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Cellular mobile communication network planning and optimization involve a complex engineering process that deals with
network fundamentals, radio resource elements, and critical decision variables. The continuous evolution of radio access
technologies provides new challenges that necessitate efficient radio planning and optimization. Therefore, the planning and
optimization algorithms should be highly efficient, advanced, and robust. An important component of 4G LTE network
planning is the proper placement of evolved node base stations (eNodeBs) and the configuration of their antenna elements.
This contribution proposes a multiobjective genetic algorithm that integrates network coverage, capacity, and power
consumption for optimal eNodeB placement in an operational 4G LTE network. The multi-objective-based genetic algorithm
optimization has been achieved using the optimization toolbox in MATLAB. By leveraging the proposed method, the effect of
different population sizes on the cost of placing the eNodeBs and the percentage coverage of the eNodeBs in a given cell is
determined. As a result, the optimal selection technique that minimizes the total network cost without compromising the
desired coverage and capacity benchmarks is achieved. The proposed automatic eNodeB antenna placement method can be
explored to optimize 4G LTE cellular network planning in related wireless propagation environments.

1. Introduction

The evolved node base station (eNodeB) placement and con-
figuration in cellular radio networks is critical to delivering
efficient wireless network services and guaranteeing the
quality of service for mobile subscribers [1–3]. The perfor-
mance of a cellular network is mainly characterized by the

received signal strength and signal quality at the subscriber
equipment terminal. In practice, the service coverage is pri-
marily affected by radio propagation and transmit power
and depends on the propagation environment of the wireless
network [4–9]. Thus, attaining excellent cellular network
coverage and improved signal coverage around the sub-
scribers by deploying the minimum required number of
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BSs with configurations is one of the leading objectives of the
mobile networking industry [10–13]. This objective can only
be achieved if a good evolved node base station (eNodeB)
placement and configuration method considers the propaga-
tion environment in place [14–16].

The traditional method of eNodeB placement and config-
urations depends mainly on the imported propagation models
such as the Hata and COST 231 Hata that do not capture the
actual characteristics of the radio signal propagation environ-
ment [17–20]. The limitations posed by these models used to
characterize the environment often lead to unreliable network
planning, resulting in poor quality of service at the subscribers’
equipment terminals. To this end, this study focuses on inves-
tigating and developing a robust eNodeB placement and con-
figuration algorithm that considers the investigated radio
signal propagation environment.

The genetic algorithm (GA) is preferred to other heuris-
tic optimization algorithms and deterministic approaches
owing to its capability to handle continuous and discrete
parameters, insensibility to local minima, model generality,
and robustness of the GA program code [21–24]. These
characteristics presents the genetic algorithm (GA) as the
natural choice for optimization in this investigation. In par-
ticular, the optimization problem is quantitatively described
as a maximization or minimization of the function f ðx1, x2,
⋯ , xnÞ, where n indicates the number of parameters. The
minimization and maximization can be replaced by each
other if the function is multiplied by a minus sign.

The cellular network infrastructure comprises several
eNodeBs deployed over the service coverage area. Each
eNodeB creates or produces a coverage area referred to
as a cell [25, 26]. The users geographically located inside
the cell are provided with the different network services
by the associated eNodeB. The optimal placement of the
eNodeB to varying locations over the tested geographical
area to meet the desired service coverage quality and sat-
isfy the diverse subscribers’ multifarious demands poses a
challenge due to several dynamic factors and steps
involved, leading to an eNodeB placement problem worthy
of investigation. The eNodeB placement problems deal

with determining the type of eNodeB antennas, the num-
ber of eNodeBs, the configuration of the eNodeB antennas
(tilt, sectors, and azimuth), and the positioning of the
eNodeBs on potential cell sites to meet the coverage,
capacity, and service quality demands [12, 27–31].

There exist several methods of handling automatic
base station placement problems. In the existing literature,
Císcar and Pino [32] presented a solution-based technique
that employs a heuristic search algorithm that combines
ray tracing and direct ray methods to determine the
received signal power level at a given location. In the works
of [33–37], pattern search algorithms were explored to deter-
mine the antenna location placement considering bit error
rate and power coverage constraints. In the pattern search
algorithm, the coverage area is separated into different
receiver location grids, followed by an iterative search initi-
ated until some enhanced and workable solutions are
attained. In [10], a robust method similar to the current study
is proposed. Base stations are automatically determined and
distributed over an area to meet the coverage constraint
and traffic capacity demands.

In [38], a nonlinear programming problem with con-
strained multivariables is formulated to determine the loca-
tion of nodes and their data transmission patterns. The
constraints were targeted at minimizing the total cost and
maximizing the network lifetime. Furthermore, the authors
assumed that all nodes possess the same energy, making
them suitable for only first-round wireless network deploy-
ment. A related study [39] proposed a multiobjective metric
method to handle base station placement in WSNs. The
metrics are coverage, fault tolerance, energy consumption,
and average delay. Their results showed optimal base station
performance.

From the preceding literature, it is apparent that there is
a need to investigate the coverage, capacity, and power con-
sumption of eNodeBs as a combined multiobjective problem
employing a genetic algorithm. Thus, this paper proposes a
multiobjective genetic algorithm that integrates coverage,
capacity, and power consumption for optimal eNodeB
placement in a typical 4G LTE network. The main contribu-
tions of this paper are outlined as follows:

(i) A multiobjective optimization method is proposed
for evaluating the combined coverage, capacity,
and power consumption problem for optimal eNo-
deB placement in a typical 4G LTE network

(ii) The effect of different population sizes on the cost of
placing the eNodeBs and the percentage coverage of
the eNodeBs in a given cell is investigated

(iii) The optimal selection technique minimizes the total
network cost without compromising the desired
coverage and capacity benchmarks determined

The remaining part of this paper is given as follows: Sec-
tion 2 presents the preliminaries. Section 3 captures the
experimental measurements, and Section 4 presents the
results and discussions. Finally, Section 5 gives a brief con-
clusion to the paper.
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Figure 1: Test area for eNodeB location setup and evaluation.
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2. Preliminaries

This section presents the design of the base station place-
ment model, maximization of service coverage areas, maxi-
mization of the covered user capacity, minimization of cost
of power consumption, and model formulation.

2.1. Base Station Placement Model. The core aim is to find a
BS placement procedure that maximizes the coverage and
user capacity, whose power radiation is equal to or below
maximum transmit power, Pth. In order to provide a math-
ematical depiction of this model, it is essential to introduce a
set of variables. Mainly each BSi, i = 1,⋯, k, is linked to a
binary variable xi with the following meaning: xi is equal
to 1 if an eNB is selected and placed in the intended location
equal to 0, or otherwise. Figure 1 shows the setup created for
the eNodeB placement and evaluation method with the ran-
domly distributed user traffic. The design is as follows: the
total area of interest and the BS transceiver is 17 × 17 km2,
and the eNodeB can be placed at any location in this area.
Eleven base stations with three sectored directional antennas
are intended to be distributed randomly in the investigated
area. All base stations are assumed to possess the same trans-
mission power (20W) and are of the same height (30m).

2.2. Maximization of Service Coverage Areas. The first objec-
tive is to minimize the network dead zones/coverage hole
areas. Dead zones/coverage holes are the areas of interest
close to the cell edges where the network services are very
poor or unavailable. This first objective is geared toward
maximizing the network coverage area. Thus, this fitness
function f covðxÞ, in equation (1), has been formally evalu-
ated by [40, 41].

f cov xð Þ =Max Coverage rate xð Þ
Number of antennas xð Þ
� �

, ð1Þ

where the coverage rate expresses the coverage percentage
value of the measurement test points.

2.3. Maximization of the Covered User Capacity. The second
objective is targeted at minimizing the uncovered user
capacity. In other words, the objective is directed at maxi-
mizing the system capacity in the network area of interest
[42, 43]. This objective can be expressed by

f cap xð Þ =Max
Merl × K ×Nsec × Sspec × B × Lf × Ac

À Á
xð Þ

RDL
th

 !
:

ð2Þ

2.4. Minimization of Cost of Power Consumption. Cellular
network planners are always interested in reducing users’
exposure to electromagnetic radiation emanating from the
BSs and the cost of energy consumption to maximize reve-
nue. Thus, the key objective is to minimize network energy
consumption and reduce users’ exposure to electromagnetic
radiation emanating from the eNodeBs [44]. This objective
can be formulated as follows:

f po xð Þ =Min∑
NBS
s=1 Ps xð Þ
Pmax

, ð3Þ

where Ps indicate the BS transmit power, NBS is the number
of eNodeBs, and Pmax is the maximum BS transmit power
given in equation (4), and it can be determined by [24].

Pmax = Pt + 10 log10NNB: ð4Þ

2.5. Model Formulation. The optimal placement of no more
than some k BSs attains a suitable trade-off among

f1 = max f cov xð Þ, ð5Þ

Input: eNodeB placement model parameters
Input: GA control operators
Input: I (population size)
Output: O (Pareto front approximation)
Steps
i: Define fitness functions
ii: Create an initial random population, Pi
iii: Compute fitness values of each chromosome in Pi
iv: Rank the individuals in the population using a fast nondominated sort
v: Compute the crowding distance of each solution
vi: While the maximum iteration number is not reached yet, do
vii: Choose parents from Pi through binary tournament selection with crowding distance
viii: Employ the GA operators (crossover and mutation) to create a set of new solutions, Pn
ix: Evaluate fitness values of solutions in Pn
x: Merge I← [I, Pn]
xi: Rank each solution in P1 using a fast nondominated sort
xii: Compute the crowding distance meant for each solution in Pn
xiii: Change solutions in Pi with the I best solution in Pn
xiv: End while

Algorithm 1: The adopted NSGA-II pseudocode.
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f2 = max f cap xð Þ, ð6Þ
f3 = min f cost xð Þ: ð7Þ

Subject to the constraints given,

n

i
≤ k,

(
ð8Þ

f cov xð Þ ≤ C rð Þ, ð9Þ
f cap xð Þ ≤ Si,c, ð10Þ
f pow xð Þ ≤ PT maxf g, ð11Þ

where Si,c indicates the channel capacity for user i, consider-
ing a channel c. PTfmaxg indicates the maximum BS trans-
mit power. A receiver r is said to be properly covered by a
base station if the RSRP is greater than the threshold, which
is given by

C rð Þ =
1 if r is covered by a BS,
0 otherwise:

(
ð12Þ

A binary decision vector x = ½x1, x2,⋯, xn�T , satisfying
equations (8)–(11), is termed a feasible solution.

3. Proposed Multiobjective
Optimization Method

There exist several GA stochastic optimization methods.
This work engages the nondominated sorting genetic
algorithm-II (NSGA-II) optimization method. The NSGA-
II is a fast elitist multiobjective optimization algorithm [45,
46] resolving problems by converging to a Pareto front.
The NSGA-II is utilized to select the optimal BS locations
from a subset of the predefined candidate sites and guide
an evolutionary procedure toward attaining feasible solu-
tions with better service coverage, desired user capacity,
and lower cost function. At the same time, it retains a pop-
ulation of the best-fit solutions. The adopted NSGA-II pseu-
docode is given in Algorithm 1. The key GA parameters
include the following:

(a) Population size: this expresses the number of indi-
viduals (chromosomes) that are available in a popu-
lation for each generation

(b) Crossover fraction: this defines the population frac-
tion at the succeeding (next) generation

(c) Selection function: a key evolutionary process opera-
tor that assists individuals to undergo better varia-
tion and produce offspring in the succeeding
generation employing their fitness scores

(d) Pareto function: this regulates the elite population
members at each generation to keep up the popula-
tion diversity before converging to the optimal
Pareto front

(e) Generation: iteratively, the control of the number of
chromosome evaluations during the optimization
process (run)

3.1. Representation and Encoding. In the proposed multiob-
jective GA, chromosomes represent the solution that

Table 1: Simulation parameters used in the multiobjective genetic
algorithm.

Operation/parameter Value(s) of options/parameter

Population size 10, 40, 70, and 100

Population type Double vector

Elite count 1

Pareto fraction 0.75

Crossover fraction 0.8

Mutation function Adaptive feasible

Migration direction Both

Migration interval 20

Constraint tolerance 1.0000e-03

Measure function for distance {@distancecrowding ‘phenotype’}

Time limit Inf

Fitness limit -Inf

MaxStall generation 100

MaxGenerations 200 × number of variables
MaxTime Inf
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Figure 2: Pareto plot and the score histogram obtained with 10
population size for scenario 1.
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designates the locations (positions) of the potential BS sites.
A location is modeled as an ðx, yÞ coordinate point. Each
chromosome is encoded in the GA algorithm using binary
values (i.e., tilt strings of 1 s and 0 s), with one at each bit
for a potential BS location; otherwise, it is 0. Thus, the
coordinates represent the location of each BS in the opti-
mization area such that bs1 = fx1, y1g is called the gene
and BSs = fbs1, bs2,⋯, bskg are termed the chromosomes,
where k indicates the number of BSs. Table 1 gives the simu-
lation parameters used in the proposed multiobjective
genetic algorithm.

88 90 92 94 96 98 100

Coverage (%)

10

20

30

40

50

Co
st

Pareto front

10 20 30 40 50 60 70 80 90 100

Score (range)

0

2

4

6

8

N
um

be
r o

f i
nd

iv
id

ua
ls

Score histogram

Fun1 (88.6123 98.1)
Fun2 (9.92 36.904)

Figure 4: Pareto plot and the score histogram obtained with 70
population size for scenario 1.
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Figure 5: Pareto plot and the score histogram obtained with 100
population size for scenario 1.

Table 2: Coverage versus cost performance statistics.

Cost Coverage (%)
Trial Mean STD Min Max Mean STD Min Max

1 9.94 0.03 9.93 10.01 91.95 2.54 88.60 95.91

2 9.93 0.01 9.92 9.96 90.75 1.15 86.60 93.09

3 10.03 0.17 9.92 10.37 91.73 3.25 86.60 97.06

4 11.01 0.80 9.92 12.52 92.68 3.35 88.62 98.10

5 15.78 4.37 9.92 23.21 90.05 2.83 88.65 98.10

6 13.27 2.42 9.92 17.45 90.08 3.33 88.62 98.10

7 15.64 4.62 9.92 23.13 90.19 3.00 88.61 98.10

8 13.88 2.98 9.92 18.94 90.49 3.08 88.63 98.10

9 13.13 2.36 9.92 16.68 90.46 3.07 88.65 98.10

10 30.98 14.94 9.92 53.80 90.10 2.86 88.64 98.10
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Figure 3: Pareto plot and the score histogram obtained with 40
population size for scenario 1.
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4. Results and Discussion

The GA simulations are performed using a PC/Intel Core
i5-500 CPU at 2.5.00GHz, 3GB Memory (RAM), and

Window 7 with 64-bit operating system in MATLAB
2018a environment. The GA embroils searching and tun-
ing (optimizing) several key parameters to attain its
desired optimal performance. The key parameters consid-
ered include population size, mutation, and crossover
organizations. In order to obtain good results, several sim-
ulated tests were performed to ascertain the proper popu-
lation size within the range of 10 to 100 individuals. In the
simulation, two scenarios were considered. Scenario 1 con-
siders optimal eNodeB placement with coverage and cost
optimization, and scenario 2 considers optimal eNodeB
placement with coverage plus user capacity and cost opti-
mization. The key GA simulation parameters are provided
in Table 1.

The first scenario considers optimal eNodeB placement
with coverage and cost optimization. Here, the effect of dif-
ferent population sizes (10, 40, 70, and 100) on the cost of
placing the eNodeBs (fun 2) and the percentage coverage
of the eNodeBs (fun 1) are presented in Figures 2–5. Each
figure’s upper and lower parts indicate the optimal Pareto
front and the minimum/maximum scores achieved after
the simulation. An inspection of the statistics reveals that
the cost objective function (fun 2) reduces as the population
sizes grow larger until 70. Then, a further increase in the
population to 100 produced a reduced population size. Thus,
the maximum population size of 70 is simulated using the
GA simulation parameters in Table 1. The results in
Table 2 show the respective optimal coverage plus capacity
and cost performance over ten simulation runs. This result
implies that a population size of 70 individuals produced
the best coverage performances of 88.59 and 98.10%, but at
the cost of 9.92 and 36.90, respectively.
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Figure 6: Pareto plot and the score histogram obtained with 10
population size for scenario 2.
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Figure 7: Pareto plot and the score histogram obtained with 40
population size for scenario 2.
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The second scenario considers optimal eNodeB place-
ment with coverage plus user capacity and cost optimization.
Here, the effect of different population sizes (10, 40, 70, and
100) on the cost of placing the eNodeBs (fun 2) and the per-
centage coverage of the eNodeBs (fun 1) are presented in
Figures 6–9. The upper and lower parts of each figure indi-
cate the optimal Pareto front attained and the minimum/
maximum scores achieved after the simulation. An inspec-
tion of the figures reveals that the cost objective function
(fun 2) reduces as the population sizes grow larger until
70. Further, an increase in population size to 100 produced
a better solution by using the 70 population size with other
GA parameters (Table 1). The results in Table 2 show the
respective optimal coverage plus capacity and cost perfor-

mance over 10 simulation runs. Again, the results imply that
with a population size of 70 individuals, the best coverage
plus capacity performances of 81.42 and 96.07% were pro-
duced at the cost of 26.80 and 35.26, respectively. Lastly,
the coverage plus capacity versus cost performance statistics
is presented in Table 3.

5. Conclusion

This study has presented a multiobjective genetic algorithm
that integrates network coverage, capacity, and power con-
sumption for optimal eNodeB placement in a simulated 4G
LTE network. Optimal minimization of the cost of planning
cellular networks generally calls for the most favorable selec-
tion and positioning of the eNodeB transmitter stations to
meet the required coverage and capacity quality under cer-
tain constraints. Capacity and coverage planning are inter-
connected in contextual broadband wireless networks like
4G LTE. However, the ever-growing nonuniform user
capacity demands coupled with mixed cellular network set-
tings make the selection and location of eNodeB transmitter
stations a nontrivial task. In order to address this problem,
this paper proposes a multiobjective genetic algorithm-
based methodology that performs optimal selection and
location of base stations robustly. The optimal selection pro-
cess minimizes the total network cost without compromising
the desired coverage and capacity benchmarks. The pro-
posed method performed favorably and can be explored to
optimize a cellular network planning process in a related
wireless environment.
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