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Abstract—Modern mobile and embedded devices are required
to be increasingly energy-efficient while running more sophisti-
cated tasks, causing the CPU design to become more complex and
employ more energy-saving techniques. This has created a greater
need for fast and accurate power estimation frameworks for both
run-time CPU energy management and design-space exploration.
We present a statistically rigorous and novel methodology for
building accurate run-time power models using Performance
Monitoring Counters (PMCs) for mobile and embedded devices,
and demonstrate how our models make more efficient use of
limited training data and better adapt to unseen scenarios by
uniquely considering stability. Our robust model formulation
reduces multicollinearity, allows separation of static and dynamic
power, and allows a 100× reduction in experiment time while
sacrificing only 0.6% accuracy. We present a statistically detailed
evaluation of our model, highlighting and addressing the problem
of heteroscedasticity in power modeling. We present software
implementing our methodology and build power models for
ARM Cortex-A7 and Cortex-A15 CPUs, with 3.8% and 2.8%
average error, respectively. We model the behavior of the non-
ideal CPU voltage regulator under dynamic CPU activity to
improve modeling accuracy by up to 5.5% in situations where
the voltage cannot be measured. To address the lack of research
utilizing PMC data from real mobile devices, we also present our
data acquisition method and experimental platform software. We
support this work with online resources including software tools,
documentation, raw data and further results.

Index Terms—power modeling and estimation, embedded sys-
tems, performance monitoring counters, PMC event selection

I. INTRODUCTION

THE last 10 years has seen a significant shift in emphasis

from desktop and laptop computers towards mobile de-

vices such as smartphones, tablets, thinner fan-less laptops,

and, more recently, smart watches [1]. This has promoted

energy-efficiency ahead of raw performance as the main design

goal in modern CPUs [2]. Increasing the energy efficiency

of mobile CPUs not only allows the battery to last longer,

but allows these smaller, compact devices to perform more

complex tasks while remaining within their thermal design

power (TDP), enabling new and innovate applications [3].
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Fundamental to improving energy efficiency is managing

the operation of the CPU in an intelligent way. Modern CPUs

employ power-saving techniques such as dynamic voltage fre-

quency scaling (DVFS), power gating and multiple asymmetric

cores (e.g. ARM big.LITTLETM technology [4]). It has been

shown that run-time management software (or the run-time

manager) can make significant energy improvements by con-

trolling these power-saving techniques to smartly manage the

energy-performance trade-off while taking external factors into

account [5], [6]. However, run-time knowledge of the power

consumption of each CPU core in the system is paramount in

finding the optimum power/performance trade-off.

We present a novel methodology and corresponding soft-

ware tools for both characterizing the power consumption of

real mobile CPUs and producing accurate and stable run-

time power models. These models can be inserted into the

operating system to provide accurate, per-core, run-time CPU

power estimations to the run-time management software. They

can also be used as accurate and trusted reference models in

design-space exploration in conjunction with a performance

simulator, such as gem5 [7]. We focus on mobile devices

because their energy efficiency is of particular importance and

modeling their power consumption is challenging due to the

dynamic nature of their workloads. However, our proposed

modeling methodology is generic, and can be used with other

CPUs of different ISAs (instruction set architectures) or in

desktop or server systems. The resulting models themselves

are specific to a particular CPU implementation.

Our methodology employs statistical rigor throughout each

stage of the modeling process, in which we introduce novel

techniques and insights and demonstrate how they improve

the model quality. We illustrate our approach on a device

containing an ARM mobile CPU that is also found in the

Samsung Galaxy S5 smartphone (released in 2014). It utilizes

ARM’s big.LITTLETM technology, having two CPU clusters

of significantly differing microarchitectures: one optimized

for greater energy-efficiency (quad-core Cortex-A7), and one

optimized for higher performance (quad-core Cortex-A15).

We present models of both clusters, focusing on the latter to

illustrate our methodology throughout this paper.

In Section II we present a background on CPU power

modeling and review related works. In Section III we give an

overview of the three main steps of our modeling methodology

with a brief description of our key contributions in each

of them. Sections IV, V and VI describe these three steps

in detail: data acquisition, Performance Monitoring Counter

Copyright c©2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be obtained from the IEEE by sending an email to pubs-permissions.ieee.org.



IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. ?, NO. ?, DECEMBER? 2015 2

(PMC) event selection, and model formulation and validation,

respectively. We then directly compare our model to related

work in Section VII. Section VIII highlights how the voltage

supplied to the CPU is dependent on the dynamic CPU activity

and introduces a voltage model to significantly improve the

power model accuracy in situations where the voltage cannot

be directly measured. The key contributions of this paper are:

• An automated PMC event selection methodology that

uniquely considers model stability and a demonstration

of its importance (Section V);

• A robust model formulation technique that breaks down

static and dynamic power and reduces both multi-

collinearity and experiment time (Section VI);

• A voltage model that compensates for CPU voltage de-

viations induced by CPU activity and a demonstration of

how it improves the power model accuracy (Section VIII);

• Two accurate and extensively validated run-time PMC

power models for an ARM big.LITTLE mobile platform;

• Software tools for both collecting PMC, power and volt-

age data (platform specific), and implementing our novel

modeling methodology (platform independent), available

from [8].

II. RELATED WORK

Power models for CPUs can be split into two key groups:

top-down approaches, where existing devices are characterized

experimentally; and bottom-up approaches which use theoret-

ical knowledge of each component.

Bottom-up approaches are commonly employed in design-

space exploration as they can be adapted to different design

specifications. An example of such a tool is McPAT [9],

a power, area and timing modeling framework. While this

flexibility is required for some research in system design-

space exploration, it comes at the cost of accuracy. In [10]

significant sources of errors are found in McPAT which are

largely caused by abstraction error. Rethinagiri et al. [11]

show McPAT to have average power errors of over 20% for

most of the tested workloads when comparing McPAT to a

physical ARM Cortex-A9 device. Bottom-up power models

are generally unsuitable for run-time management applications

due to their relatively poor accuracy and large computational

complexity.

Top-down CPU power models, which are built by charac-

terizing existing hardware, are more accurate but inflexible.

This lack of flexibility renders them unsuitable for some

investigations, but their trusted accuracy makes them valuable

for many others. Their low computational complexity brings

speed benefits to simulations; Isci and Martonosi [12] report

that simple run-time top-down models are vital for studies

requiring long executing times, such as thermal analysis. There

have been some attempts to combine both techniques together,

for example, Lee et al. [13] calibrate McPAT using measured

values from real hardware in order to improve its accuracy,

however, only the overall power is calibrated and the errors of

individual components are unknown.

PMC based models have long been used for top-down

CPU power estimation due to their high level of accuracy

Step 1:

Data Acquisition

Step 2:

 PMC Event 

Selection

Step 3:

 Model Formulation 

and Validation

Step 4:

 CPU Voltage 

Model

Section IV Section V Section VI Section VIII

Fig. 1. Steps of our proposed power modeling methodology

and low overhead [12], [14]–[23]. PMCs count hardware

events related to the CPU, such as instructions architecturally

executed or L2 cache misses, to give fast run-time information

for analyzing the CPU’s performance. This detailed insight

into the instantaneous operation of the processor allows power

predictions to be made. However, despite energy-efficiency

being crucial to mobile devices, there are relatively few works

that provide accurate run-time PMC-models for them using

real data.

To the best of our knowledge, [24] and [25] are the only

works that use both PMC data and measured power data

from a real device to build a run-time power model for an

ARM-based mobile CPU. This is due to the lack of a known

method of extracting PMCs on mobile platforms, where there

are more technical challenges in doing so. Rethinagiri et

al. [11] also highlight the scarcity of fast power modeling

work for mobile systems and present a tool for system-level

power estimation created by using a performance simulator, to

provide simulated PMC data, with real measured power data

from a development board. To overcome the difficulties in

obtaining PMC data, simple CPU utilization has been used to

make energy-aware run-time scheduling decisions in an ARM

big.LITTLE architecture [26]. However, using utilization re-

sults in poor accuracy as it provides no information on the

type of workload [24]. Our method of obtaining PMCs on a

mobile platform and corresponding software tools address this

problem, aiding future research.

While we have highlighted many works that utilize PMC

data to build run-time power models, we introduce several

important steps and considerations into our methodology and

illustrate their importance on the resulting model e.g. model

stability, homoscedasticity and robust model formulation. We

also show how the reported model statistics, e.g. average error,

can be misleading.

III. PROPOSED METHODOLOGY

This section gives an overview of the steps in our modeling

methodology (Fig. 1) and highlights our contributions in each.

Step 1 (described in Section IV) concerns the experimental

setup and method for acquiring the data used to build and

validate the models. We collect PMCs, CPU power and CPU

voltage from an ARM big.LITTLETM based development

platform while simultaneously exercising the CPU with a large

number of workloads, including ones that utilize parallel pro-

gramming and the NEON SIMD (single instruction, multiple

data) processing unit. To address the lack of existing works

using PMC data from real mobile platforms, we have made our

software tools available to aid and encourage future research.

The quality of the resulting models inherently depends on the

quality of data used to build them and we also demonstrate

the low overhead and precision of our experimental platform.
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Only a limited number of the many selectable PMC events

(e.g. L2 cache misses, instructions executed) can be simul-

taneously recorded; in Step 2 (described in Section V) we

present our novel PMC selection methodology that uniquely

considers the stability of the model when choosing model

inputs. Furthermore, we demonstrate how it allows a model

to better predict a wider range of workloads, even if they are

not well covered in the training data. This is a crucial quality

for real-world power models and, although it is not considered

in previous work, we show that demonstrating stability of a

model is perhaps more important than giving an average error

value.

Once the PMC events have been selected, the experiment is

run with this selection and the results used to build a linear re-

gression model to predict the CPU power. In Step 3 (described

in Section VI) we describe our robust model formulation

where we use our knowledge of how power is consumed in

CPUs, as opposed to adding regression coefficients directly to

PMC data as is typical in existing works [11], [20], [21], [24].

Our formulation reduces multicollinearity, separates dynamic

and static power consumption, works with any given voltage

and frequency, and, when combined with the added model

stability, allows the model building experiment duration to be

reduced by 100× while trading off only 0.6% error. In this

stage we also thoroughly validate our models and provide

a large set of statistical results, allowing the quality of the

model to be properly assessed. We identify the problem of

heteroscedasticity in run-time power modeling and describe

its effects and how to alleviate it.

Furthermore, we uniquely demonstrate how the dynamic

CPU activity affects the voltage being supplied to the CPU

by the non-ideal voltage regulator, which in turn affects CPU

power consumption (described in Section VIII). In run-time

management scenarios, the voltage supplied to the processor

cannot be measured and we therefore present a novel voltage

model, which takes the current frequency and modeled dy-

namic power consumption as inputs (Step 4). We demonstrate

how this improves the run-time power estimation accuracy by

as much as 5.5%.

We provide software tools to aid research related to PMCs,

power and temperature on mobile devices using real data (plat-

form dependent) and to implement our novel methodologies

described in Steps 2 and 3 (platform independent) at [8]; raw

data, additional graphs and results, model coefficients, and

software documentation are also provided.

IV. DATA ACQUISITION

As highlighted in Section II, there is very little reported

research that uses real PMC data from a mobile ARM-based

platform due to the lack of an established method of doing so.

In this section we present our experimental setup, method and

accompanying software tools for collecting PMC data, running

workloads and measuring CPU voltage and power on a mobile

platform (Step 1 of our power modeling methodology). We

also demonstrate its low overhead and high precision, which

is essential for producing accurate models.

We use an ODROID-XU3 development board by Hard-

kernel to illustrate our approach. It utilizes a Samsung

(A) Modified kernel for 

ODROID-XU3

(C) Automated 

workload, VF, core 

affinity control software

(B) PMC, power sensor 

data-logging software for 

ODROID-XU3 

(D) Execution 

information

(E) Run-time 

data

(F) Post-processing 

software

(G) Power, PMC, 

voltage, etc. for each 

workload, frequency, 

core-mask

List of workloads

Fig. 2. Simplified overview of our experimental platform software (corre-
sponding to Step 1 in Fig. 1).

Exynos 5422 SoC (System on Chip) which has an ARM

big.LITTLETM design containing two types of CPU core:

four ARM Cortex-A15s optimized for high performance and

four Cortex-A7s optimized for energy-efficiency. Each core

contains a NEON SIMD processing unit, which we account

for in our model.

We develop, and make available, software tools to stream-

line future research on mobile development boards in the

form of a customized Linux operating system image (Ubuntu

14.01.1) and programs for running experiments and capturing

data from PMCs, operating system statistics and the built-in

energy sensors on the ODROID-XU3 (Fig. 2).

We modify the kernel of the operating system (Item A in

Fig. 2) to include the userspace frequency governor so that

the frequency and voltage can be changed from userspace. We

develop a loadable kernel module (LKM) to allow userspace

access to the PMCs by setting the PMUSERENR register on

each CPU core. We write data-logging software in C and

inline assembly to access and record the PMCs, power sensor

data and operating system statistics (Item B) with a low

overhead (Fig. 3). There is no perceivable power overhead

when running the experiment with a sample frequency of 1 Hz

and a very small overhead when running the experiment at

10 Hz. The overhead does not contribute to errors because

the PMC data measures all of the CPU activity. However, for

high-quality experimental data, the effect of the experimental

software should be minimized so it does not interfere with

the workloads under test. We use a sample rate of 5 Hz

and run the workloads for an extended period of time to

gather a large number of data points to properly account for

workload phases. To test the consistency of the experimental

platform, we run our experiment 11 times and observe the

deviation. The average standard deviation of the measured

power (which deviates more than the PMC events) over all

60 workloads, whose average power ranges from 0.23 W to

1.8 W, is 0.0049 W. This indicates a high level of precision

and repeatability in our experimental setup which is necessary

for building high-quality models.

As well as recording data, the experimental software runs a

specified set of workloads (Item C, Fig. 2) over: 1) any spec-

ified list of voltage-frequency points (Cortex-A7 frequencies

and Cortex-A15 frequencies can be independently specified,
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Fig. 3. Power overhead of experimental platform (@200 MHz, worst-case)

allowing many combinations); 2) any specified set of core

masks (control of CPU affinity on both ‘big’ and ‘little’ cores);

and, 3) any specified number of simultaneous executions of

the workload (for exercising multiple cores simultaneously).

Having the ability to automatically collect data for many

combinations allows the model to be built with a wide range

of scenarios.

We use 60 workloads from a variety of sources, in-

cluding: 14 from the MiBench [27] suite; 20 from LM-

bench [28]; 11 from Roy Longbottom [29]; 1 from Me-

diaBench [30]; 5 handwritten workloads; and other work-

loads that make use of programs such as MPlayer, tar

and gcc. This set covers a large range of both realistic

and synthetic workloads, including ones that are CPU in-

tensive (e.g. bitcount, neon mul, jpeg dec, dhrystone), mem-

ory intensive (mp lp neon, lat mem rd 1 256, bw mem rd,

cache) and I/O intensive (bw mem cp 700m, par mem,

openmp mem spd). We tune some synthetic workloads to

trigger certain CPU behavior (e.g. accessing particular levels

of cache) and use PMC data to ensure the workloads achieve

the desired effects. For example, we use lat pagefault and

mp lp neon to cause a large number of TLB (translation

lookaside buffer) misses, cstm int to cause a large number

of mispredicted branch instructions, and neon add, cstm fp

and mp neon mflops to cause a large number of unaligned

accesses. In Section V we show how using a diverse subset

of these workloads results in a more robust model than when

using a more typical set (i.e. MiBench and MediaBench). In

Section VI we show how the components of the dynamic

power prediction varies significantly between different work-

loads (Fig 11).

To keep the overhead of the experiment to a minimum, the

data from both Items B and C (Fig. 2) are captured in a raw

format and then combined and processed (Item F) after the

data has been recorded. The result is a table of workloads (run

on different numbers of cores and at different DVFS levels)

against the corresponding CPU power, voltage and PMC data,

all averaged over the duration of each workload (Item G).

V. PMC EVENT SELECTION

While there are many PMC events, only a few of them can

be monitored simultaneously on mobile CPUs. On the ARM

Cortex-A7 and Cortex-A15 only four and six PMC events (in

addition to the Cycle Count) can be monitored simultaneously,

respectively. The decision of which PMC events to use as

inputs to our power model is key, as we will demonstrate.

This section presents our novel methodology for choosing

PMC events (Step 2, Fig. 1) which results in an accurate and

stable model. Furthermore, we experimentally demonstrate

the importance of stability, give insight into how many PMC

events should be used, and show how the common practice

of using a limited number of workloads for training and

validation results in a poor power model with an optimistic

reported error.

In order to analyze and compare all of the available

PMC events, we set our experimental framework to keep the

frequency and core-mask constant while running all of the

workloads multiple times and change the recorded PMC events

on each iteration to cover almost all of them; we collected

data for 39 and 66 events on the Cortex-A7 and Cortex-A15,

respectively. The large set of PMC events are then cross-

compared and analyzed in order to find an optimum selection

to use as model inputs.

An important consideration when choosing the events is

multicollinearity, which occurs when two or more independent

variables in the linear regression model have inter-correlation

(a relationship) between them. While this does not necessarily

have a direct impact on the reported accuracy or overall

fit, it causes errors in the model coefficients and makes the

model overly sensitive to changes in the inputs, resulting in

an unstable model. If a model with high multicollinearity

comes across a scenario that is not well covered in the

training data, then it likely produces inaccurate predictions,

as we demonstrate experimentally later in this section. It is

impractical to cover all of the possible behaviors that real-

world workloads may exhibit in the training workloads used

to build the model. Therefore, a stable model that is better

able to predict scenarios outside of the training set is a vital

property of a practical, real-world power model.

To quantify multicollinearity (and therefore give an indica-

tion of the stability) we calculate the VIF (variance inflation

factor) for each PMC event. To find the VIF for a particular

independent variable, we build an ordinary least squares (OLS)

linear regression model which predicts that variable using the

others. We use the resulting R2 value (indicating goodness-

of-fit) from the model to calculate the VIF:

VIF =
1

1−R2
(1)

A VIF of one, for example, indicates that there is no corre-

lation between that independent variable and the others. If an

independent variable has a VIF of 10, for example, it would

indicate that the variance of that predictor coefficient is 10×
larger (and the standard error of that predictor coefficient is

therefore 3.2× [square root of 10] larger) than if there was

no multicollinearity present. It is widely considered that, as

a general rule of thumb, a VIF over five or ten [31], [32]

indicates that there are strong multicollinearity problems.

A set of PMC events should therefore be carefully chosen to

provide the model with the largest possible amount of unique

information useful for predicting the power, without providing
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Fig. 4. Correlation of each Cortex-A15 PMC event with power, grouped and colored by cluster, with PMC events chosen by our automated algorithm labeled
in bold font

duplicated information which results in multicollinearity; this

is key to building an accurate and stable model. Choosing

PMC events solely on their correlation with the overall CPU

power, for example, results in a poor model because PMC

events that correlate well with power also correlate well with

each other, starving the model from valuable information con-

tained in other events and causing multicollinearity problems.

We employ several statistical analysis techniques to develop

a deep understanding of how to select the optimum events

in order to devise a simple automated method of doing so.

We use hierarchical cluster analysis (HCA) and inspection of

the corresponding dendrograms to group similar PMC events

together into clusters (based on how they correlate with each

other). Choosing events in different clusters therefore results

in diverse information being provided to the model about

the current operation of the CPU. However, the information

does not necessarily help to predict the power consumption.

We used the Pearson product-moment correlation coefficient

to calculate the linear correlation of each PMC event with

the CPU power consumption and combined the results with

the HCA results (Fig. 4). PMC events with a very high

correlation with power (>0.75) are all in the same cluster,

highlighting how choosing PMC events on correlation alone

results in similar events, which means the model will have

intercorrelated inputs that only provide it with a narrow range

of information. A good PMC selection is made by choosing

PMC events that have a high correlation with power but

avoiding repeatedly selecting from the same cluster. However,

a decision of how many clusters to group the PMC events into

and how much to prioritize clustering or correlation has to be

made, requiring intuition and further experimentation.

We build on the knowledge from the HCA and the VIF

itself to develop a simple, two-stage, automated method for

selecting optimum PMC events that provide the model with the

largest possible amount of information for predicting power

with minimum multicollinearity. The first stage uses regression

analysis to select PMC events, one-by-one, that add the largest

1: procedure SELECT EVENTS(allEvents, no.Events)

2: selectedList ← cycleCountEvent

3: while length(selectedList) < no.Events do

4: for pmcEvent in allEvents do

5: build model(selectedList + pmcEvent)

6: if newR2 > bestR2 then

7: bestEvent ← pmcEvent

8: bestR2 ← newR2

9: end if

10: end for

11: append bestEvent to selectedList

12: end while

13: return selectedList

14: end procedure

Fig. 5. Algorithm of the first stage of our PMC event selection method

insight into power consumption given the previously selected

PMC events (Fig. 5). Our analysis shows that the Cycle

Count (0x11) should always be included in the selected set

of PMCs as it contains unique information that is useful for

predicting the power. Therefore, by adding the Cycle Count

to the list of selected PMCs first (line 2, Fig. 5) we find

a superior set of PMC events because the remainder of the

algorithm finds the optimum events given the information

in the Cycle Count. Our algorithm then finds the next best

PMC event to add to the set of model inputs by building a

regression model to predict power for each additional PMC

event with the existing selected PMC events also as inputs.

The PMC event that results in the most improved R2 value

is then added to the selection. For the Cortex-A15 example,

our algorithm chooses the seven PMC events (highlighted in

bold in Fig. 4) from five different clusters and the chosen

events do not necessarily have a high correlation with power,

with one chosen event having a correlation as low as 0.36
(UNALIGNED LDST SPEC:0X6A).
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Fig. 6. R2, Adj. R2, VIF of selected PMC events (cumulative) from Stage 1.
Also shows error and VIF after transformation in Stage 2

TABLE I
FIRST SEVEN SELECTED EVENTS FOR THE CORTEX-A15 WITH THEIR

CORRESPONDING CLUSTER NUMBER AND VIF FROM STAGE 1

Event Hex Event Name Cluster VIF

1 0x11 CYCLE COUNT 13 2.12

2 0x1B INST SPEC 13 17.5

3 0x50 L2D CACHE LD 8 1.87

4 0x6A UNALIGNED LDST SPEC 4 1.88

5 0x73 DP SPEC 13 13.3

6 0x14 L1I CACHE ACCESS 14 2.23

7 0x19 BUS ACCESS 9 1.50

Fig. 6 shows how the R2 and the Adjusted R2 (adjusted

for the number of predictors in the model) increase as each

selected PMC event is added to the model (one-by-one), while

the VIF (indicating the presence of multicollinearity) also in-

creases. After choosing the fifth event (0x73) the VIF suddenly

increases to a value over five (indicating multicollinearity

problems) while the R2 and Adjusted R2 only marginally

increase, suggesting that four PMC events (including the Cycle

Count) is an optimum number to choose. However, by not

utilizing all seven available counters the model is not making

use of all of the available information. Furthermore, from

building the model (Section VI) with different numbers of

PMC events, we found that, despite only a marginal increase in

R2, there was a significant decrease in average error between

using four and seven counters (see the Error after trans. line

in Fig. 6). To utilize the full seven available PMC events, the

multicollinearity must be further reduced.

The second stage of our PMC event selection method takes

the result of the first stage and further reduces multicollinearity

allowing the model to use as many events as possible (there-

fore obtaining as much information as possible, improving

accuracy) while maintaining stability. Table I shows the chosen

PMC events from stage 1 for the cortex-A15 model presented

in this paper, along with the VIF and cluster number for each

one, which was developed using the full set of 60 workloads.

Our method first identifies relationships between specific

PMC events that contribute significantly to the multicollinear-

ity within our chosen set of PMC events using the VIF. As each

PMC event is added to the model, the collinearity between that

event and the existing events can be understood by monitoring

the change in the individual VIFs for each PMC event. In the

example of the Cortex-A15 model, Fig. 6 shows that the VIF

rises significantly when event 0x73 (DP SPEC) is included in

the model. By looking at Table I (which shows the VIF of each

individual PMC event when all seven events are included in the

model together) it can be seen that event 0x1B and 0x73 both

have particularly high VIFs. This indicates that the increase

of the average VIF among all of the selected events is caused

by collinearity between these two events.

Once we identify strong collinearity between specific

events, we make a transformation to remove the repeated

information. In the case of our Cortex-A15 example, PMC

event 0x1B counts all instructions speculatively executed and

PMC event 0x73 counts the integer instructions speculatively

executed, which means that event 0x73 is also counted within

event 0x1B. Both events are required; one of the events cannot

be derived without the other, but the repeated information leads

to multicollinearity. We therefore transform event 0x1B into

0x1B-0x73; no information has been lost but the duplicated

information has been removed. The VIF (after trans.) line

shows how the VIF remains low (well below five) after making

this transformation, indicating that the multicollinearity has

been significantly reduced.

Reducing the multicollinearity in this second stage has made

it possible to utilize information from all six PMCs (and

the cycle counter), almost halving the average error from

over 5% to less than 3%, without sacrificing stability. Being

able to monitor only six PMC events simultaneously is not

a significant limitation; as the number of events added to

the model increases, the improvement in accuracy decreases

(Fig. 6). Our generic methodology allows an appropriate

number of PMC events for a particular CPU to be found by

measuring the trade-off between VIF and average error.

To demonstrate the importance of stability and

carefully selecting PMC events, we built a model

using a different set of PMC events that do not

consider variance inflation (CYCLE COUNT:0x11,

L1I TLB REFILL:0x02, MEM ACCESS:0x13,

L1D CACHE ACCESS:0x04, INSTR RETIRED:0x08,

ASE SPEC:0x74, VPF SPEC:0x75). These choices reflect

similar counters to those proposed in works on desktop

and server systems and appear to be reasonable, intuitive

choices [11], [21]. However, the average VIF of these

events is 1.68× 107 and the coefficients change significantly

when building the model with different sets of workloads

because they are unstable (note that the last two events

do not contribute to the multicollinearity problems). Fig. 7

compares a model built with these unstable PMC events and

an otherwise identical model built using the results from

our proposed PMC event selection method. The errors of

these two models have been calculated over a variety of

training and validation workload sets, all of which use k-fold

cross-validation with k = 10 (the building and validation
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process is described in detail in Section VI).

With a limited set of 20 ‘typical’ (MiBench and Media-

Bench) training and testing workloads (a typical scenario in

related work [11], [20], [33]) both models obtain a small error

(A bars). However, when 40 unseen training workloads are

added to the validation workloads, the error of both models

increases significantly, from 1.5% to 7.2% in the case of our

‘stable’ selection (blue C bar). The small set of relatively

similar workloads does not provide either model with enough

information for predicting the full (and diverse) set of 60

workloads. This demonstrates how using a small, limited set

of workloads for both training and validation results in a poor

model which actually appears to be very accurate.

With a limited set of 20 ‘random’ (a random selection

from our diverse set of 60 workloads) training and testing

workloads, the model with an unstable (red model) PMC event

selection performs poorly compared to the model with our

stable PMC event selection (blue model) due to the diversity

in testing workloads (B bars). Furthermore, when 40 unseen

workloads are added to the training set, the red model has a

large error of 8.7% while our blue model has a small error of

just 3.4% (D bars), which is only 0.6% less than when it is

validated on the full set of 60 workloads (blue E bar).

To summarize, there are three key points from Fig. 7: 1)

training and validating with a small set of workloads results

in a poor model but with a very optimistic average error

value; 2) training with a limited set of typical and similar

workloads results in the lowest error when validated on the

same set of workloads, but the highest error when validated

on a large number of workloads (e.g. compared to a limited set

of diverse workloads); 3) our proposed stable PMC selection is

far superior at predicting a large number of diverse workloads

outside of the training dataset and it makes efficient use of a

limited, but diverse, training set. This benefit of stability comes

from the fact that the model coefficients have lower errors and

so the model better captures how each PMC event affects the

overall power individually. A stable model is therefore able to

make sensible estimation in unfamiliar situations and is less

prone to wild predictions. For example, when both models

are trained with 20 random (diverse) workloads and validated

on 60, our blue model has a maximum error of less than

15%, while the red model has a maximum error of over 45%.

Stability is a crucial quality of a run-time power model as

it is impractical to represent the vast number of real-world

applications in a training dataset.

We make available software tools for the PMC event

selection process. Our platform dependent data acquisition

software can be set to automatically collect the experimen-

tal data required for this process; it automatically repeats

the experiment while switching between PMC events and

combines the data to allow the different PMC events to be

directly compared. Our platform independent analysis software

implements our automated PMC event selection method and

also many of our analysis techniques (including correlation

analysis and hierarchical cluster analysis) which is useful

for other areas of research regarding PMC events on mobile

devices. It has a simple interface, easily allows data from other

experimental setups to be used, and clearly presents the results

with interactive graphs.

VI. MODEL FORMULATION AND VALIDATION

This section describes the model building and validating

stage which is the third step of our power modeling method-

ology (Fig. 1). Once we have obtained optimal events from

Step 2 (Section V), we use our experimental setup (Section IV)

to run our full set of 60 workloads at many DVFS levels,

with different numbers of cores being utilized, to extensively

investigate as many operating conditions as possible, on both

the ARM Cortex-A7 and Cortex-A15.

Rather than simply putting the PMC data directly into

a linear regression tool, as is the case in previous works

[11], [20], [21], [24], we combine regression analysis with

knowledge of how power is consumed within CPUs to form

an intelligent and more physically-meaningful model that

calculates static and dynamic power separately (2). We make

the CPU cluster power our dependent variable with functions

of our chosen PMC events after preprocessing (En), clock

frequency (fclk) and CPU voltage (VDD) as our independent

variables. We then perform multiple linear regression, using an

ordinary least squares (OLS) estimator [31], to calculate the

coefficients (βn) of our model. This not only allows the model

to estimate power at any given voltage or clock frequency, but

also further reduces multicollinearity and therefore improves

the model’s stability. CMOS dynamic power is proportional

to V 2

DD
fclk and CMOS static power is a product of VDD

and the leakage current, which is predominantly formed of

the sub-threshold leakage and gate oxide leakage [34]. There

is a constant dynamic power component independent of the

PMC events (BG dynamic). The static power component also

absorbs the effect of varying temperature depending on the

DVFS level, a more detailed analysis of which is the topic of

future work. We experimentally found terms that were able

to accurately estimate the static power consumption across all

DVFS levels on both the Cortex-A7 and Cortex-A15 (without

overfitting and with all inputs statistically highly significant, as

described later in this section). We collect the PMC events as

counts-per-second, and their values are therefore related to the

operating frequency of the cluster (made up of four Cortex-

A7 or Cortex-A15 CPUs). To reduce multicollinearity, we then
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TABLE II
MODEL FORMULATION EXPERIMENT SPEEDUP WHEN EXPLOITING SMART

MODEL FORMULATION AND ENHANCED STABILITY

Avg. Error (%) Experiment Time (hours) Workloads

Slow 2.8 40 60

Fast 3.4 0.42 (25 min.) 30

divide each event by fclk, thus separating the clock frequency

from the event values, and add it as a separate term; the events

now give information solely on the type of workload.

Pcluster =

(
N−1∑

n=0

βnEnV
2

DD
fclk

)

︸ ︷︷ ︸

dynamic activity

+ f(VDD, fclk)
︸ ︷︷ ︸

static and BG dynamic

(2)

In (2), N is the total number of PMC events in the model;

n is the index of each event; E is the cluster-wide PMC event

rate (events-per-second) after being divided by the operating

frequency in MHz, fclk, and averaged across all cores; and

VDD is the cluster operating voltage. Pcluster is the power for

the overall quad-core cluster (Cortex-A7 or Cortex-A15).

Our experimental setup measures the total power of the

cluster, constituting of the four cores, their respective L1 cache

and the shared L2 cache. The model is therefore formulated

to predict the power of the overall cluster as this can be

directly validated. However, in our training set we utilize

different numbers of cores and our results show that the overall

cluster power can be estimated accurately without knowing

how much each individual core is individually utilized. The

power contribution from each core and its L1 cache (including

the effect it has on the shared L2 cache) can therefore be

calculated by substituting the cluster-wide events with the

fraction for a particular core.

Our model formulation allows us to run the workloads

at one single DVFS level and then just collect the idle

power characteristics at all of the DVFS levels; as opposed

to running the workloads at every frequency. Our enhanced

model stability also allows us to build an accurate model

using fewer workloads. We demonstrate how combining these

two qualities allows the experiment time to be reduced by

96× while only adding 0.6% error (Table II). Not only does

this demonstrate the robustness of our model formulation and

the benefit of stability, but the reduced experiment time (and

reduced amount of resulting data) has an important practical

advantage. The remainder of this section discusses our method

of evaluating our models.

A fundamental and necessary part of building linear regres-

sion models is the inspection of the residuals, which must be

done in order to determine whether the model is valid and

the assumptions for the linear regression model have been

met [35]. Yet, despite this, very few related works (the only

exception known to us is [18]) present or discuss the residuals,

which need to be checked before other model statistics can be

trusted and interpreted. Importantly, our residual plots (Fig. 8,

more plots shown at [8]) show no pattern that can be predicted

from another variable or each other, proving that the residuals

(observed errors) only represent the stochastic response of the
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Fig. 8. Plot of the model residuals against the predicted power (other residuals
plots found online [8]) before applying HC3

TABLE III
RESULTS FOR THE CORTEX-A7 AND CORTEX-A15 CPU MODELS (FINAL

MODEL, TRAINED ON ALL WORKLOADS)

Parameter A7 Value A15 Value

R2 0.993 0.997

Adjusted R2 0.993 0.997

No. Observations 1680 2160

Std Err. of Regression (SER) [W ] 0.0133 0.0517

F-Statistic 28057.2 40168

p-Value for F-Statistic p < 0.00001 p < 0.00001

Avg. VIF (PMC events only) 2.13 2.25

Avg. VIF (inc. V and f) 4.94 3.04

model and not the deterministic part, meaning that our model

captures all the necessary information from the input variables.

However, the ‘cone-shape’ of the residuals plot shows the

presence of heteroscedasticity (meaning that a key assumption

of homoscedasticity has been violated), which reduces the

accuracy of the coefficients themselves, the standard error

of the coefficients, the standard deviation of the forecast

errors and the confidence intervals [36], [37]. The problem of

heteroscedasticity is inherent in PMC-based power modeling

(there is a larger variance in power consumption between high

power-consuming workloads than workloads that consume less

power), yet, to the extent of our knowledge, this has not been

highlighted or addressed in related work.

We address this problem by using a heteroscedasticity-

consistent standard error (HCSE) estimator of OLS parameter

estimates. While the regression model itself is still estimated

using OLS (the accuracy of which is demonstrated later), the

standard error calculations no longer assume homoscedasticity.

While an explanation of heteroscedasticity and HCSE esti-

mators is well beyond the scope of this paper, Hayes and

Cai [38] give a good introduction and highlight the problem of

HCSE estimators being largely unknown outside of the fields

of statistics and econometrics and how they can eliminate the

need for researchers to worry about heteroscedasticity when

using OLS regression. The option to use HCSE estimators is

available in many statistical computing programs and we use

a HC3 estimator [39], [40] in our methodology and available

software (the statistical modeling in our software uses the

Statsmodels Python module [41]).

We publish a large number of statistical results allowing
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others to accurately assess the quality of our models and we

encourage others to do so to enable comparisons between

different models presented in different works. Both our Cortex-

A7 and Cortex-A15 models achieve an R2 value of greater

than 0.99 (Table III), showing that the fitted regression ex-

plains over 99% of the variation in the power consumption,

despite being tested on a large number of diverse workloads.

The adjusted R2 (which compensates for the number of

predictors) is less than 0.00006 lower than the R2 value,

showing that the R2 value is not inflated by the number

of predictors (independent variables) and that each predictor

adds valuable information to the model. The average VIF of

the input PMC events of both models is under 2.3, which is

thanks to the PMC event selection method (Step 2, described

in Section V), and the average VIF of all of the model inputs

(including the voltage and frequency) is less than five, thanks

to the model formulation (Step 3, described earlier in this

section). These low VIF values indicate that our model is

stable, which we also demonstrated in Section V. We also

calculate and report statistics for determining the statistical

significance in Table III. The p-Value for F-Statistic row shows

the p-value when the model is compared to a model with no

predictors. We have very small p-values of under 0.00001

for both models; meaning that if the null hypothesis is true

(there is no effect or relationship between the model inputs

and power), the observed effect would be found in less than

0.001% of the experiments run due to random sampling error.

In many scientific studies, p < 0.05 is considered borderline

statistically significant and p < 0.001 is considered borderline

statistically highly significant.

Our model equations are used to give predictions for the

power consumption given the values of the model inputs. How-

ever, despite it not being discussed in most related works, the

uncertainty of the model must also be considered when making

predictions. Our software allows the prediction intervals to

be calculated, which is a range where a new observation is

likely to fall given the predictors. While prediction intervals

have a confidence level, they should not be confused with

confidence intervals, which predict the spread of the mean

rather than individual observations. The prediction interval is

much larger than the confidence interval and takes into account

the variability and uncertainty. The prediction interval depends

on the predictors, but an approximation of the 95% prediction

interval is given by:

P.I.(95%) = ±(2× SER) (3)

The SER (standard error of regression) gives the average

distance between the observed values and the regression

line (Table III). Therefore, the approximated 95% prediction

interval for the Cortex-A15 model is ±0.10 W; we are 95%

confident that the actual power is within the predicted power

±0.10 W for the next observation.

We report the model coefficients for the Cortex-A15 model

that we have been developing throughout this paper to allow

the model to be directly implemented in other work (available

at [8]). The coefficients for the transfomed PMC events are

all positive and the voltage and frequency both have a positive

influence on the power, as expected. We also report the 95%

TABLE IV
MODEL RESULTS FROM K-FOLD CROSS-VALIDATION

Parameter A7 Value A15 Value

No. Folds (k) 10 10

Fold Group Size 168 216

Avg. Err. (MAPE) [%] 3.79 2.81

Mean Sq. Err. (MSE) [W 2] 0.000186 0.00276

Root Mean Sq. Err. (RMSE) [W ] 0.00975 0.0613

confidence intervals (C.Is) of the coefficients which take into

account the sample size and the variance in the population.

A narrow confidence interval indicates a low sampling error.

Our confidence intervals are very small, showing very low

standard error and very high statistical significance for each

coefficient. The p-values for every coefficient are very low,

far lower than 0.05, confirming the statistical significance of

every model coefficient.

The results in Table III are derived from all of the ob-

servations used to build the model. We also employ k-fold

cross validation, which involves randomizing the order of the

observations, splitting the observations into k groups, then

using k−1 of the groups to build the model (training dataset)

and the one remaining group to validate the model (testing

dataset). We repeat this process so that the model is built k

times, with each group of observations being used to validate

the model. The reported cross-validated errors (Table IV) are

the average of the testing datasets, so the model is always

predicting the power for scenarios it has not seen before.

The validated average error (mean absolute percentage error

[MAPE]) is 3.8% and 2.8% for the Cortex-A7 and Cortex-A15

model, respectively. By looking at the cross-validated average

errors for each of the 60 workloads (Fig. 9), it can be seen that

cstm bmp (a custom synthetic workload) is the only workload

with an average error of over 6.5%. The fact that there is

one significant outlier shows the need to use a large number

of workloads in power modeling. The error of our model is

very low, particularly considering the large variance in power

consumption between workloads (Fig. 10, gray bars), i.e. the

CPU is not simply being fully utilized by every workload.

Our model formulation allows us to see how the static power

(which also includes the background dynamic power) and each

PMC event contributes to the overall power (Fig. 10) and it

can be seen that the information provided by the PMC events

on the type of workload is essential to producing an accurate

model. Each PMC event makes a significant contribution to the

dynamic power prediction, working independently to identify

different workload types (Fig. 11), showing the merit of our

PMC event selection method (Step 2) and its importance.

In PMC-based models, events are sampled at intervals.

However, if the sample period is too low, the CPU frequency

is too low, and there are very low levels of activity on the

CPU core, then the PMCs may not increment fast enough

between samples to give accurate values to the power equa-

tion. To observe the point at which this phenomenon occurs,

we implement our Cortex-A15 model and run it at various

sampling frequencies while the cluster clock frequency is set
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id
le

b
it
co

u
n
t

su
sa

n

jp
eg

_
d
ec

d
ij
k
st

ra

is
p
el

l
ad

p
cm

_
c

ff
t

h
26

4_
lq

m
p
eg

4_
lq

d
h
ry

st
on

e
n
eo

n
_

m
u
l

cs
tm

_
in

t
la

t_
ct

x
_

0_
18

la
t_

fs
la

t_
m

em
_

rd
_

1_
8

la
t_

m
em

_
rd

_
20

0_
8

la
t_

m
em

_
rd

_
p
4

la
t_

p
ro

c_
fo

rk
b
w

_
m

em
_

w
r

b
w

_
m

em
_

cp
_

70
0m tl

b

ca
ch

e

gc
c

m
p
eg

4_
lq

_
m

p
m

p
_

b
u
s_

sp
d

m
p
_

d
h
ry

m
p
_

lp
_

n
eo

n
m

p
_

ra
n
d
m

em
op

en
m

p
_

m
em

_
sp

d

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

P
ow

er
 (

W
)

Workload

Actual Static (V,f) 0x11 0x1B-0x73 0x50 0x6A 0x73 0x14 0x19

Fig. 10. Actual (measured) power vs. the predicted power for half of the considered workloads, with the predicted power broken down into its constituting
parts (Cortex-A15 CPU model)

cache cstm_int bitcount 

neon_mul openmp_mem_spd bw_mem_wr 

0x11 0x1B-0x73 0x50 0x6A 0x73 0x140x19

Fig. 11. Contribution of each PMC event to the dynamic power prediction
for six different workloads

Fig. 12. Modeled power and measured power for the ARM Cortex-A15
cluster running at 200 MHz with various sampling frequencies and no other
workloads
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to the minimum value with no workloads running, except for

the model itself and experiment monitoring software. Even in

this worst-case scenario, the model error does not increase

until the sampling frequency is beyond 500 Hz (Fig. 12).

Many techniques can, however, be employed to reduce this

effect, such as adjusting the sampling frequency with the

clock frequency, only relying on fast counters when there

are low levels of activity on the core, detecting when a

particular counter is too slow and sampling that particular

counter at a lower rate. Our proposed model formulation and

stability allows the contribution of each individual event to

be accurately known and if, for example, one PMC event is

not occurring regularly enough (event 0x19 in this case), it

can be dealt with individually with limited knock-on effects

to the other coefficients and therefore the overall power

consumption. Another source of error variance in this example

is the overhead of writing the results to a file (only required

for this experiment); as the sampling frequency increases, the

more time the CPU spends running this workload, changing

the type of workload running. The model accuracy naturally

changes with the workload (Fig. 10).

Fig. 12 also shows the worst-case power overhead, which

includes extracting and recording data from both the power

sensors and the model for evaluation purposes; this is con-

siderable compared to the overhead of the model itself. We

present a modeling methodology that can be used with a

variety of platforms and in many scenarios (both offline and

online). When implementing our model, many optimizations

and trade-offs can be made, depending on the number of

available counters, required accuracy, sample frequency, etc.

For example, with a fixed sampling frequency and known set

of DVFS levels, then many of the variables in our formula can

be pre-computed and the software using out model can simply

switch equation when changing DVFS level.

VII. COMPARISON WITH EXISTING WORKS

In this section we compare our Cortex-A15 model devel-

oped using the proposed approach to five models from four

recent works in mobile PMC-based run-time power modeling.

We implement existing works on our platform and compare

them directly. To be consistent, we re-train and implement

each model (including our proposed model), using data from

the same experiment, and calculate the coefficients using

OLS regression. Although our model formula works for any

given voltage and frequency, existing works typically consider

a single DVFS level or each one separately, and so this

comparison considers a single clock frequency of 1 GHz. This

simplification of our model causes slight discrepancies be-

tween the statistics reported in this section and those reported

in previous sections. We model the power for the quad-core

Cortex-A15 cluster and the model inputs have been calculated

considering the activity of the overall cluster. The process for

building and evaluating all of the models is identical, with

the only difference being the choice of model inputs and the

model equation.

Pricopi et al. [25] build a PMC-based power model for an

ARM Cortex-A15, considering just a single core of their multi-

core cluster (Model a, Table V). Walker et al. [24] present

TABLE V
PARAMETERS OF MODELS INCLUDED IN THIS COMPARISON

Source No. Evts. n Adj. R2 Err. [%]

a Pricopi et al. [25] 6 6 0.747 12.5

b Walker et al. [24] 4 4 0.785 12.3

c Rethinagiri et al. [11] 5 3 0.672 12.7

d Rodrigues et al. [21] 3 2 0.760 15.2

e Rodrigues et al. [21] 6 4 0.897 9.7

P Proposed 6 + C 7 0.999 2.9

equations for modeling an ARM Cortex-A8 single-core CPU

using four PMC events (Model b). We also compare against

the dual-core Cortex-A9 model presented by Rethinagiri et

al. [11], removing the frequency term as we are only consid-

ering a single clock frequency (Model c). It is not clear in the

original work whether the cache miss rate term in their model

should take the L1 instruction cache into account, however,

doing so would require more than six PMC events in total to

implement their model, which is not possible on our platform

or the ARM Cortex-A9 (the original work used a simulator

to obtain PMC data instead of recording it from a real board

directly). Rodrigues et al. [21] present several models with

varying numbers of PMC events, concluding that the same

three PMC events (number of fetched instructions, L1 cache

hits and dispatch stalls) can be used to yield an acceptable

error (< 5%) across multiple architecture types, including

both high performance and low power CPUs. They simulate

two cores representative of an Intel Nehalem and an Intel

Atom processor using SESC and Wattch. Unfortunately, on

ARM-based platforms, there is no PMC event that represents

dispatch stalls. We therefore implement their model named

Exp 2 (Model d), which does not use dispatch stalls and

uses just two model inputs (but requires three PMC events to

calculate on our platform), and Exp 6 (Model e) which uses

five model inputs events, but we omit the unavailable dispatch

stalls event, meaning our implementation of this model has

just four model inputs. Two inputs to Model e each require

two PMC event counters to derive on our platform. One term

in this model counts the L1 cache hits, which we implement

as just the L1 data cache hits as all of the limited number

of performance counters were in use. Our model uses all six

PMCs and the separate cycle counter. The number of required

PMC events (No. Evts.) and the number of model independent

variables (n) used in each model is shown in Table V.

We build these five models (a, b, c, d, e) and our proposed

(P) model using our small set of diverse workloads (discussed

in Section V) and report the adjusted R2 to measure how well

the models fit their training data (Table V). The high adjusted

R2 value achieved by our proposed model (Model P) demon-

strates how the chosen inputs and model formula captures the

largest amount of useful data for predicting power consump-

tion, allowing our model to closely fit the training data. Out of

the implemented existing models, Model e captures the largest

amount of useful information and therefore most closely fits

the dataset. We also analyzed the VIF of each independent

variable to give an indication of the model stability. Model e
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Fig. 13. Box plot of error distribution for each model, trained with 20
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has four independent variables and two of the coefficients have

a VIF of 15.7 and 9.7, meaning that these coefficients have

a standard error 4.0× [
√
15.7] and 3.1× larger than if no

multicollinearity was present. Despite capturing more useful

data from the model inputs, our proposed model has less

variance inflation, signaling a low amount of repeated data

in our seven inputs; the highest VIF of any coefficient in our

proposed model is 4.8. The effect of errors in the coefficients

can clearly be seen in Table I of [11], where two power models

(Exp 4 and Exp 5) for the same system feature the same input

(dispatch stalls, D) but with a coefficient of +1.25 in one

model and −0.47 in the other. This shows how the modeling

methodology is not capturing how each variable individually

affects the power consumption, forming an unstable model.

We then validate the models on our full set of 60 workloads

(equivalent to the D bars in Fig. 7) and show the resulting

error distribution (Fig. 13, red and green boxes). The proposed

model best utilizes the limited number of training workloads

to achieve an average error of 2.9%; 3× smaller than the next

best model. Furthermore, the box plot in Fig. 13 shows that our

proposed model has a significantly narrower range of errors

across the 60 workloads. This means that greater confidence

can be placed in our model to contain the error within a

smaller interval. For example, the error of Model e, which

has the smallest average error out of the existing works, has

a maximum error of 49%, whereas our proposed model has

a maximum error of 13%. The approximate 95% prediction

interval (explained in Section VI) of our proposed model is

±0.014 W whereas the prediction interval for Model e is

±0.13 W.

Pricopi et al. [25] (Model a) report a low error of 2.6%.

However, they build and validate with a small number of

15 workloads and report a minimum and maximum power

consumption of 4.54 W and 5.16 W across their training

workloads, respectively; a very narrow range when compared

to many of our testing workloads (Fig. 10). We find that two

independent variables of the model have VIFs larger than 130,

contributing to the high average error across our diverse set

of 60 workloads (Fig. 13). This highlights the importance of

considering stability and validating with a large number of

diverse workloads when building reliable power models.

In Section V we highlighted how the cycle count provides

System

PMCs
Power Model

(preliminary)

Voltage ModelVoltage Table
Tgt. V

V

f

P(dyn.)

Power Model

(final)

Power

Fig. 14. Run-time power estimation setup with the voltage model

unique data to the model (it is used to determine how much

time the cores spend in a low-power [inactive cycle] state).

However, this event is not included in any of the existing

models (they either use simulated data that may not take this

feature into account or an old development board that does not

have this feature enabled). We therefore rebuilt models a, b,

c, d and e with the cycle count and named them a+, b+, c+,

d+ and e+, respectively. This improves the existing models but

the proposed model still achieves an error 50% lower than any

other model (Fig. 13, blue boxes). Note that the cycle counter

is not used to calculate the IPC (instructions-per-cycle) as it

only counts active cycles on this platform.

From implementing models of existing work on our plat-

form, we found that: 1) none of the models considered the

cycle counter, which has a significant power impact; 2) some

of the model inputs were not available in a single PMC event

and needed to be calculated from several; and, 3) in one case,

a model input could not be deduced from the available PMCs

on our platform. These three points highlight the importance of

providing a detailed and automated methodology that can be

used on CPUs with different ISA, microarchitectures and avail-

able PMC events, as we propose. The overhead between the

compared models is negligible compared to recording/using

the estimated power value; reading a PMC event counter

requires a single instruction and the simple model equations

have similar complexity, with similar number of used PMC

events and model inputs (note that models c, d and e all

required extra calculations to derive the required input on our

platform).

VIII. CPU VOLTAGE MODEL

Our power model works with any specified frequency or

voltage, which is important for design-space exploration. In

online run-time management scenarios, the voltage cannot

be directly measured and so the idle voltage for the current

operating frequency can be used. However, we find that

the static power varies between different workloads at the

same frequency because the voltage supplied by the non-ideal

voltage regulator varies with the dynamic CPU current draw.

This phenomenon greatly affects the power consumption and

needs to be taken into account when modeling the power. We

present a model built using multiple linear regression to predict

the CPU voltage from the current CPU clock frequency, target

voltage (idle CPU voltage at that frequency), and dynamic

power calculated from the PMC events (Step 4 of our power

modeling methodology, Fig. 1). We first use our power model

to perform a preliminary prediction of the dynamic power
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using the target voltage and then feeding this estimation

into our voltage model, along with the target voltage itself

(Fig. 14). This voltage model then outputs the estimated run-

time voltage and this is used as the voltage input of our main

(final) power model. This voltage model is specific to the

platform and each frequency needs to be separately considered.

To the extent of the authors’ knowledge, this is the first work

in this area to consider voltage change due to the dynamic load

and demonstrate how it can be modeled. To give an example, at

a frequency of 1800 MHz, the power model error is 2.6% when

using the measured CPU voltage. However, as the measured

voltage is not available to the run-time manager of a real

device, the target voltage is used, resulting in a significantly

larger power error value of 8.5%. If we incorporate our voltage

model, we can account for the changing run-time voltage and

reduce our power modeling error to 3.0%. We identify this

problem, quantify its effect on the error, and demonstrate how

our proposed solution is effective in mitigating it. A more

detailed analysis of this phenomenon (including the effects of

temperature) is the topic of future work.

IX. CONCLUSION

We have presented a detailed and statistically-rigorous au-

tomated methodology and corresponding software tools for

building accurate and stable PMC-based run-time power mod-

els. We illustrate our approach using measured data from two

mobile CPUs with significantly differing microarchitectures:

an ARM Cortex-A7 and ARM Cortex-A15. The resulting

models achieved an error of 3.8% and 2.8%, respectively,

and both achieved an R2 value of over 0.99. Our approach

uniquely considers model stability and we demonstrate how it

allows the resulting models to make more accurate predictions

on a vast set of diverse scenarios, even when trained on

a limited set of workloads. Furthermore, we highlight and

address the problem of heteroscedasticity and show how our

model formulation and stability allows us to reduce the model

formulation experiment time by 100× while trading off less

than 0.6% error. We implement our model on a real device

and analyse the error and overhead as a function of sample

period and we conduct a detailed comparison with the state-

of-the-art. We also highlight how the CPU voltage supplied

by the non-ideal voltage regulator is sensitive to the dynamic

activity of the CPU and we present a CPU voltage model,

which improves the accuracy of the power model by as much

as 5.5% in situations where the voltage cannot be measured. To

address the lack of an established method of collecting PMC

data on mobile devices, we present our platform dependent

experimental software tools that enables other researchers to

make use of high quality, measured data from mobile platforms

for investigations requiring measured CPU PMC, temperature,

voltage or power data. This paper is supported by online

resources (available at [8]) which include the downloadable

software tools, usage manuals, raw experimental data and

further results, graphs, analysis and explanations. We hope that

this work encourages greater statistical rigor in this research

area to allow high quality models to be created, models from

different works to be compared, and, crucially, the quality and

limitations of produced models to be trusted and known.
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