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Accurate Angular Velocity Estimation With

an Event Camera
Guillermo Gallego and Davide Scaramuzza

Abstract—We present an algorithm to estimate the rotational
motion of an event camera. In contrast to traditional cameras,
which produce images at a fixed rate, event cameras have
independent pixels that respond asynchronously to brightness
changes, with microsecond resolution. Our method leverages the
type of information conveyed by these novel sensors (i.e., edges)
to directly estimate the angular velocity of the camera, without
requiring optical flow or image intensity estimation. The core
of the method is a contrast maximization design. The method
performs favorably against ground truth data and gyroscopic
measurements from an Inertial Measurement Unit, even in the
presence of very high-speed motions (close to 1000 deg/s).

Index Terms—Computer Vision for Other Robotic Applica-
tions, Localization

SUPPLEMENTARY MATERIAL

A video showing the performance of our method on several

sequences is available at: http://youtu.be/v1sXWoOAs_0

I. INTRODUCTION

E
VENT cameras [1] are biologically inspired sensors that

overcome some of the limitations of traditional cameras:

they have a very fast response (in the order of microsec-

onds), very high dynamic range and require low power and

bandwidth. These advantages come from their fundamentally

different principle of operation: they have independent pixels

that sense and asynchronously transmit brightness changes

(called “events”). Hence, their output is not a sequence of

frames at fixed rate but rather a spatially sparse, asynchronous

stream of events. Event cameras offer great potential for

high-speed robotics and applications with large illumination

variations. However, new methods have to be designed to cope

with their unconventional output.

In this paper we are interested in unlocking the high-speed

capabilities of the sensor to estimate ego-motion. In particular,

we focus on the restricted but important case of 3D rotational

motions (i.e., estimating the angular velocity of the camera).

Orientation estimation, besides being an important topic on its

own, is a recurrent topic in visual odometry scenarios, where

the camera might move with negligible translation with respect
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(a) Image of accumulated events
without motion estimation.

(b) Image of accumulated events,
rotated according to motion.

Fig. 1: Rotational motion estimation by contrast maximization.

Events accumulated in a small time interval (e.g., ms) taking

into account the rotational motion of the event camera produce

images with stronger edges (Fig. 1b), i.e., larger contrast, than

those that do not take into account the motion or incorrectly

estimate it (Fig. 1a).

to the depth of the scene, potentially causing a breakdown of

the system if the 3D map used for localization falls out of

the field of view of the camera. Orientation estimation also

finds applications in camera stabilization [2] and in panoramic

image creation [3].

Contribution: This paper presents a novel method to

estimate 3D rotational motion of an event camera. The

method aligns events corresponding to the same scene edge

by maximizing the strength of edges obtained by aggregating

motion-warped events. Our method works directly on the event

stream, hence it does not require the estimation of intermediate

quantities such as image intensity or optical flow like other

approaches. Besides the notable accuracy and robustness of the

proposed method, its most interesting insight is that it admits

an intuitive formulation in terms of contrast maximization

(Fig. 1), and that contrast is a basic signal statistic with

broad applicability. Thus, the method carries a new design

philosophy for event-based algorithms.

II. RELATED WORK

There are few works on 3D orientation estimation with event

cameras. This may be due to the following facts: research is

dominated by standard (frame-based) cameras, event cameras

have been commercially available only recently [1] and they

are still expensive sensors since they are at an early stage of

development.

A generic message passing algorithm within an interacting

network to jointly estimate several quantities (called “maps”),

such as, rotational ego-motion, image intensity and optical

flow from a stream of events was proposed by Cook et al. [4].
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(a) Events (dots) and the trajec-
tories that they follow.

(b) Events visualized along the
trajectories in Fig. 2a.

Fig. 2: Visualization of the events (positive (blue dots) and

negative (red dots)) in the image plane vs. time (50ms).

The algorithm is not a traditional, feed-forward pipeline but

can be interpreted as a joint estimation of optical flow and

image intensity from the event stream while, at the same time,

enforcing that the resulting quantities (e.g., optical flow field)

are consistent with a global constraint: the estimated motion

must be rotational.

More recently, Kim et al. [3] presented a parallel tracking-

and-mapping filter-based system that estimated the 3D ori-

entation of an event camera while generating high-resolution

panoramas of natural scenes. The tracking thread estimated

rotational motion by means of a particle filter using the event

stream and a given intensity image (the panorama).

Conradt [5] presented a simple algorithm to extract optical

flow information from event cameras, and as an application,

he showed that it can be used for ego-motion estimation. He

first computed the optical flow and then calculated the (3D)

angular velocity that best explained such a 2D flow.

All previous works require an auxiliary variable such as

optical flow or image intensity to estimate angular velocity.

For example, [4] and [5] estimate angular velocity given or

together with optical flow, whereas [3] requires an intensity

image to provide a likelihood for the events undergoing a

candidate rotational motion. In contrast, our method shows

that angular velocity can be estimated directly, without having

to reconstruct image intensity or optical flow.

III. METHODOLOGY

A. Intuitive Explanation of the Approach

Event cameras have independent pixels that respond asyn-

chronously to brightness changes, which are due to moving

edges, i.e., intensity gradients, in the image plane. Thus, these

cameras output a sequence of asynchronous “events” (Fig. 2a).

Each event is described by a tuple ek = (xk, yk, tk,±k), where

xk = (xk, yk)
⊤ and tk are the spatio-temporal coordinates of

the brightness change and ±k, the binary event polarity, is the

sign of the brightness change (the color of the dots in Fig. 2a).

Events are time-stamped with microsecond resolution (tk).

Fig. 2a shows the output of a rotating event camera over a

small time interval. Looking at the events only (i.e., omitting

the overlayed trajectories) it seems that the information of

the moving edges that triggered the events is unintelligible.

In the example, the edges moved approximately along linear

trajectories in the space-time volume of the image plane

(Fig. 2a), and it is only when the events are observed along

(a) Blurred image. The blur ker-
nel (PSF) is shown in a corner.

(b) Restored image (blur cor-
rected, but still with artifacts).

Fig. 3: In standard cameras, motion-compensated images

(right) have higher contrast than uncompensated ones (left).

A similar idea applies to event images (Fig. 1).

such trajectories that the edge structure is revealed (Fig. 2b).

Moreover, Fig. 2 provides a key observation: the events along

a trajectory are triggered by the same scene edge (they are

corresponding events) and they all have the same polarity1

Thus, we can use the event polarities along trajectories to

analyze the edge structure, and therefore, reveal the unknown

camera motion. In particular, we just consider the sum of

the polarities along each trajectory, with as many trajectories

as pixels in the image plane. If we naively sum the event

polarities pixelwise (along trajectories parallel to the time

axis), we will generate an event “image” showing the trace of

the edges in the scene as they moved through the image plane

(Fig. 1a). Observe that this is analogous to the motion blur

effect in standard cameras, caused by large exposure times

(Fig. 3a). The shapes of such traces provide visual cues of

the motion that caused them, and once such a motion has

been estimated, usually represented by a Point Spread Function

(PSF), as shown in the bottom-left of Fig. 3a, a sharp image

can be obtained from the blurred one by compensating for the

motion, a process known as deconvolution (Fig. 3b). Similarly,

if we are able to estimate the motion of an event camera,

e.g., by searching for the trajectories that satisfy the above-

mentioned property of corresponding events, we may compen-

sate for it. The resulting event image, obtained by summing

the event polarities along the pixel trajectories induced by the

true camera motion, does not suffer from accumulation blur

(Fig. 1b), and consequently, has stronger edges than those

of the uncompensated one (Fig. 1a). Hence, a strategy to

estimate the ego-motion of the camera is to search for the

motion and scene parameters that maximize the strength of the

motion-compensated edges. In the case of rotational motions

the problem simplifies since no scene parameters such as depth

are needed to represent the trajectories in the image plane; the

problem solely depends on the motion parameters (the angular

velocity of the camera).

Here we present a method that exploits the previous ideas

to estimate the motion undergoing a rotating event camera,

namely by measuring the edge strength using image contrast,

and therefore, our method can be interpreted as motion es-

timation by contrast maximization. Fig. 4 summarizes our

approach, which we describe in the next sections. First, we

show how to create an event image (Section III-B), how

1This holds except when the motion changes direction abruptly, which can
be detected since the camera triggers no events while it is at rest between
both states.
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Fig. 4: Block diagram of the method: events from the camera

are rotated according to a candidate angular velocity ω, which

is iteratively refined by a maximization algorithm on the

contrast of the images of rotated events I(x;ω).

to displace events according to 3D rotational motion (Sec-

tion III-C) and how to measure the strength of the (motion-

compensated) edges (Section III-D). Then, we discuss the

maximization strategy and how to process an entire event

stream (Section III-E).

B. From Events to Event Images

Event images, such as those in Fig. 1, are formed by adding

event polarities along candidate trajectories in the image plane

(Fig. 2a). More specifically, given a set of events E = {ek}
N−1

k=0

triggered in a small time interval [0,∆t], the event image

formed by polarity addition along trajectories parallel to the

time axis is given by

I(x) =

N−1∑

k=0

±k δ(x− xk), (1)

where, to later allow for arbitrary (sub-pixel) trajectories, we

represent images as functions I : Ω ⊂ R
2 → R, and δ is the

Dirac delta. Thus, the intensity I at pixel x is the sum of the

polarities of the events that fired at the pixel location x = xk.

Event images corresponding to arbitrary pixel trajectories

are formed by displacing the events xk 7→ x
′
k before their

polarities are added using (1), i.e., the trajectories are mapped

to lines parallel to the time axis before polarity addition.

C. Motion Compensation of Events

Under a rotational camera motion, the trajectories of points

in the image plane are parametrized by the motion parameters.

Thus, given an angular velocity ω(t) ∈ R
3, a point x0 in

the image plane will describe a path x(t) = W(x0,ω(t)),
which is represented by a warp W. In calibrated coordinates

(intrinsic parameters and lens distortion removed), such a warp

is described by a 2D homography, defined in terms of the

matrix of the 3D rotational motion R(t) [6, p.204]:

x(t) ∼ R(t)x0,

where ∼ means equality up to a non-zero scale factor typical

of homogeneous coordinate representation. The rotation R(t)
is obtained from the angular velocity and the motion duration

using the matrix exponential. More specifically, consider,

without loss of generality, that t ∈ [0,∆t], a small time interval

(a) Event warp overlaid on the event image I(x), before motion
compensation. I(x) is obtained by aggregating event polarities in
time, as specified by (1). Blur increases with the distance to the
center of rotation, which is marked with a yellow disk.

(b) Image of rotated events, i.e., after motion compensation. I(x;ω)
is given by (4) with the optimal ω. Observe how sharp the edges are
everywhere in the image, even far away from the center of rotation.

Fig. 5: Warp W in (2)-(3) mapping a point xk to its rotated

position x
′
k. The example corresponds to a rotation approxi-

mately around the optical axis (Z camera axis).

so that the angular velocity is constant, and that R(0) is the

identity. Then, the rotation R(t) is given by [7, p.26]:

R(t) = exp (ω̂t) ,

where â is the cross-product matrix, i.e., the 3 × 3 skew-

symmetric matrix such that âb = a × b, ∀a,b ∈ R
3. The

warp is, in homogeneous calibrated coordinates, given by

W(x0;ω, t) ∼ exp (ω̂t)x0, (2)

where we explicitly noted the three elements involved: the

point to be warped x0, the angular velocity ω and the duration

of the motion t. Observe that W(x0;ω, 0) = x0 is the identity

warp, that is, x(0) = x0.

We use the above-defined warp to rotate events in the image

plane: given an angular velocity ω, an event at xk is mapped

to the point

x
′
k = W(xk;ω, tk − t0), (3)

where tk is the time of the event and t0 is the time of the first

event in the subset E , which is used as reference. Observe

that the 3D rotation angle of each event is different, θk =
(tk − t0)ω, since it depends on the event time tk; otherwise,

if the rotation angle was the same for all events, it would not

be possible to compensate for the motion.

By rotating all events in the set E and adding their polarities,

an image of (un-)rotated events is obtained:

I(x;ω) =
∑

k

±k δ(x− x
′
k(ω)). (4)
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In practice, the Dirac delta is replaced by an approximation

such as a Gaussian to allow us to add the polarities of sub-

pixel rotated events x
′
k(ω) to produce the value at a pixel

location, I(x) (see details in Section IV).

D. Measuring the Edge Strength of an Event Image

The goal of our ego-motion method is to use I(x;ω) to

estimate the ω that aligns all corresponding events (those that

were triggered by the same scene point) to the same (un-

rotated) image point, thus effectively removing the accumu-

lation blur.

Given a subset of events, we cast the ego-motion estimation

problem into an optimization one: obtain the angular velocity

ω that optimizes some distinctive characteristic of motion-

compensated event images. But what are such distinctive

characteristics? Drawing an analogy with standard cameras,

motion-compensated intensity images look sharper and have

higher contrast than the blurred (uncompensated) ones, as

shown in Fig. 3b. This is intuitive, since blur is given by the

convolution of the original (sharp) image with a low-pass filter,

and restoration consists in inverting such an operation, that is,

high-pass filtering. Sharpening is nothing but increasing the

contrast along the edges, making the light side of the edge

lighter and the dark side of the edge darker.

In the same way, distinctive characteristics of motion-

compensated event images are that they look sharper and

have higher contrast than uncompensated ones (cf. Figs. 5a

and 5b). In fact, both, sharpness and contrast, are related.

Hence, we will use contrast to measure the quality of an event

image. In general, contrast quantifies the amount by which

the oscillation (or difference) of a signal stands out from the

average value (or background). Several contrast metrics are

available (see [8]). The Weber contrast is defined locally, as

CW
.
= (I − Ib)/Ib, with I and Ib representing the uniform

intensities of a small image object and its large adjacent

background, respectively. The Michelson contrast [9], defined

as CM
.
= (Imax − Imin)/(Imax + Imin) with Imax and Imin

representing the highest and lowest intensity, is suitable for

images with periodic patterns where there is no large area of

uniform intensity. We measure the contrast of an image by

means of its variance, as defined in Appendix A,

Var (I(ω, E))
.
=

1

|Ω|

∫

Ω

(
I(ω, E)(x)− µ(I(ω, E))

)2
dx, (5)

which is a measure of the spread or concentration of the image

values around the mean intensity and it does not depend on

the spatial distribution of contrast in the image. Alternative

contrast metrics such as the RMS (Appendix A) or different

p-norms, Cp ∝
∫
Ω
|I(ω, E)(x)−µ(I(ω, E))|pdx, with p ≥ 1,

are also possible. We opt for the variance (2-norm in (5)) since

it performs better than other metrics.

Since event images add the polarity of the events, which

are caused by scene edges, the contrast of the event image

measures the strength of the edges. Corresponding events

(Section III-A) have the same polarity, so a candidate ω that

aligns corresponding events (i.e., compensates for motion) will

sum their polarities, producing stronger edges, and therefore,

increasing the contrast.

E. Ego-Motion Estimation by Contrast Maximization

The contrast (5) of the image of rotated events I(ω, E) (4)

provides a measure of the goodness of fit between the event

data E and a candidate angular velocity ω. Hence, we can use

it in the above-mentioned optimization framework (Fig. 4):

by maximizing the contrast (i.e., quality) of the image of

rotated events we will estimate the motion parameters that

best compensate for the rotational motion of the camera, i.e.,

those that best describe the ego-motion.

The contrast (5) is a non-linear function of the unknown

variable ω. It is unlikely that a closed-form solution to the

contrast maximization problem

max
ω

Var (I(ω, E))

exists. Therefore, we use standard iterative non-linear algo-

rithms to optimize the contrast. In particular, we use the

non-linear conjugate gradient (CG) method by Fletcher and

Reeves [10], CG-FR.

To process an entire stream of events, we use a temporal

observation window consisting of a subset of events Em. We

process the subset (i.e., maximize contrast) and then shift

the window, thus selecting more recent events. The angular

velocity estimated using Em provides an initial guess for the

angular velocity of the next subset, Em+1, thus effectively

assuming a constant velocity motion model. This scheme

works very well in practice (in spite of the local convergence

properties of standard optimization algorithms) since each

subset Em usually spans a very small time interval, and

therefore, the angular velocity does not significantly change

between consecutive event subsets.

The answer to the question of how to choose the number

of events in each subset Em and how to shift the window is

application-dependent: the two principal strategies consist of

using a fixed time interval ∆t and shift ∆t′ or using a fixed

number of events per subset N and per shift N ′. The first one

might be the choice of applications that must provide angular

velocity estimates at a fixed rate. Since event cameras are

data-driven sensors, whose output depends on the amount of

apparent motion, we opt for the second strategy (fixed number

of events) because it preserves the data-driven nature of event

cameras: the rate of ego-motion estimates will be proportional

to the event rate, that is, to the apparent motion of the scene.

IV. ALGORITHM DETAILS

This section describes details of the proposed method. The

reader not interested in the details can jump to Section V.

An efficient implementation of the method requires provid-

ing to the optimization algorithm not only the contrast but

also its gradient with respect to ω. For completeness, such

formulas are given in Appendix B.

Formula (4) is an idealized description of the image of

rotated events. In practice, a digital image is synthesized,

so the image domain Ω has to be discretized into pixels

and the two-dimensional Dirac delta has to be replaced by

a suitable approximation, as in forward mapping of spatial

transformations [11, ch.3]. The simplest one consists in a

single-pixel update: the rotated event at point x
′
k(ω) only
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updates the value of the accumulated polarity at the nearest

pixel. However, this is a crude approximation that produces

undesirable rounding effects (“aliasing”, in the terminology

of line rasterization in Computer Graphics). Instead, we use

bilinear voting, where the polarity of the rotated event x′
k(ω)

is used to update the accumulated polarities I(x;ω) of the

four nearest pixel locations; with update weights that take into

account the distances from x
′
k(ω) to the integer pixel locations

x, similarly to bilinear interpolation.

To improve robustness against noise, we smooth the syn-

thesized image of rotated events using a Gaussian filter with a

small standard deviation (σ = 1 pixel). That is, we maximize

the contrast of Iσ(x;ω) = I(x;ω) ∗ Gσ(x). This diffusion

operation spreads the polarity of the rotated event x
′
k(ω)

beyond its four neighbors, since the convolution replaces the

δ in (4) by a broader kernel Gσ . A smoother event image

yields a smoother contrast function, which is in turn easier to

optimize (faster convergence) since optimization algorithms

exploit local smoothness.

To speed up the algorithm, the rotation matrix in the

warp (2) is replaced by its first order approximation, R(t) =
exp(ω̂t) ≈ Id + ω̂t, where Id is the identity matrix. This

is a reasonable approximation since the incremental rotation

between consecutive event images is small due to the very

high temporal resolution (microseconds) of event cameras and

the small number of events in the subset Em (typically in

the order of 10 000 events); hence the subset of events Em
spans a very small time interval ∆t, which multiplied by the

angular velocity gives a very small angle. This approximation

yields simplified formulas for the rotation of an event: the

warp becomes as simple as a sum and a cross product

W(x;ω, t) ≈ x+ tω × x (in homogeneous coordinates).

The mean of the image of rotated events is constant:

µ(I(x;ω)) = (
∑N−1

k=0
±k)/Np, and, as the formula shows, it

does not depend on ω; it only depends on the balance of po-

larities in the subset of events Em used to generate the image,

divided by the number of pixels Np. In generic scenes, because

both dark-to-bright and bright-to-dark edges are, typically, of

the same magnitude and equally probable, the corresponding

events are both positive and negative (see Figs. 1b, 5b) with

equal probability. Hence the balance
∑N−1

k=0
±k ≈ 0, and so is

the mean, µ(I(x;ω)) ≈ 0. The fact that the mean of I(x;ω)
is approximately zero may be used, if desired, to simplify the

contrast function, replacing the variance of the image by the

mean square value.

We use the standard optimization methods in the scientific

library GNU-GSL to implement the contrast maximization.

The CG-FR algorithm converges in, typically, 2 to 4 line

searches. Other methods, such as CG-Polak-Riviere and the

quasi-Newton method BFGS, give similar results.

V. EXPERIMENTS

In this section, we assess the accuracy of our orienta-

tion ego-motion estimation method both quantitatively and

qualitatively on different challenging sequences. The results

show that our method produces reliable and accurate angular

velocity estimates.

(a) The DAVIS240C sensor and
rate gyro axes definitions. Image
adapted from [2].

(b) poster. Images (b)-(d) are
courtesy of [13].

(c) boxes (d) dynamic

Fig. 6: DAVIS sensor and scenes of the evaluation sequences.

The event camera used to acquire the datasets was the

DAVIS [12], which has a spatial resolution of 240 × 180
pixels, a temporal resolution of microseconds and a very

high dynamic range (130 dB). The DAVIS combines in the

same pixel array an event sensor and a standard, frame-based

sensor. However, our algorithm uses only the event stream

and not the frames. The DAVIS also has an integrated Inertial

Measurement Unit (IMU). The rate gyro axes definitions of

the DAVIS is illustrated in Fig. 6a, with the IMU axes aligned

with the camera axes. The angular rates around the X,Y and

Z axes of the camera are called tilt (up/down), pan (left/right)

and roll (optical axis rotation), respectively.

A. Accuracy Evaluation

To assess the accuracy and robustness of our method we

evaluated it on three different sequences from [13]: poster,

boxes and dynamic (see Fig. 6). The poster scene

features a textured wall poster; the boxes scene features some

boxes on a carpet, and the dynamic scene consists of a desk

with objects and a person moving them. All sequences contain,

in addition to the event stream, angular velocity measurements

that we use for comparison: gyroscope data from the IMU

of the DAVIS and ground truth pose measurements from a

motion capture system (mocap), from which angular rates are

obtained. The IMU operates at 1 kHz, and the motion capture

system at 200Hz. The sequences were recorded hand-held.

Each sequence has a 1 minute length and contains about 100-

200 million events. Each sequence starts with rotations around

each camera axis, and then is followed by rotations in all 3-

DOFs. Additionally, the speed of the motion increases as the

sequence progresses.

Fig. 7 shows the comparison of the results of our method

against ground truth on the poster sequence. Fig. 7-middle

shows the results on the entire sequence. Observe the increas-

ing speed of the motion, with excitations close to ±1000
deg/s. The results provided by our method are very accurate,
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Fig. 7: poster sequence. Comparison of the estimated angu-

lar velocity (solid line) against ground truth from the motion

capture system (dashed line). Whole sequence (middle) and

zoomed-in plots of shaded regions (top and bottom).
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Fig. 8: poster sequence. Error box plots, by intervals of 15s.

Left: Estimated vs. mocap. Right: Estimated vs IMU.

as highlighted by the very small errors: the lines of our method

and those of the ground truth are almost indistinguishable at

this scale. To better appreciate the magnitude of the error, we

zoomed-in at the shaded regions of Fig. 7-middle in Figs. 7-

top and bottom. Fig. 7-top shows a segment of 8 seconds

duration, with rotations dominantly around each axis of the

event camera: first pan, then tilt, and, finally, roll. Fig. 7-

bottom shows a 4 s segment at the end of the sequence with

the largest combined rotations in all 3 axes.

The plots for the same poster sequence comparing our

method against the IMU are very similar, and, therefore, are

not included for brevity. Instead, we provide box plots with

statistics about the errors of our method against both, mocap

and IMU, in Fig. 8. Since the sequence presents increasing

motion, we split the analysis of the statistics in intervals, each

of which lasts 15 seconds. Recall that the bottom and top

of a box are the first and third quartiles, and the line inside

the box is the second quartile (i.e., the median). The markers

outside the box are the minimum and maximum. We observe

the increasing trend of the motion speed also in the error

box plots, suggesting that there is a relative dependency: the

larger the motion, the larger the error can be. However, note

that the errors are small relative to the “size” of the motion:

we report standard and maximum deviations of approximately

20 deg/s and 80 deg/s, respectively, with respect to peak

excursions close to 1000 deg/s, which translate into 2% and

8%, respectively.

Figs. 9 and 10 summarize our results for the boxes and

dynamic sequences, respectively. For the boxes sequence,

Fig. 9a-top shows the comparison of our method against

ground truth over the whole sequence. The estimated motion

with our method is identical to ground truth at this scale.

Fig. 9a-bottom provides a zoom into the comparison plot,

during a 4 second segment with high-speed motion (angular

speeds of more than ±600 deg/s). Even at this zoom level,

the lines of both our method and ground truth are almost

identical. A better visualization of the magnitude of the errors

is provided in the box plots of Fig. 9b. This figure also

shows the comparison of our method against the IMU, and

it is analogous to Fig. 8. As it can be observed, our method

compares favorably in both cases: ground truth and IMU.

Figs. 10a-top and 10a-bottom compare our method against

ground truth over the entire dynamic sequence and over

a six-second segment (zoomed-in view) featuring high-speed

motions of up to 500 deg/s, respectively. This sequence de-

picts a desk scene, with events being generated by both the

static objects and a moving person. The events caused by the

moving person do not fit the rotational motion model of a static

scene. However, the motion of the person is slow compared

to the temporal resolution of the event cameras, and, most

of the time, our algorithm is not affected by such motion.

When a significant amount of the events (typically, 20% or

more) are triggered by the moving person, as shown in half

of the image plane in Fig. 11-left, the performance of the

ego-motion algorithm is affected since no outlier rejection

has been implemented. In Fig. 11-right, the estimated angular

velocity (pan and tilt) deviates from ground truth at t ≈ 32 s.
Nevertheless, the box plots in 10b show that the errors of our

method against ground truth and against the IMU remain small

for this sequence.

B. Computational Performance

Next, we provide some order of magnitude of the com-

putational effort required by the method. The algorithm was

implemented in C++, without paying attention at optimizing

the code for real-time performance. The core of the algorithm

is the computation of the image of rotated events I(x;ω)
in (4) and its derivatives (Eq. (9) in Appendix B). For a

subset of 15 000 events, this takes 2.7ms on a standard laptop
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(a) Whole sequence (top) and zoom-in of shaded region (bottom).
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(b) Error box plots, by intervals of 15s. Left: Estimated vs mocap.
Right: Estimated vs IMU.

Fig. 9: boxes sequence. Comparison of the estimated angular

velocity (solid line) against ground truth from the motion

capture system (mocap) (dashed line).

with an Intel(R) Core(TM) i7-3720QM CPU @ 2.60GHz

running single-threaded. This operation is carried out multiple

times within the optimization algorithm. The method may be

accelerated for real-time performance.

Since the contrast (5) is computed using the image of

rotated events (4), the computational complexity of the method

depends on both the number of rotated events and the event

image resolution. The method scales linearly with respect to

both. Hence, to reduce the computational cost, one may (i)
compute the contrast using fewer pixels, (ii) rotate fewer

events or (iii) apply both strategies. An appealing option is

to maximize the contrast of some regions of the image plane.

It suffices to select the most informative regions (those with

the largest density of events), as in direct methods for visual

odometry [14] and SLAM [15], i.e., it suffices to select the

events that most likely will be rotated to the regions of the

image that will present the highest contrast, which would then

be tracked in time, for efficiency.

C. Discussion

During the experiments, we noticed that, in general, roll

estimation is more subjective to errors than the estimation of

pan and tilt motions because the apparent motion of the center

(a) Whole sequence (top) and zoom-in of shaded region (bottom).
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(b) Error box plots, by intervals of 15s. Left: Estimated vs mocap.
Right: Estimated vs IMU.

Fig. 10: dynamic sequence. Comparison of the estimated

angular velocity (solid line) against ground truth from the

motion capture system (mocap) (dashed line).
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Fig. 11: dynamic sequence. Detail of person moving close

to the camera. Left: image of rotated events. Right: estimated

angular velocity (solid line) vs. ground truth (dashed line).

of the image is smaller than the periphery, and, therefore, there

is a lack of events close to the center of rotation, with events

mostly appearing far away, in the periphery of the image.

In all sequences, the event camera was moved in front of

the scene, about 1.5m away or more. The motions were hand-

held and are inevitably corrupted by translation. However,

the translational component of the motion was negligible

with respect to the mean scene depth (e.g., distance to the

desk), that is, motion was dominantly rotational, satisfying

the hypothesis of our framework. We tested the algorithm on

sequences with significant translation and, as expected for any
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algorithm designed for rotation-only motions, the algorithm

provided an incorrect motion estimate since it tried to explain

the translation using a rotation.

VI. CONCLUSIONS

We have developed a method that estimates the rotational

motion of an event camera. We have tested the algorithm on

sequences with millions of events, and the results obtained are

very accurate, with angular velocity errors of 2% (standard

deviation) and 8% (maximum). Due to the high temporal

resolution of the sensor, our method is able to track very high-

speed motions (≈ 1000 deg/s). Additionally, due to the sliding

window approach, our method can provide angular velocity

estimates at the rate implied by the event resolution (1 µs;
sliding the window by one event). Besides the remarkable

accuracy and robustness of the method, we believe that its

most interesting characteristic is its design philosophy: motion

estimation by means of edge alignment in terms of contrast

maximization.

APPENDIX A

MOMENTS OF AN IMAGE (CONTINUOUS FRAMEWORK)

The mean and variance of an image F : Ω ⊂ R
2 → R are

µF
.
= µ(F ) =

1

|Ω|

∫

Ω

F (x)dx, (6)

σ2
F

.
= Var (F ) =

1

|Ω|

∫

Ω

(F (x)− µF )
2dx, (7)

respectively, where |Ω| is the area of the image domain.

These formulas can be obtained by interpreting the values

{F (x)}x∈Ω as providing infinitely many samples of a random

variable and using the moments of such a random variable to

define the moments of the image. Hence, as it agrees with

the intuition, the mean µF is the average value of the image

F over the domain Ω, and the variance is the average spread

(i.e., dispersion) of F around µF , over the domain Ω. For

more details, see [16].

The mean square of an image is defined in the usual way, in

terms of the mean and the variance: MS = RMS2 = µ2
F +σ2

F ,

that is, MS = 1

|Ω|

∫
Ω
F 2(x)dx.

APPENDIX B

DERIVATIVE OF THE CONTRAST METRIC

Efficient optimization schemes make use of the derivative of

the objective function to search for ascent/descent directions.

For the proposed contrast metric (5), the derivative is

∂

∂ω
Var (I(x;ω))

(7)
=

1

|Ω|

∫

Ω

2ρ(x;ω)
∂ρ(x;ω)

∂ω
dx, (8)

where ρ(x;ω)
.
= I(x;ω)−µ(I(x;ω)) and differentiation can

be moved inside the integral since Ω is constant. The gradient

of the image of rotated events is

∂I(x;ω)

∂ω

(4)
= −

∑

k

±k ∇δ
(
x− x

′
k(ω)

)∂x′
k

∂ω
, (9)

where the derivative of each rotated event (Section III-C) is

∂x′
k

∂ω
=

∂

∂ω
W(xk;ω, tk − t0).

The gradient of the Dirac delta δ(x)
.
= δ(x)δ(y) is com-

puted component-wise, ∇δ(x) = (δ′(x)δ(y), δ(x)δ′(y))⊤. We

apply finite-differences with step h = 1 pixel to approximate

the derivative: δ′(x) ≈ (δ(x+h/2)−δ(x−h/2))/h. Then, the

first component of ∇δ is approximated by the difference of

two 2D deltas like those in (4): δ′(x)δ(y) ≈ (δ(x−x−)−δ(x−
x+))/h, with x± = (±h/2, 0)⊤. A similar argument applies

to the second component of ∇δ. Finally, each 2D delta is

implemented by bilinear voting over four pixels, as explained

in Section IV.

Also, observe that, in (8), by linearity of the integral (6)

and the derivative, both operators commute:

∂

∂ω
µ
(
I(x;ω)

)
= µ

(
∂I(x;ω)

∂ω

)
,

so the left hand side can be computed once the derivative

image (9) has been obtained.

Finally, for the numerically-better behaved contrast that

includes Gaussian smoothing (Section IV), the objective func-

tion is Var (Iσ(x;ω)), with Iσ(x;ω) = I(x;ω) ∗Gσ(x). The

objective gradient has the same form as (8), but with I and
∂
∂ω

I(x;ω) replaced by Iσ and ∂
∂ω

Iσ(x;ω) =
(

∂
∂ω

I(x;ω)
)
∗

Gσ(x), respectively.
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