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Accurate Approximations for Posterior 

Moments and Marginal Densities 

LUKE TIERNEY and JOSEPH B. KADANE* 

This article describes approximations to the posterior means 

and variances of positive functions of a real or vector-valued 
parameter, and to the marginal posterior densities of arbitrary 
(i.e., not necessarily positive) parameters. These approxima- 
tions can also be used to compute approximate predictive densi- 
ties. To apply the proposed method, one only needs to be able 

to maximize slightly modified likelihood functions and to eval- 
uate the observed information at the maxima. Nevertheless, the 
resulting approximations are generally as accurate and in some 
cases more accurate than approximations based on third-order 
expansions of the likelihood and requiring the evaluation of 
third derivatives. The approximate marginal posterior densities 
behave very much like saddle-point approximations for sam- 
pling distributions. The principal regularity condition required 
is that the likelihood times prior be unimodal. 

KEY WORDS: Bayesian inference; Laplace method; Asymp- 
totic expansions; Computation of integrals. 

1. INTRODUCTION 

A user of Bayesian methods in practice needs to be able to 

evaluate various characteristics of posterior and predictive dis- 

tributions, especially their densities, means, and variances. If 
the problem under consideration does not involve a conjugate 
prior-likelihood pair, these tasks cannot be performed in closed 

form; analytical or numerical approximation methods are needed. 
In these cases it would often be useful to have approximations 
that are more accurate than the usual normal approximation, 
yet not as computationally intensive as numerical integration 
methods (Naylor and Smith 1983) or Monte Carlo methods 

(Kloek and Van Dijk 1978; Zellner and Rossi 1982). Lindley 
(1980) has proposed approximations for moments that capture 
the first-order error terms of the normal approximation. This 
is generally accurate enough, but, as Lindley points out, the 

required evaluation of third derivatives of the posterior can be 
rather tedious-in particular, in problems with several param- 
eters. Mosteller and Wallace (1964, sec. 4.6C) suggested a 

similar approach but introduced a transformation of the param- 
eters to avoid the need for the direct use of third derivatives. 
The proposed transformation, however, depends on the second 
derivatives of the log-likelihood. A numerical maximization 
routine for locating the posterior mode of the transformed pa- 
rameters will therefore require third derivatives of the log- 
likelihood unless a more complicated derivative-free algorithm 
is used. 

In this article we introduce an easily computable approxi- 
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mation for the posterior mean and variance of a nonnegative 
parameter or, more generally, of a smooth function of the pa- 
rameter that is nonzero on the interior of the parameter space. 

For definiteness we will take this function to be positive. In 

this introduction we give a brief, informal description of the 

basic approximation and its properties. Section 2 contains a 

more careful statement. 
Let g be a smooth, positive function on the parameter space. 

The posterior mean of g(O) can be written as 

fg()e2(0)7(O)dO 

Ej[g] = E[g(O) I X'] = , (1.1) 

fe2(0)7r(O)d 

where $ is the log-likelihood function and iris the prior density. 
It is common practice to approximate the denominator integral 
in (1.1) by an integral of an approximating normal curve cen- 

tered at the posterior mode and having variance equal to minus 

the inverse of the second derivative of the log posterior density 
at its mode. This approximation, used by Lindley and by Mos- 

teller and Wallace, can be viewed as an application of the 

Laplace method for integrals, as described in De Bruijn (1961). 
It will produce reasonable results as long as the posterior is 
unimodal or at least dominated by a single mode; we will 
assume that the sample size is large enough for this to be the 
case. The new feature in the approximation proposed in the 

present article is in its approach to the numerator integral in 
(1.1). Rather than expand the integrand of this integral about 
the posterior mode, we propose to locate the mode of the nu- 
merator integrand itself, find the second derivative at this new 

mode, and then approximate this integral by a second appli- 
cation of Laplace's method. 

The computational requirements of this approach are rather 
minimal: We only need to be able to evaluate first and second 
derivatives and maximize the two integrands, which can be 
viewed as slightly modified likelihood functions. These com- 

putations will be feasible for any problems in which maximum 
likelihood estimates and the observed information can be com- 

puted. Nevertheless, the resulting approximations are quite ac- 
curate. An intuitive explanation is this: If the function g is 
bounded away from zero near the posterior mode, then the two 

integrands will be similar in shape. Thus by applying the same 

approximation technique, Laplace's method, to the numerator 
and the denominator we will be making similar errors, and in 

taking the ratio some portion of these errors will cancel. In 

asymptotic terms, Laplace's method typically has an error of 
order O(n-1). Used in this ratio form, the error is of order 

O(n -2)the order O(n 1) error terms in the numerator and the 

denominator cancel. 
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In the next section we give a more formal statement of the 
proposed approximation for the posterior mean of a positive 
function g and an approximation for its variance. Section 3 
briefly discusses the approximation of predictive densities. The 
use of Laplace's method for approximating marginal posterior 
densities is discussed in Section 4, and an application to data 
from the Stanford heart-transplant experiment is given in Sec- 
tion 5. Section 6 presents some closing remarks, and the 
Appendix contains some technical details on the asymptotic 
error rates. 

In the derivations given in this article we have chosen to 
sacrifice formal rigor for clarity of exposition. Explicit state- 
ments of regularity conditions have been omitted. A techni- 

cal report including some of the omitted details is available 

from us. 

2. POSTERIOR MEANS AND VARIANCES 

Setting L = log 7t + $1n and L* = log g + log 7 + 21n, 
expression (1.1) for the posterior mean of g can be written as 

E [g] = fenL*dO fenLdO. (2.1) 

Let 0 be the posterior mode, the mode of L, and let U2 = 

- 1 IL"(0). Then Laplace's method produces the approximation 

f enL('0)dO f exp[nL(d) - n(O - d)2/(2U2)]dO 

- x/374jn1/2enL(e) (2.2) 

for the denominator integral in (2.1). Similarly, if 0* is the 
mode of L* and o*2 - - 1/L*"(0*), then the Laplace ap- 
proximation to the numerator integral in (2.1) is 

a*n-1/2exp{nL*(0*)}. Taking the ratio of these two ap- 
proximations produces the approximation 

En[g] = (9*/ /)exp{n(L*(O*) - L(O))} (2.3) 

to En[g]. We will refer to approximation (2.3) as the Laplace 
approximation. 

A similar approximation applies in the multiparameter case: 
Set 

- (det Z*\ 1/2 

En[9- = det ) exp{n(L*(O*) -L 0 

where 0* and 0 maximize L* and L, respectively, and ; * and 
are minus the inverse Hessians of L* and L at 0* and 0, 

respectively. 
The asymptotic accuracy of the Laplace approximation (2.3) 

is investigated in the Appendix. To summarize the results: The 

errors in the approximations to the two integrals in (2.1) are 
of order O(n- 1). The leading terms in the two errors are iden- 
tical, however, and cancel when the ratio is taken. As a result, 
the error in (2.3) is of order O(n-2); that is, 

En[g] = En[g](l + O(n 2)) (2.4) 

Having obtained an approximation for the posterior mean of 
g, we would next like to approximate the posterior variance. 
The simplest way to obtain such an approximation is to set 

Vn[g] = En[g2] - En[g]2. (2.5) 

That is, we use (2.3) to approximate the posterior means of g 

and g2, and then we insert these approximations into the stan- 
dard computational formula for the variance. 

By (2.4) we might expect that (2.5) will have an absolute 
error of order O(n-2) or a relative error of order O(n- 1) (since 

Vn[g] - cln). Another cancellation occurs, however: From the 
expression (A.2) given in the Appendix for the error of (2.3), 
we can see that the leading error terms in En[g2] as an approx- 
imation to En[g2] and in En[g]2 as an approximation to En[g]2 
are identical. As a result, they cancel in computing (2.5). So 

Vn[g] has an absolute error of order O(n3) or a relative error 
of order O(n-2); that is, 

Vn[g] = Vn[g](l + O(n2)). (2.6) 

A similar argument shows that if we approximate the posterior 
covariance Cn[g, h] of two positive functions g(O) and h(O) by 

A A A A 

Cn[g, h] = En[gh] - En[g]En[h], (2.7) 

then 

Cn[g, h] = Cn[g, h] + O(n 3) (2.8) 

as well. 
As a practical point, it is worth mentioning that approxi- 

mation (2.5) should be used with caution if n is very large, 
since it involves the computation of a small number as the 
difference between two large numbers. If computations are done 
with sufficient precision, however, then for most practical sam- 

ple sizes this will not cause any problems. At the other end of 

the spectrum, if n is very small, then it is possible for the 

variance approximation (2.5) to be negative and for a covariance 
matrix computed from (2.7) not to be positive semidefinite. 
This should be checked in any application, but in most cases 

it does not seem to be a problem even for moderate sample 
sizes. More work is needed to see if modified variance ap- 
proximations can be obtained that are guaranteed to be positive. 
A second point concerns the maximizations required for (2.3), 
(2.5), and (2.7): Once 0, the posterior mode, has been deter- 

mined, it can be used as a starting value for a numerical search 
for 0*, the maximum of L*. Generally, the number of iterations 
needed to find 0* from 0 will be quite small. In fact, since the 

asymptotic statement of (2.4) only depends on the leading 
asymptotic term in 0 - 0, it remains valid if we replace 0* 

by a single Newton step from 0 towards 0*. For (2.6) and (2.8) 
to remain valid, two Newton steps are sufficient. 

In concluding this section, a comment on the assumed pos- 

itivity of g is appropriate. This assumption is needed to insure 

that the numerator and denominator integrands in (2.1) are 
similar in shape. This similarity in shape, in turn, is responsible 
for the cancellation of error terms in the approximation to the 

ratio (2.1). Thus for the approximation to be accurate for a 
function g taking both positive and negative values, the pos- 
terior distribution of g must be concentrated almost entirely to 
one side of the origin. If this is not the case, then this approach 
is not directly applicable. Work on extensions that will retain 
the computational simplicity of (2.3) and (2.5) but are appli- 
cable, for example, for computing posterior moments of regres- 
sion parameters is currently in progress. 
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3. PREDICTIVE DISTRIBUTIONS 

Consider approximating the predictive density 

fn(z) = f(z I xlnl) = EJ[f(Z I 0)] 

at specific values of z. Direct application of (2.3) produces the 

approximation 

fn(z) = En[f(z I 0)], 

which, by (2.4), has an error of order O(n 2). This is similar 

to the approximation considered by Leonard (1982) in his com- 

ment on the paper by Lejeune and Faulkenberry (1982), who 

considered predictive densities from the frequentist point of 

view. 
With its error of order O(n2), the approximation fn(z) has 

a lower-order error than Dunsmore's (1976) modification of 
the simple approximation f(z I 6), where 0 is the maximum 

likelihood estimator (MLE). Dunsmore's approximation in- 

cludes some but not all terms of order O(n-1). In particular, 
he drops the integral of the second term in the integrand of his 

equation (1); Lindley's (1980) equation (7) shows that this 

integral is generally of order O(n 1) but no smaller. 

4. MARGINAL POSTERIOR DENSITIES 

Laplace's method can also be used to approximate marginal 

posterior densities of individual parameters in multiparameter 
settings. The resulting approximation, first suggested by Leon- 
ard (1982), provides a useful alternative to generally more time- 
consuming numerical or Monte Carlo integration techniques. 
In its use of Laplace's method to integrate out one or more 

variables from a multivariate function to obtain a density, this 

approach is similar to the saddle-point method introduced by 
Daniels (1954) and studied further, for example, in Barndorff- 
Nielsen and Cox (1979) and Daniels (1980). 

To obtain the approximation, set 0 = (01, . , p) = (01, 
02); that is, partition the p vector 0 into its first component and 
the (p - 1) vector of the remaining components. Suppose 0 

= (01, 02) maximizes 7reT (i.e., 0 is the posterior mode), and 
let 

A 

be minus the inverse of the Hessian of ($ + log rr)In 
at 0; thus ; is a p x p matrix. For a given 01, let the (p - 

1) vector 0* = 0*(01) maximize the function h() = 

7r(01, ')eA0l"), the function 7ret with G1 held fixed, and let 
* = X *(01) be minus the inverse of the Hessian of (log 

h(-))/n, a (p - 1) x (p - 1) matrix. Applying Laplace's 
method to the integrals in the numerator and denominator of 
the expression 

f r(01, 02)eA0" 2)dO2 

rl1(01 I Xn)) = 7n,,1(01) = j 

for the marginal posterior density of 01 we obtain the approx- 
imation 

fl ()= (2i dt ( ) (0l,@)et?l .(4.1 

UJsing calculations similar to those presented in the Appen- 

dix, it is possible to show that 

7rn1(01)= 7in,1(01)(I + 00(n-1)) (4.2) 

where 00,(n-') is of order O(n-1) but depends on 01. If 00 is 

the true parameter vector, then under regularity conditions sim- 
ilar to those given in Walker (1969), it is possible to show that 

the error term 001(n-1) will be uniformly of order O(n-1) for 
01 in some fixed neighborhood of 00,1, the first component of 

00. By contrast, the absolute error of the usual normal approx- 
imation is only of order O(n- 1/2). Moreover, the relative error 

of the normal approximation, or any Edgeworth-type approx- 
imation for that matter, usually only tends to zero on neigh- 
borhoods that shrink toward 00,l at rate n- 12. 

The main reason that the error in (4.2) is as large as O(n 1) 

is that the dimensionalities of the two integrals in the numerator 
and the denominator of 7rn,l are different. In fact, most of this 
error is due to the constant of integration; the error in the 

approximation of the functional form of 7rn,1(01)is only of order 

O(n312) in n-12 neighborhoods of 0 . To see this, fix u, let 
01 = 01 + n-1/2u, and note that the error 001(n') is usually 

a smooth function of 01. Thus we can write 

00,(n-1) = O,(n-1) + (uln-112)O (n 1) 

and 

A= - l(0)(1 + 0 1(n1))(1 + Ou(n 312)). (4.3) 

Since the term 001(n- 1) does not depend on u, it is an error in 

the constant of integration, and the error in the approximation 

~n, to the functional form of r1,1 is of order O(n-312), as claimed. 
A similar result was pointed out by Daniels (1956) for the 

saddle-point approximation. As in that case, the main impli- 
cation is that an approximate marginal posterior calculated using 

(4.1) should be renormalized by numerical integration to in- 
tegrate to one. 

To appreciate just how accurately (4.1) can capture the func- 
tional form of rn,1(01), consider, for example, the normal-gamma 
conjugate distribution for normal data with unknown mean and 
precision. Thus the joint posterior for the mean m and the 

precision r is of the form 

ir(m, r) a ra1/'2e-l+t(m-L)2/2) 

for some at, fi?, ,u, and z. Leonard (1982) pointed out that (4.1) 
is remarkably accurate in this case. In fact, a simple calculation 
shows that (4.1) produces the correct functional forms! 

Another joint distribution for which (4.1) produces the exact 

functional forms of the marginals is the Dirichlet distribution. 
It would be interesting to obtain a characterization of all joint 
distributions for which this occurs. A similar phenomenon oc- 
curs for the saddle-point approximation; that is, there are certain 
distributions for which that approximation produces the exact 
functional forms. For the saddle-point approximation, Daniels 

(1980) has obtained a characterization of all cases in which the 
approximation produces exact results. It may be possible to 
modify Daniels's approach to characterize the joint distributions 

for which (4.1) produces exact functional forms. 

5. AN APPLICATION 

As an example we consider a three-parameter model used 
by Turnbull, Brown, and Hu (1974) to describe data from the 
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Stanford heart-transplant program and referred to by them as 
the Pareto model. This model, described in section 4.3 of their 
paper, views individual patients in the nontransplant group as 
having exponential lifetimes with mean 4, where 4 is itself a 
random variable drawn independently for each patient from a 

gamma distribution with density proportional to 4P-Ie- 1. Pa- 
tients in the transplant group have a similar distribution but 
with To in place of 4 for the residual lifetime after the trans- 
plant. The resulting likelihood function of the three parameters 
T, A, p is 

iI + Xj)P i=+ I( + Xi) 

m rpA,P M A , jP 

, -i (Q + yj + TZj)P + 1 +1 \\il + yj + TZj/ 

where the xi are the survival times in days of the N = 30 
nontransplant patients, n = 26 of whom died, and yj, zj are 
the times to transplant and survival times after transplant, re- 
spectively, of the M = 52 transplant patients, m = 34 of whom 
died. 

Naylor and Smith (1982) used this model with an improper 
uniform prior on the parameters T, A, p to illustrate their com- 
putational approach based on Gauss-Hermite quadrature, and 
we use the same improper prior distribution for the present 
illustration. Naylor and Smith point out the possibility of in- 
tegrating out the parameter p analytically, but, following their 

example, we have chosen not to do this and to apply the Laplace 
approximations directly. 

Table 1 lists the posterior means and standard deviations 

computed by the Laplace approximation method and by Naylor 
and Smith using Gauss-Hermite integration applied to an or- 

thogonalized reparameterization. As can be seen from this table, 
the largest relative difference between any of the Laplace ap- 
proximations and the results of Naylor and Smith is about 4%. 

In approximating the marginal densities, we selected a set 
of 60 equally spaced points for each parameter and then at each 
point computed approximations to the marginal densities by 
formula (4.1). A simple rectangular integration of these ap- 
proximate densities produced integrals of approximately 1.2 in 

all three cases; thus renormalization was necessary. We then 
obtained plots of spline interpolations of the renormalized den- 

sities. We used 60 points for increased accuracy; however, 30 

points produced identical pictures. In performing the maximi- 
zations for the individual grid points, we proceeded outward 
from the MLE's, using each current set of optimal values as 
the starting values for the next maximization. 

As a basis for comparison, for each of the 60 grid points 
selected for a given parameter we orthogonalized the other two 

Table 1. Posterior Means and Standard Deviations for the 
Pareto Model 

Posterior 
Posterior Means Standard Deviations 

Method r i p T p 

Laplace 1.044 32.11 .4926 .4944 16.09 .1381 
Naylor and Smith 1.04 32.5 .50 .47 16.2 .14 

4 

1~~~~~~~~ ' 

o. I.2 .4 I. I.6 I. 1.2 

Figure 1. Marginal Posterior Densities for p. -. Laplace and 20- 

point adaptive Gauss-Hermite approximations; ---: asymptotic normal 

approximation. 

parameters using the >; matrix computed for the Laplace ap- 

proximation at that point. We then integrated with respect to 

each of the two orthogonalized parameters using a 20-point 

Gauss-Hermite quadrature. The results were renormalized us- 

ing a rectangular integration formula and plots were obtained. 

In all three cases the resulting plots were indistinguishable from 

the renormalized Laplace approximations. Figure 1 shows the 

results for the marginal density of p. The solid line is the 

superposition of the renormalized Laplace approximation and 

the Gauss-Hermite calculations; the broken line is the asymp- 

totic normal approximation. 

As a final note on this example we mention the computing 

time requirements. On the University of Minnesota's Cyber 

630 computer, computing the Laplace approximations to the 

moments took about .15 seconds of central processing unit 

(CPU) time; the Gauss-Hermite method took about 3 seconds. 

For marginals, the Laplace calculations took about 3 seconds 

and the Gauss-Hermite calculations about 60 seconds of CPU 

time. 

6. CONCLUDING REMARKS 

Several open questions remain to be investigated. The most 

important is to obtain approximations for moments of quantities 

taking on both positive and negative values, such as regression 

coefficients. Another is to determine the exact conditions under 

which the approximate marginalization approach produces ex- 

act results. It would also be useful to determine whether the 

approximations proposed here remain accurate when numerical 

derivatives are used in place of analytic ones in cases where 

closed-form derivatives are not available. 

The approximations of this article may also prove helpful in 

certain theoretical problems such as developing tractable Bayes- 

ian approaches to log-linear models and to experimental design 

fo oliermoes n xesintati uretyben/x 
plored~~ ist utmdlpseiosucastepl-dirb- 

tion ofDce/16)an rz17) 
In cnlso,wwolliktoepaiehtwednt 
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think of these approximations as replacements for exact cal- 
culations in situations where extremely accurate results are needed. 
Instead, we consider them to be simple first approximations 
that are easy to obtain, are often sufficiently accurate in their 
own right, and generally provide good starting points for exact 
computations, should these be required. 

APPENDIX: ASYMPTOTIC ERRORS OF THE 
LAPLACE APPROXIMATIONS 

Laplace's method for integrals as described, for example, in De 
Bruijn (1961) provides an approximation for integrals of the form 
f e'"0?d0 when n is large. The idea is that if L has a unique maximum 
at 0, then for large n the value of this integral depends only on the 
behavior of the function L near its maximum. Thus if we set a2 = 

- 1 IL"(0), then we can replace L(8) by L(&) - (6 - )21/(2a2). This 
produces the approximation 

f enQ0)d6 en(6 f exp{ - [n(0 - 0)212U2]}d0 

= 2can-1/2exp{nL(0)}. 

By expanding n(L(O) - L(4) + (0 - 0)2/(2a2)) about 0 and ex about 
zero, it is possible to obtain the more refined result 

J ea('-dO = /27ran12e-L)(l + e+I + + I + O(n3))- , (A. 1) 

where, setting Lk = (dId0)kL(6), the constants a and b are given by 

1 5 
UL a = - a4L4 + 24 36L 

and 

1 35 
2 

7 
b = - a6L6 + - a8L4 + - e8L3L5 

48 384 48 

35 385 
.1L + 64 U'0L3L4 + 1,152 a2L3. 

Result (A. 1) remains valid if L is replaced by a sufficiently well- 
behaved sequence L'"' of functions. In this case the coefficients a and 
b may depend on n, but this dependence will be suppressed. If a and 
b do indeed depend on n, we will assume regularity conditions for the 
sequence L(n) that insure that a and b are bounded in n. 

The posterior expectation En[g] of a positive function g is a ratio 
of two integrals of the form f exp{nL*(0)}d0/f expfnL(0)}dO, where 
the difference L* - L is of order O(n-'). Thus if we write L* = 

Gln + L, with G = log g, then 

f enL*(O)dO 

= *enL*(6*) c = . . 1~~~~ 
+ 2 + 0(n -3) , (A.2) 

fe"L(d6 a7e"') [ n+2 J 

where 0* maximizes L*, or*2 = -1 IL*"(d*), 

c = Gid1 + G2d2 + G3d3 + G4d4, 

and the di's are given by 

1 1 5 5 1L di = -a6L5 + 4 eL3L4 + 
-2 U8L3L4 + 8 a- 3 

1 5 
d2= -4a6L4 + 

8- L3 

d= -2 oL3 

8 . 

To see this, apply (A. 1) to f exp{nL*(O)}dO and f exp{nL(O)}dO to 
obtain 

f e? ) | ed6/f d 

( a* b* ) 

(1 + + -n + O(nr)) 

=-exp{n(L*(0*) - L(G))} 

( a* -a + b* - b - a(a* - a) + O(n-3)) 
n n 

again suppressing any dependence of a*, b* and a, b on n. 
Then observe that 0* solves L*'(0) = 0 and O solves L'(0) = 0; 

thus 

0 = L*'(0*) - L'(0*) + (l/n)G'(0*) 
L'(0) + (0* - O)L"(0) + (1/n)G'(0) 

- (0* - )/oa2 + (1/n)GI. 

Sod* - 0 = (lIn)G1a2 + O(n 2). Together with the fact that L*(O) 
- L(6) = (l/n)G(6) = O(n-1) for any 0, this implies that a* - a 
and b* - b are both of order O(n' ). 

[Received June 1984. Revised September 1985.] 
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