the radius parameter, we set it to be the recommended

value (m/3,000) in the simulations, with m being the number of

SNPs.13 In the real data, due to memory and computational time

constraints, we set the radius parameter to be 200, close to that

used in Lloyd-Jones et al.29 For the non-zero effect proportion

parameter, we follow Vilhjálmsson et al.13 and Lloyd-Jones

et al.29 and explore nine different choices for the non-zero effect

proportion parameter: 1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001,

0.0003, and 0.0001. We used cross-validation to obtain the

optimal proportion parameter among the nine choices in

both simulations and real data applications. Besides the regular

LDpred, we also examined a special case, LDpred-inf, which is



based on an infinitesimal model. LDpred-inf and LDpred by

setting the proportion ¼ 1 are the same model but have different

fitting algorithms (analytic solution for LDpred-inf and MCMC

for LDpred with proportion ¼ 1). LDpred-inf does not require

cross-validation.

The thirdmethod is SBLUP.We use the GCTA software (v.1.92.2)

to fit SBLUP.27 SBLUP requires the user to specify the LD window

size and input a heritability estimate. We set LD window size to

be 200, the maximum number we can run given the CSG cluster

memory and computation time constraints. For the heritability

parameter, we follow Lloyd-Jones et al.29 and obtain the heritabil-

ity estimate using LD score regression (LDSC).63

The fourth method is lassosum. We use the lassosum R pack-

age (v.0.4.4) for fitting. We use the same block-wise LD matrix

computed for DBSLMM to serve as the reference LD matrix

for lassosum.62 We use cross-validation to obtain the optimal

penalty parameter and weight of the LD reference panel for

lassosum.

Besides the above four PGSmethods, in a small-scale simulation,

we also compare our method with the standard BSLMM. We

use the GEMMA software (v.0.98) to fit the standard BSLMM,

which usesMCMC for parameter inference.15 To allow for efficient

computation, we set the number of burn-in steps in MCMC as

6,000 and the number of MCMC steps as 2,000. Note that the

standard BSLMM requires individual-level genotype and pheno-

type data.

Finally, after obtaining the effect size estimates in the training

data, we calculate PGS in the test set using the score function

in PLINK.57

Simulations

We performed simulations to examine the performance of

DBSLMM and compared it with existing approaches. To do so,

we randomly obtained 12,000 individuals with European ancestry

from the UKB data (data description in the next section).

We selected the first 100,000 SNPs on chromosome 1 for these in-

dividuals. Among these SNPs, we randomly selected causal ones,

simulated their effect sizes, and generated phenotypes, all using

the phenotype simulation tool in GCTA.64 To cover a range of

possible genetic architectures, we considered four different simula-

tion scenarios: scenario I (polygenic), scenario II (sparse), scenario

III (hybrid I), and scenario IV (hybrid II).

Scenario I is a polygenic scenario, where all SNPs are assumed to

be causal. Scenario II is a sparse scenario, where we randomly

selected 0.1% SNPs to be causal. In both scenarios I and II, we

simulated the causal SNP effects from the same distribution. We

considered three different effect size distributions: a normal distri-

bution Nð0; h2 =mÞ, a scaled t-distribution with four degrees of

freedom tðdf ¼ 4;h2 =mÞ (in line with df¼ 4 in Bayesian alphabetic

models), and a Laplace distribution L 0;
ffiffiffiffiffi
h2

2m

q !
; here m is again

the number of SNPs and ðh2 =mÞ is the per-SNP variance for all

three distributions. The parameters in the three distributions

were set so that the causal SNPs in total explain a fixed proportion

of phenotypic variance, h2 (i.e., SNP heritability). We set h2 to be

either 0.1, 0.2, or 0.5, representing low, moderate, and high SNP

heritability, respectively. In total, we explored nine different

simulation settings for each of scenarios I and II (3 SNP heritability

settings 3 3 distributions).

Scenarios III and IV are two hybrid scenarios of the previous

two scenarios. In scenarios III and IV, all SNPs are causal, but their

effect sizes come from a mixture of two different distributions. In

particular, we randomly selected 0.1% of SNPs to have either

moderate (scenario III) or large (scenario IV) effects while assign-

ing the remaining SNPs to have small effects. We set the propor-

tion of genetic variance explained by the large-effects term

(PGE) to be 0.2 in scenario III and 0.5 in scenario IV. We first

simulated the large effects from one of the three different distribu-

tions (normal, t, or Laplace) with variance PGEh2=ml, where ml

is the number of large effect SNPs. We then simulated the addi-

tional effects for all SNPs from the distribution similar to large

effect SNPs with variance ð1 � PGEÞh2=m. We again set h2 to be

either 0.1, 0.2, or 0.5. Therefore, we explored a total of nine simu-

lation settings for each of scenario III and IV (3 SNP heritability

settings 3 3 distributions).

In each simulation setting, we performed ten simulation repli-

cates. The small number of simulation replicates is due to compu-

tational reasons and follows exactly that of Mak et al.,16 Privé

et al.,25 and Lloyd-Jones et al.29 In each replicate, we divided

samples into three different datasets: a training set with 10,000

individuals, a validation set with 1,000 individuals, and a test set

with the remaining 1,000 individuals. The proportion of samples

in the three sets follows exactly that of Lloyd-Jones et al.29 Besides

these three datasets, we also randomly selected 500 individuals

from the validation data and treated them as a reference panel

for computing the LD matrix. With the simulated data, we first

applied the linear regression model implemented in the GEMMA

software to the training data to obtain marginal z-scores.65 We

then paired the marginal z-scores from the training set with the

LD correlation matrix computed from the reference panel and

fitted different PGSmethods. During the fitting process, whenever

necessary (i.e., for LDpred, lassosum, and CþT), we used the

validation set for parameter tuning. Due to the small number of

SNPs in simulations, we found it challenging to obtain a reason-

ably accurate SNP heritability estimate from standard SNP herita-

bility estimation tools such as LDSC. Therefore, we followed

Lloyd-Jones et al.29 and supplied the true SNP heritability for all

compared methods.

Besides these main simulations, we also performed small-scale

simulations to directly compare our method with BSLMM. The

main small-scale simulation consisted of 2,200 individuals, with

2,000 in the training set and 200 in the test set. The detailed

simulation and PGS construction steps followed what has been

described above. In particular, we used normal distribution

to simulate causal SNP effect sizes and explored the three SNP

heritability settings. Besides the main small-scale simulations, we

also explored six other small-scale simulations with different sam-

ple sizes in the training data: 200, 500, 1,000, 2,000, 5,000, and

10,000. In these side small-scale simulations, we explored only

scenario I and measured computational time and memory usage

for BSLMM and DBSLMM.

UKB Data

We obtained genotype and phenotype data from the UKB. The

UKB data contain genotype information for 502,618 individuals.

We followed the same quality control (QC) procedures described

in Lloyd-Jones et al.,29 UK Biobank – Neale lab, and UK Biobank

(see Web Resources) for sample and SNP QC. An overview of the

QC process is displayed in Figure S1. Specifically, for sample QC,

we retained individuals (1) who have genotypes successfully

measured, (2) who are included in the genotype principal compo-

nent (PC) computation, and (3) who have a white British ancestry,



as is evident either through self-reporting ‘‘White British’’ or being

within 20 standard deviations away from the European cluster

center based on two leading PCs. In addition, we excluded individ-

uals (1) who have more than ten putative third-degree relatives

based on the kinship table, (2) who have sex chromosome aneu-

ploidy, as is evident by the inconsistency between the reported

sex and the sex inferred through genotypes, and (3) who are re-

dacted and thus do not have a corresponding ID in the phenotype

data. For SNP QC, we focused our analysis on autosome SNPs

following Lloyd et al.29 and the UK Biobank 2015 release (see

Web Resources). We retained SNPs with a high genotype calling

confidence, as is evident by the maximum probability across the

three genotypes being larger than 0.9. We filtered out SNPs (1)

with a minor allele frequency (MAF) < 0.01, (2) with a Hardy-

Weinberg equilibrium (HWE) test p value < 10�7, (3) with an

imputation information score < 0.8, (4) with a proportion of

missingness (Pm) > 0.05, or (5) that are a duplicated SNP. After

these QC steps, we retained a total of 337,198 individuals and

9,428,411 SNPs for analysis.

Besides genotype information, we also obtained traits. Specif-

ically, following Márquez-Luna et al.,14 Privé et al.,25 Lloyd-Jones

et al.,29 Kichaev et al.,66 and the Neale lab (see Web Resources),

we obtained 16 continuous traits that have an observed SNP

heritability estimated to be above 0.1 and 9 binary traits that

have a prevalence between 0.01 and 0.3. The 16 continuous traits

include standing height (SH, n ¼ 335,473), platelet count (PLT,

n ¼ 326,219), bone mineral density (BMD, n ¼ 193,397), basal

metabolic rate (BMR, n ¼ 330,306), body mass index (BMI, n ¼

335,106), red blood cell count (RBC, n ¼ 326,220), age at

menarche (AM, n ¼ 180,061), RBC distribution width (RDW,

n ¼ 326,218), eosinophils count (EOS, n ¼ 325,653), white blood

cell count (WBC, n ¼ 326,216), forced vital capacity (FVC, n ¼

306,637), forced expiratory volume (FEV1) versus FVC ratio (FFR,

n ¼ 306,637), waist-hip ratio (WHR, n ¼ 335,568), neuroticism

score (NS, n ¼ 273,107), systolic blood pressure (SBP, n ¼

313,972), and years of education (YE, n ¼ 225,898) (see Neale

lab in Web Resources).14,29,66 The nine binary traits include

prostate cancer (PRCA, n ¼ 147,408, prevalence ¼ 0.05), tanning

ability (TA, n ¼ 329,458, prevalence ¼ 0.20), type II diabetes

(T2D, n ¼ 329,355, prevalence ¼ 0.04), coronary artery disease

(CAD, n ¼ 238,284, prevalence ¼ 0.05), rheumatoid arthritis

(RA, n ¼ 232,309, prevalence ¼ 0.02), breast cancer (BRCA, n ¼

170,148, prevalence ¼ 0.07), asthma (AS, n ¼ 306,381, prevalence

¼ 0.14), morning person (MP, n ¼ 300,143, prevalence ¼ 0.27),

and depression (MDD, n ¼ 284,252, prevalence ¼ 0.08). Among

the nine binary traits, for the seven diseases, following Privé

et al.,25 we treated either self-reported or ICD10 cases as 1 and

others as 0. For TA, we treated ‘‘get very tanned’’ as 1 and others

as 0. For MP, we treated ‘‘definitely a morning person’’ as 1

and others as 0. An overview of the phenotypes analyzed in the

paper is shown in Table S2 for continuous traits and Table S3 for

binary traits.

Cross Validation in UKB

For one phenotype at a time, we performed 5-fold cross-validation

in UKB to evaluate the performance of different PGS methods.

First, we randomly selected 1,000 individuals (500 males and

500 females) to serve as a validation dataset.13 We randomly

selected 500 individuals from the validation data to serve as the

reference panel in whichwe computed the SNP correlationmatrix.

Besides the validation data, we partitioned the remaining individ-

uals randomly into five equal-sized disjoint subsets, each contain-

ing 35,975–67,154 individuals for the 16 continuous traits and

29,526–65,994 individuals for the 9 binary traits (number of

individuals varies across the phenotypes). We performed cross-

validation by treating four of these subsets as the training data

and the remaining subset as the test data. We repeated the cross-

validation process five times, with each of the five subsets used

exactly once as the test data. In each cross-validation, we retained

SNPs with an MAF > 0.01 in all these datasets, resulting in an

approximately 9 million SNPs for each analysis.

In the analysis, we first obtained marginal z-scores in the

training data by fitting a standard linear regression using

the GEMMA software.65 For each continuous trait, following the

Neale lab (see Web Resources), we first fitted linear regression

models to remove the effects of the top ten genotype PCs and

sex and obtained phenotype residuals. We then transformed

phenotype residuals to a standard normal distribution through

quantile-quantile normalization. For each binary trait, we directly

fitted linear regression models for one SNP at a time by treating

the top ten genotype PCs and sex as covariates to obtain the mar-

ginal z-scores. With the marginal z-scores from the training data

and the SNP correlation matrix from the reference panel, we

then fitted different prediction methods to obtain SNP effect size

estimates. When necessary (i.e., for LDpred, lassosum and CþT),

we used the validation data to select the optimal tuning parame-

ters. Afterward, we supplied the estimated SNP effects from

different methods to the test data to construct PGS. For contin-

uous traits, we evaluated the performance of different PGS

methods in the test data using Pearson correlation (R2) and

mean square error (MSE; calculated by Metrics R package v.0.1.4).

For binary traits, we evaluated the performance of different PGS

methods in the test data using area under curve (AUC; calculated

by pROC R package v.1.15.3) and Brier score (calculated by scoring

R package v.0.6).

Besides the above analyses, we also computed a theoretical R2

under the infinitesimal model in the following form:67

E
�
R2

�
¼

h2

1þmi=ðnh2Þ
(Equation1)

where n is sample size, mi is the number of independent SNPs

included in the model, and h2 is the SNP heritability. Following

Yang et al.,68 we estimated mi as the total number of SNPs divided

by the mean LD score of these SNPs. We treated the expected R2

in Equation 1 as a baseline prediction performance obtained using

an infinitesimal model under ideal situations.

Finally, we evaluated the performance of different methods on

predicting extreme phenotypes. To do so, for each continuous trait

in turn, we ordered individuals by their trait values and divided

them into ten equal-sized groups. We combined the first group

(i.e., individuals with lowest trait values) and the tenth group

(i.e., individuals with highest trait values) and performed 5-fold

cross validation on them to examine the performance of different

PGS methods. As a comparison, we also randomly selected an

equal number of individuals (i.e., 20%) and performed 5-fold cross

validation there.

External Validation outside UKB

Besides evaluating PGS methods through cross-validations within

UKB, we also evaluated the performance of different PGS methods

by external validation. In particular, we trained different PGS

methods in each of the five training sets in UKB as described above



and validated their performance in two external datasets with

summary statistics. In addition, besides training PGS methods

in each of the five training sets, we also performed side analysis

where we trained PGS methods using the entire UKB data consist-

ing of all five folds to validate their performance in external data.

The first external data consists of GWAS summary statistics for

individuals with European ancestry. The data were obtained

from GWAS-ALTAS.69 We focused on phenotypes that are

analyzed in the present study, that contain summary statistics

with allele information, and that are measured on non-UKB

samples.With the three criteria, we obtained six traits that include

SH (n ¼ 253,288),70 PLT (n ¼ 4,250),71 BMI (n ¼ 339,224),72 RBC

(n¼ 4,250),71 EOS (n¼ 4,250),71 andWBC (n¼ 4,250).71Here, SH

was adjusted for the first 20 PCs. BMI was adjusted for age, age2,

and any necessary specific covariates (i.e., genotype-derived PC).

Four blood measurements were adjusted for age, sex, and time of

blood collection (including a square component). The details of

the GWAS summary statistics for the six traits are provided in

Table S4. We intersected SNPs for the six traits, resulting in an

overlap set of 1,765,807 SNPs for analysis.

The second external data consists of GWAS summary statistics

from the BBJ on individuals with East Asian ancestry.73–75 We

obtained summary statistics for the same six traits listed above:

SH (n ¼ 159,095),74 PLT (n ¼ 108,208),73 BMI (n ¼ 158,284),75

RBC (n ¼ 108,794),73 EOS (n ¼ 62,076),73 and WBC (n ¼

107,964).73 Here, SH in BBJ was adjusted for age, age2, sex, and

top ten genotype PCs. BMI and four blood measurements were

adjusted for age, sex, top ten genotype PCs, and disease status

(affected versus non-affected) for the 47 target diseases in BBJ, as

well as any necessary trait-specific covariates. The details of

GWAS summary statistics for the six traits are provided in Table

S5. As above, we intersected SNPs for the six traits, resulting in

an overlap set of 5,654,625 SNPs for analysis.

We examined each trait in each external dataset one at a time.

Because of the different SNP number of the UKB data and the

two external validation datasets, for each trait in the external

data, we used the common SNPs that appeared in both the

training data of UKB and the external test data for model fitting.

We aligned SNP alleles to be consistent between the training

data in UKB and the external test data. We then applied the fitted

methods to the external test data and evaluated their prediction

performance. Because the two external data consist only of sum-

mary statistics, we relied on the following strategy to evaluate

prediction performance. Specifically, we denoted the unobserved

individual-level phenotype vector in the external data as ~y, the

unobserved individual-level genotype matrix as ~X, the observed

summary statistics in terms of z-scores as ~z, and the sample size

as ~n. We first applied the PGS method to the UKB training/valida-

tion data and obtained bbj as the estimated effect size of jth SNP. If

we had observed the individual-level genotype matrix in the

external data, we would have constructed PGS directly as b~y ¼
~Xbb. Subsequently, we would have been able to evaluate the predic-

tion performance by computing R2, with R being

R¼ cor
�
~y; b~y

�
¼

cov
�
~y; b~y

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var

�
~y
�
var

�
b~y
�r ¼

1

~n
~y
T ~Xbb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

~n
bb
T
~X

T
~Xbb

r ¼
~zT bbffiffiffiffiffiffiffiffiffiffiffiffiffi
bb
T
Sbb

q

(Equation 2)

where S ¼ ~X
T
~X=~n is the SNP correlation matrix in the test data. In

the above equation, we assumed that the phenotype vector and

each column of the genotypematrix in the test data were centered

and standardized to have a mean of zero and a standard deviation

of one. The above equation allowed us to compute R2 in the test

data using summary statistics in the form of ~z and a SNP correla-

tion matrix S. Note that a similar version of the above equation

is also provided in a recent preprint.19 In order to compute test

R2 in Equation 2 in a computationally efficient fashion, we also

approximated S with a block diagonal matrix as described in

the details of DBSLMM.62 In particular, for the first external

data, because these summary statistics are from individuals of

European ancestry, we used the same 500 individuals in the UKB

validation data to construct the SNP correlation matrix. We also

used the same block information of EUR (1,703 blocks for the

whole genome)62 to compute the block diagonal SNP correlation

matrix as used in DBSLMM. For the second external data, because

these summary statistics are from individuals of East Asian

ancestry, we used 504 individuals with East Asian ancestry (EAS)

from the 1000 Genomes Project to construct SNP correlation

matrix.76 We retained SNPs with an MAF > 0.01, an HWE test

p value < 10�3, and non-missing genotypes. We also constructed

a block diagonal SNP correlation based on EAS block information

(1,445 blocks for the whole genome).62

Results

Simulations

We performed simulations to evaluate the performance of

DBSLMM and compare it with existing PGS approaches.

We first considered a set of small-scale simulations with

100,000 SNPs and 2,200 individuals to directly compare

the prediction performance and computational require-

ments of DBSLMM with BSLMM. The results showed that

DBSLMM was only slightly inferior to BSLMM in terms

of prediction accuracy: across all four simulation scenarios,

DBSLMM incurred only an average of 1.55% accuracy loss

in terms of prediction R2, with prediction R2 values highly

correlated with that from BSLMM (Pearson correlation co-

efficient ¼ 0.969; Figures 1A and 1B). However, DBSLMM

was 3.25 times faster than BSLMM when n ¼ 2,000. The

computational gain brought by DBSLMM over BSLMM

became much more appreciable with increasing sample

sizes (Figure 1C). For example, on a moderate-sized sample

(n ¼ 10,000), DBSLMM was 64.72 times faster than

BSLMM, while using only a fraction of physical memory

(8.0%) as BSLMM (Figure 1D).

Next, we considered a set of large-scale simulations with

12,000 individuals to compare DBSLMM with five PGS

methods that are also scalable to biobank scale datasets.

These other compared PGS approaches include CþT,

LDpred-inf, LDpred, SBLUP, and lassosum. Here, in each

simulation setting, following Lloyd-Jones et al.,29 we

divided individuals into three non-overlap sets: a training

set (n ¼ 10,000), a validation set (n ¼ 1,000), and a test set

(n¼ 1,000). We fitted all methods on the training set based

on summary statistics, and when necessary (e.g., for

LDpred, lassosum, and CþT), cross-validated the hyper-pa-

rameters in the validation set. We evaluated the prediction

performance of different methods in the test set by

computing R2 or MSE, across ten replicates in each



simulation setting (Figures 2 and S2–S9 for R2; Figures S10–

S18 for R2 difference; and Figures S19–S21 for MSE).

Overall, DBSLMM was either the most accurate (in 20

simulation settings) or the second most accurate (14)

method in 34 out of 36 simulation settings in terms of

the average prediction R2 across simulation replicates.

The performance of DBSLMM was followed by SBLUP,

which was ranked as the best (11) or second best (6)

method in 17 out of 36 simulation settings. lassosum (sec-

ond best in 13) and CþT (best in 5 and second best in 2)

also performed reasonably well. LDpred-inf was the sec-

ond best method only in one simulation setting while

LDpred was neither the best nor the second best in any

of these simulation settings, which may partially reflect

the unstable MCMC fitting algorithm underlie LDpred

as demonstrated in a previous study.25 In the 20 settings

where DBSLMM was the best, on average, DBSLMM was

7.06% more accurate (median ¼ 6.28%, range ¼ 0.26%–

18.40%) than the second best method. In the 16 settings

where DBSLMM was not the best, on average, DBSLMM

was 3.72% less accurate (median ¼ 3.37%, range ¼

0.03%–8.12%) than the best method. Compared to each

individual PGS method, across all simulation settings,

DBSLMM on average improved prediction accuracy

upon SBLUP, LDpred-inf, LDpred, lassosum, and CþT by

155.24%, 35.69%, 27.87%, 10.59%, and 35.84%,

respectively.

Figure 1. Comparison between
DBSLMM and BSLMM in Small-Scale Sim-
ulations
(A) Prediction R2 in the test data for
DBSLMM (y axis) is similar to that for
BSLMM (x axis) across four simulation sce-
narios (four colors). Each scenario consists
of nine simulation settings, each with ten
simulation replicates. Correlation between
R2
DBSLMM and R2

BSLMM across all replicates
and all settings is shown in the panel.
(B) Violin plot shows the scaled difference
in terms of prediction R2 between
DBSLMM and BSLMM (y axis) for the
four simulation scenarios (x axis; four
colors). The scaled prediction difference
is computed in each simulation replicate
in each simulation setting. For the scaled
prediction difference, we computed
R2
DBSLMM � R2

BSLMM and divided it with the
true heritability.
(C) CPU time (y axis) for BSLMM (triangle)
and DBSLMM (dot) are shown for
increasing sample sizes.
(D) Memory usage (y axis) for BSLMM (tri-
angle) and DBSLMM (dot) are shown for
increasing sample sizes.
Computation in (C) and (D) is based on
100,000 SNPs and is performed with one
thread of an Intel Xeon CPU E5-2683 v3.

Importantly, the performance of

DBSLMM was relatively stable across

different genetic architectures. Specif-

ically, in the polygenic and the two-hybrid scenarios (sce-

narios I, III, and IV), the performance of DBSLMM was

similar to or better than the polygenic models LDpred-inf

and SBLUP, whereas the sparse models LDpred, CþT, and

lassosum did not fare well (Figures 2A, 2C, and 2D). In

the sparse scenario (scenario II), the performance of

DBSLMM was also similar to or better than LDpred, CþT,

and lassosum, whereas the polygenic models LDpred-inf

and SBLUP did not fare well (Figure 2B). The overall robust

performance of DBSLMM across genetic architectures is

likely due to its flexible modeling assumption on the SNP

effect sizes, which allows DBSLMM to be adaptive to the

underlying genetic architecture and achieve robust perfor-

mance across different settings.

A careful examination of the simulation results provides

further insights. First, the results based onMSE were gener-

ally consistent with that based on R2 for most PGS

methods, with the only exception of lassosum. For lasso-

sum, its MSE in the test data was extremely large in non-

sparse scenarios (I, III, and IV), often orders of magnitudes

larger than that of the other methods. For example, in the

baseline setting (i.e., h2 ¼ 0.1 and normal effect size distri-

bution), the average MSE for lassosum across simulation

replicates were 189.767, 1.585, 98.732, and 56.224, for sce-

narios I–IV, respectively (Figure S19). As a comparison, the

average MSE for DBSLMM was only 0.998, 1.028, 0.986,

and 0.991. The poor performance of lassosum in terms of



MSE under non-sparse settings likely reflects a mismatch

between the sparse modeling assumption made in lasso-

sum and the actual polygenic genetic architecture. Indeed,

while the SNP effect size estimates from lassosum are

reasonably accurate under sparse scenario (II), they

become rather inaccurate under non-sparse scenarios (I,

III, IV; Figure S22). The estimation inaccuracy of lassosum

under non-sparse scenarios also appears to be dependent

on both LD score (Figure S23) and MAF (Figure S24).

Second, among the three parameters examined in the

simulations (i.e., the SNP heritability h2, effect size distri-

bution, and PGE in scenarios III and IV), two of them (h2

and PGE) influenced the performance of different PGS

methods. For h2, the performance of different PGS

methods, with one exception (SBLUP), generally improved

with increasingly high h2. For SBLUP, its performance

increased when h2 increased from 0.1 to 0.2 but became

stable or slightly reduced when h2 increased further to

0.5. For example, in the baseline setting in scenario I, the

prediction R2 for SBLUP was 0.035, 0.088, and 0.070, for

h2 ¼ 0.1, 0.2, 0.5, respectively (Figures 1, S2, and S3). For

r, the performance of different PGS methods, with one

exception (SBLUP), also generally improved with increas-

ingly large PGE. For SBLUP, its prediction performance de-

pendency on PGE changed with respect to the effect size

distribution: its performance decreased with respect to r

under a normal or a Laplace distribution, but increased

under a t-distribution (Figures 1, S4, and S7).

Finally, we examined the computing time and memory

requirement of different methods in the simulated

data with SNP number ranging from 10,000 to ~720,000

Figure 2. Comparison of Six PGS
Methods in Their Prediction Performance
in Large-Scale Simulations
Jitter plots show the prediction R2 across
ten replicates for different methods in
each the four simulation scenarios.
Compared methods include DBSLMM (or-
ange red), SBLUP (steel blue), LDpred-inf
(dark cyan), LDpred (light green), lasso-
sum (sienna), CþT (medium turquoise).
Results are shown for the baseline simula-
tion setting with a normal effect size distri-
bution and with heritability ¼ 0.1. Solid
lines represent the mean of prediction R2

across ten replicates, with the numerical
number also displayed above each
method.

(all SNPs on chromosome 1; Figure

3). Among the compared methods,

DBSLMM was faster than SBLUP,

LDpred, and lassosum, with computa-

tional gain increases with increasing

number of SNPs. For example, it took

SBLUP, LDpred, and lassosum 104.48,

154.12, and 18.51 min, respectively,

to analyze ~720,000 SNPs on chromo-

some 1. In contrast, it took DBSLMM only 7.03 min to

analyze the data there, representing 14.87-, 21.94-, and

2.63-fold speed gain over these three methods. In addition,

DBSLMM required only a small amount of physical mem-

ory. For example, SBLUP, LDpred, and lassosum required

57.10, 7.62, and 3.37 GB memory for analyzing ~720,000

SNPs, respectively. In contrast, DBSLMM used only 2.48

GB, which is 4.3%, 32.5%, and 73.5% of that required by

the three methods. Certainly, the simplest approach, CþT,

used the least amount of memory and computing time,

though its performance did suffer in many polygenic set-

tings as shown above.

Applications to UKB: Internal Cross Validation

We applied DBSLMM and other methods to analyze UKB

data. The detailed description of the 16 continuous traits

is shown in Table S2, and the detailed description of the

9 binary traits is shown in Table S3. For each trait in

turn, we performed 5-fold cross validation. For continuous

traits, we evaluated the methods’ performance by

computing R2 (Figure 4) and MSE (Figure S25). For binary

traits, we evaluated the methods’ performance by

computing AUC (Figure S26) and Brier score (Figure S27).

Overall, consistent with the simulations, we found that

DBSLMM achieved the best performance among all PGS

methods. Specifically, it outperformed all other PGS

methods in 11 of the 16 continuous traits in terms of

prediction R2 and in 6 of the 9 binary traits in terms of

AUC. It ranked as the second-best PGS method for 3

other continuous traits and for 3 remaining binary traits.

The overall performance of DBSLMM was followed by



lassosum (best for 5 continuous traits and 1 binary trait;

second-best for 8 continuous traits and 3 binary traits),

SBLUP (best for 2 binary traits; second-best for 2 contin-

uous traits and 1 binary trait), and CþT (second-best for

3 continuous traits and 1 binary trait). LDpred and

LDpred-inf did not fare well: LDpred was the worst method

for 9 continuous traits and 2 binary traits while LDpred-inf

was the worst method for 1 continuous trait and 1 binary

trait. In the 17 traits where DBSLMM was the best, on

average, DBSLMM was 9.17% more accurate (median ¼

4.57%, range ¼ 0.31%–27.79%) than the second-best

PGS method. In the 8 traits where DBSLMM was not the

best, on average, DBSLMM was 6.55% less accurate (me-

dian ¼ 6.44%, range ¼ 0.18% to 16.19%) than the best

method. On average, for continuous traits, DBSLMM

improved prediction upon SBLUP, LDpred-inf, LDpred, las-

sosum, and CþT by 44.35%, 93.47%, 101.09%, 8.19%, and

38.50%, respectively. For binary traits, DBSLMM improved

prediction upon these methods by an average of 2.03%,

5.15%, 7.48%, 4.71%, and 5.67%, respectively. In addi-

tion, presumably due to its flexible effect size assumption,

DBSLMM often outperformed the theoretical R2 under an

infinitesimal model with the corresponding sample size

for almost all traits (Figure 4). In contrast, as expected,

the two infinitesimal models (SBLUP and LDpred-inf)

yielded similar prediction R2 as the theoretical R2.

As expected, the performances of all PGS methods in

continuous traits were positively correlated with their

SNP heritability (Pearson correlation in the range of

0.930–0.969 for continuous traits; Figure S28). In addition,

the performance of all PGS methods improved on predict-

ing individuals with extreme phenotypes, although their

ranking remained similar (Figure S29). Moreover, consis-

tent with the simulations, for continuous traits, the perfor-

mance of lassosummeasured byMSE could be much worse

than that measured by R2. In particular, lassosum became

the worst method for 14 out of 16 continuous traits

when measured by MSE. For these 14 traits, the MSE

from lassosum was on average 26 times larger than the

second worst method. As a specific example, lassosum

performed reasonably well for SH in terms of prediction

R2 (0.255 for lassosum; 0.302 for DBSLMM). However,

lassosum performed poorly for SH in terms of MSE

(256.44 for lassosum; 1.24 for DBSLMM). Similarly, for

Figure 3. Comparison of Computing Cost for Different PGS Methods
CPU time (A) and memory cost (B) for different methods are shown with respect to increasing SNP numbers (x axis). chr1 on x axis rep-
resents ~720,000 SNPs. Compared methods include DBSLMM (orange-red), SBLUP (steel blue), LDpred (dark cyan), lassosum (sienna),
CþT (medium turquoise). Computation is based on the baseline simulation setting of scenario IVand is performed with one thread of an
Intel Xeon CPU E5-2683 v3. Note that the y axis is on log scale for both panels.



binary traits, the performance of lassosum was ranked as

the worst method for 3 out of 9 binary traits measured

by Brier score.

Finally, we examined the computing time and memory

cost of different methods in the real data applications for

SH in 5-fold cross validation (Table 1). With one CPU

thread, DBSLMM was 19.43, 22.97, and 1.07 times faster

and used 7.4%, 8.9%, and 23.4% of physical memory as

compared to the three multivariable regression-based

PGS methods, SBLUP, LDpred, and lassosum, respectively.

DBSLMM was also implemented with parallel computing

capability. With five CPU threads, DBSLMM was 28.11

and 1.03 times faster and used 18.8% and 24.8% of phys-

ical memory as compared to SBLUP and lassosum, respec-

tively. In addition, the DBSLMM algorithm is reasonably

robust with respect to the choice of the hyper-parameters:

while the main analyses of DBSLMM were carried out by

fixing two hyper-parameters to pre-defined values (the p

value and LD threshold in the selection algorithm was

set to be 1e�6 and 0.1, respectively), tuning these two

hyper-parameters in the validation data yielded similar

results (Figures S30 and S31).

Applications to UKB: External Validation

The above results are based on cross-validation within UKB.

To examine whether the PGS constructed by the methods

Figure 4. Prediction Performance of Six PGS Methods for 16 Continuous Traits in UKB Cross-validation
Methods include DBSLMM (orange-red), SBLUP (steel blue), LDpred-inf (dark cyan), LDpred (light green), lassosum (sienna), and CþT
(medium turquoise). Title in each panel shows the abbreviation of 16 continuous traits: standing height (SH), platelet count (PLT), bone
mineral density (BMD), basal metabolic rate (BMR), body mass index (BMI), red blood cell count (RBC), age at menarche (AM), RBC dis-
tribution width (RDW), eosinophils count (EOS), white blood cell count (WBC), forced vital capacity (FVC), forced expiratory volume
(FEV1) versus FVC ratio (FFR), waist hip ratio (WHR), neuroticism score (NS), systolic blood pressure (SBP), and years of education (YE).
The jitter plot in each panel displays the prediction R2 for eachmethod in the test set across five folds. Themean prediction R2 across the
five folds is displayed above the jitter plot. Dashed lines in each panel represent the maximum and minimum theoretical expected pre-
diction R2 under an infinitesimal model.



above can be extrapolated into other datasets or other

ethnic groups, we performed two external validation ana-

lyses. Briefly, we fitted different PGS models in each of the

five training/validation datasets in UKB and then examined

the performance of the PGS methods in each of the two

external datasets: one on individuals with European

ancestry (Table S4) and another on individuals with East

Asian ancestry from BBJ (Table S5). Therefore, we obtained

five prediction values in each external data, one from each

of the five training/validation data in UKB. We focused

our validation analysis on six traits, including SH, PLT,

BMI, RBC, EOS, and WBC, which are available in both

external datasets. Importantly, both external datasets

consist only of summary statistics. Therefore, we extended

the formula for computing R2 in the test set to use summary

statistics (Equation 2). We summarize the prediction R2 re-

sults across the five different UKB training data for the

two external data separately: Figure 5 for the first external

data and Figure S32 for the second external data.

Overall, consistent with the simulations and UKB cross-

validation results, DBSLMM was the best PGS method for

five out of six traits in the first external dataset and for

four out of six traits in the second external dataset, and

was ranked as the second-best PGS method for one trait

in the second set. The overall performance of DBSLMM

was followed by SBLUP (best for two traits in the second

set; second-best for one trait in the first set and two traits

in the second set), CþT (second-best for three traits in

the first set and one trait in the second set), LDpred-inf

(second-best for two traits in the first set and one trait in

the second set) and LDpred (second-best for one trait in

the second set). lassosum did not fare well: it was the worst

methods for three traits in the first data and one trait in the

second data. For the five traits in the first data where

DBSLMM performed the best, DBSLMM was on average

12.22% more accurate (median ¼ 9.39%; range ¼ 7.02%–

21.01%) than the next best method (Figure 5). For the

one trait (BMI) in first data where DBSLMM was not the

best method, its performance was 18.68% less accurate

than the best method. For the four traits in the second

data where DBSLMM performed the best, DBSLMM was

on average 12.09% more accurate (median ¼ 11.20%;

range ¼ 0.99%–24.97%) than the next best method. For

the two traits in the second data where DBSLMM was

not the best method (BMI and PLT), DBSLMM was 4.76%

and 18.64% less accurate than the best method, respec-

tively. On average, in the first external data, DBSLMM

improved prediction accuracy upon SBLUP, LDpred-inf,

LDpred, lassosum, and CþT by 95.72%, 19.61%, 28.41%,

59.42%, and 23.65%, respectively. In the second external

dataset, DBSLMM improved prediction accuracy upon

these methods by 522.74%, 14.74%, 25.37%, 33.12%,

and 43.79%, respectively. Finally, using the entire UKB

data consisting of all five folds as the training data (instead

of using only four out of the five folds) yielded consistent

and slightly more accurate prediction results (Table S6).

Comparing the method performance in the external data

versus that in the UKB cross-validation provides us with

further insights. First, as expected, the performance of all

PGS methods in the external data was worse than that in

UKB cross-validation, and more so in the second external

data than in the first external data (Figures 4, 5, and S32).

For example, for SH, the average prediction R2 for six

methods (i.e., DBSLMM, SBLUP, LDpred-inf, LDpred, lasso-

sum, and CþT) were 0.302, 0.217, 0.161, 0.156, 0.255, and

0.246 in UKB cross-validation, respectively. These predic-

tion R2 values reduced to 0.256, 0.048, 0.235, 0.176,

0.211, and 0.179 in the first external data, and further

reduced to 0.118, 0.004, 0.117, 0.112, 0.078, and 0.082 in

the second external data, respectively. Second, the relative

performance of LDpred-inf and LDpred in the external

data were slightly better than that in the UKB cross-valida-

tion. Third, while lassosum ranked the second in UKB

cross-validation, it had a relatively low performance in the

external validations and was ranked neither as the best

nor the second-best method across all six traits in UKB

data. Finally, comparing between the two external datasets,

the rank of the six PGSmethods were largely similar for four

traits (SH, BMI, EOS, and WBC) but not the other two (PLT

and RBC). For example, SBLUP was close to the worst

method for PLT in the first external data but became the

best in the second external data. Similarly, LDpred-inf was

close to the worstmethod for RBC in the first set but became

the third in the second set.

Table 1. Computational Cost of Different PGS Methods in UKB

Methods

One Thread Five Threads

Memory Usage (GB) CPU Time (min) Memory Usage (GB) CPU Time (min)

DBSLMM 4.68 62.45 11.80 35.88

SBLUP 62.91 1,213.42 62.91 1,008.71

LDpred 52.70 1,434.38 – –

lassosum 20.03 66.89 47.60 37.12

CþT 0.23 47.90 – –

Table lists the method name (1st column), memory usage (2nd or 4th column), and computing time (3rd or 5th column) for analyzing one trait in UKB (with ~9
million SNPs). Memory usage and CPU time are recorded based on either one thread (2nd and 3rd columns) or five threads (4th and 5th columns) of an Intel Xeon
CPU E5-2683 v3. LDpred and CþT do not have parallel computing capacity, so the computing time and memory usage on five threads are not recorded for these
two methods.



Discussion

We have presented a new method, DBSLMM, for accurate

and scalable construction of PGS in large-scale biobank

datasets. The inferred SNP weights from DBSLMM not

only predict well in European populations but also adapts

reasonably well to East Asians. Indeed, we show that Euro-

pean weights can be used to predict BBJ traits, though with

an approximate 3.3-fold decrease in accuracy as compared

to predicting the same traits in UKB. The accuracy reduc-

tion observed in the present study is largely consistent

with previous studies where the European weights

incurred an approximately 2.0-fold accuracy reduction

for predicting East Asians as compared to predicting Euro-

peans for anthropometric and blood-panel traits77 as well

as for BMI and height.78 Overall, we believe DBSLMM

strikes an appealing balance between computational trac-

tability and prediction accuracy for PGS applications.

We have compared DBSLMM with several other PGS

methods, including SBLUP, LDpred, lassosum, and CþT,

in both simulations and applications to UKB. In the com-

parison, due to computing cluster and resource limitation,

we have restricted our analysis for all methods on using a

maximum of 64 GB memory. Subsequently, we have to

restrict the radius parameter in LDpred to be 200, the win-

dow size parameter in SBLUP to be 200, and the number of

independent LD blocks in DBSLMM and lassosum to be

within 2,000. These parameters effectively determine the

LD distance considered in the model. With these param-

eter settings, we found that the prediction R2 for the two

polygenic models (LDpred-inf and SBLUP) remains largely

consistent with the theoretical R2 expected from an infin-

itesimal model, suggesting that these parameter choices

were sufficient for LDpred-inf and SBLUP to achieve the

optimal prediction performance. In addition, our results

for the existing PGS methods were also largely consistent

Figure 5. Prediction Performance of Six PGS Methods for Six Continuous Traits in the External Validation Data with European
Ancestry
Compared methods include DBSLMM (orange-red), SBLUP (steel blue), LDpred-inf (dark cyan), LDpred (light green), lassosum (sienna),
and CþT (medium turquoise). Title in each panel shows the abbreviation of six continuous traits: standing height (SH), platelet count
(PLT), body mass index (BMI), red blood cell count (RBC), eosinophils count (EOS), and white blood cell count (WBC). The jitter plot in
each panel displays the prediction R2 for each method in the test set across five folds. The mean prediction R2 across the five folds is
displayed above the jitter plot. Dashed lines in each panel represent the maximum and minimum theoretical expected prediction R2

under an infinitesimal model.



with previous applications of the same method on the

same trait.29 However, we acknowledge that higher LD dis-

tance and larger LD block size will likely improve the pre-

diction accuracy for at least some of the PGS methods

such as DBSLMM and lassosum.

We have examined a relatively simple searching strategy

to identify SNPs with potentially large effect sizes in

DBSLMM. Our searching strategy is based on a clumping

algorithm and is computationally efficient. However, other

more sophisticated variable search and screening algo-

rithms may lead to more accurate selection of large-effect

SNPs, potentially improving PGS accuracy further. For

example, lasso,79 smoothly clipped absolute deviation

(SCAD),80 elastic net,81 and sure independence screening

(SIS)82 can all be used to select SNPs with potentially large

effects. Our analytic solution can be applied to SNPs with

large effects obtained from any searching strategy. There-

fore, pairing our method with other searching strategies

in the future can have added benefits.

Our modeling assumption represents a direct attempt

for modeling the omnigenic hypothesis that was pro-

posed recently.58 Specifically, our model categorizes

SNPs into two groups: a small group of SNPs with large

effect sizes and a large group of SNPs with small effect

sizes. Such SNP categorization is equivalent to assuming

that all SNPs have non-zero effects, while a small propor-

tion of them have additional effects. The assumption

that all SNPs have non-zero effects attempts to model

the omnigenic hypothesis that all genes/SNPs have

non-zero effects. The assumption that a small subset of

SNPs have additional effects also attempts to model the

omnigenic hypothesis that a small subset of genes,

termed core genes, have additional effects. The set of

core genes was hypothesized in the omnigenic model

to directly underlie disease etiology and contribute dis-

proportionally to disease and disease-related complex

traits. In DBSLMM, we can also compute a statistic r to

quantify the proportion of genetic variance explained

by large effect SNPs in the trait (details in Supplemental

Material and Methods). r is a value between 0 and 1 and

effectively measures how ‘‘polygenic/omnigenic’’ the

given trait is. Specifically, if r is small and close to be

zero, then the genetic variance of the trait is largely ex-

plained by a large number of small-effect SNPs. Conse-

quently, a polygenic PGS model may work preferentially

well for the trait. In contrast, if r is large and close to be

one, then the genetic variance of the trait is largely ex-

plained by large-effect SNPs. Consequently, a sparse

PGS model may work preferentially well. Because

DBSLMM can take advantage of both large- and small-ef-

fect SNPs in a data adaptive fashion, DBSLMM can work

reasonably well across a range of r values. In addition,

DBSLMM becomes a sparse model as r approaches to 1

and becomes a polygenic model as r approaches to 0.15

In real data applications, the performance gain brought

by DBSLMM over polygenic PGS methods is highly posi-

tively correlated with the statistics r, while the perfor-

mance gain brought by DBSLMM over sparse PGS 
methods is negatively correlated with r (Figure S33).
Certainly, while the effect size distribution assumption 

in DBSLMM is relatively flexible, more flexible modeling 
assumptions exist. For example, DPR uses a non-parametric 
effect size distribution assumption that effectively catego-
rizes SNPs into infinitely many groups a priori.28 LDpred-

funct and AnnoPred attempts to incorporate 
SNP functional annotations into modeling effect size 
distribution.14,20 These different approaches can all 
improve prediction accuracy across a range of genetic archi-
tectures. Therefore, it would be ideal to extend the current 
deterministic searching strategy and analytic solution for 
our model to other, more flexible, PGS models. For example, 
we could potentially extend the searching strategy to select 
different groups of SNPs, with each group of SNPs having 
different magnitude of effect sizes, as in DPR. We could 
also impose different level of penalty on the effect sizes of 
SNPs from different groups. An analytic solution may be 
derived from some of these models but may be non-trivial 
for many others. Nevertheless, exploring the use of 
the deterministic searching strategy and analytic forms of 
solutions to other more flexible PGS models, either in line 
with the above methods or in other ways, will likely yield 
fruitful results in the future.
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