
Accurate bulk properties of nuclei from A=2 to infinity from potentials with
Delta isobars

Downloaded from: https://research.chalmers.se, 2022-08-28 01:26 UTC

Citation for the original published paper (version of record):
Jiang, W., Ekström, A., Forssén, C. et al (2020). Accurate bulk properties of nuclei from A=2 to
infinity from potentials with Delta isobars. PHYSICAL REVIEW C, 102(5).
http://dx.doi.org/10.1103/PhysRevC.102.054301

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



PHYSICAL REVIEW C 102, 054301 (2020)

Accurate bulk properties of nuclei from A = 2 to ∞ from potentials with � isobars

W. G. Jiang ,1,2,3 A. Ekström,3 C. Forssén ,3 G. Hagen,2,1 G. R. Jansen,4,2 and T. Papenbrock 1,2

1Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
2Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

3Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
4National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

(Received 2 July 2020; revised 26 August 2020; accepted 16 October 2020; published 2 November 2020)

We optimize �-full nuclear interactions from chiral effective field theory. The low-energy constants of the
contact potentials are constrained by two-body scattering phase shifts, and by properties of bound state of A = 2
to 4 nucleon systems and nuclear matter. The pion-nucleon couplings are taken from a Roy-Steiner analysis. The
resulting interactions yield accurate binding energies and radii for a range of nuclei from A = 16 to A = 132, and
provide accurate equations of state for nuclear matter and realistic symmetry energies. Selected excited states
are also in agreement with data.

DOI: 10.1103/PhysRevC.102.054301

I. INTRODUCTION

Ideas from chiral effective field theory (EFT) and the renor-
malization group [1–5], advances in computing power, and
developments of many-body methods that scale polynomi-
ally with mass number, have propelled ab initio calculations
of atomic nuclei from light [6,7] to medium-mass isotopes
[8–16]. Such approaches are now starting to explore ever-
increasing fractions of the nuclear chart [17]—a task once
thought to be reserved for computationally less expensive
mean-field methods [18–20]. Ab initio computations make
controlled approximations that give a quantifiable precision
in the solution of the quantum many-body problem. All these
calculations are only as accurate as the employed nuclear
Hamiltonians.

In the past two decades, our understanding of the nu-
clear interactions has evolved from phenomenological models
[21,22] to potentials whose improvement is guided by ideas
from EFT [3,5,23]. The quest to link such potentials to quan-
tum chromodynamics, the microscopic theory of the strong
nuclear interaction, is ongoing [24–27]. Recent developments
in nuclear potentials from chiral EFT include (i) the identifi-
cation [28,29] of a redundant term at next-to-next-to-next-to
leading order, (ii) the systematic and simultaneous optimiza-
tion of nucleon-nucleon and three-nucleon potentials [30,31],
(iii) the construction of local potentials for use with quantum
Monte Carlo methods [32,33], and (iv) the development of
high-order interactions [34–37].

Published by the American Physical Society under the terms of the
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In spite of these advances, nuclear potentials from chiral
EFT have long struggled to accurately reproduce bulk nuclear
properties such as charge radii and binding energies of finite
nuclei, and the saturation point and the symmetry energy of in-
finite nuclear matter. Notable exceptions are the 1.8/2.0(EM)
[38] and the NN + 3N(lnl) interactions [39] (which accurately
reproduce binding energies and spectra of selected nuclei
up to tin isotopes [15] but yield too small radii), and the
NNLOsat potential [30] (which accurately describes binding
energies and radii up to calcium isotopes [40] but is less
accurate for spectra). The novel family of interactions [41]
also seems promising but is not much explored yet. While it is
not clear what distinguishes these particular interactions from
their many peers that become inaccurate beyond oxygen iso-
topes [42], some key ingredients to nuclear binding have been
uncovered: Nuclear lattice EFT computations revealed that
nonlocality is essential for low-momentum interactions (with
momentum cutoffs below about 600 MeV) [43], and that elas-
tic α-α scattering, for example, is very sensitive to the degree
of nonlocality [44]. This casts some doubts on the viability
of soft local interactions. In our interpretation, these results
indicate that the finite size of nucleons plays an important role
in nuclear binding.1 The importance of this length scale has
been highlighted very recently by Miller [45]. Consistent with
this view is the finding that the inclusion of � isobar degrees
of freedom, i.e., excited states of the nucleon that reflect its
finite size, considerably improve the saturation properties of
chiral potentials [46]. In addition, a recent statistical analysis
[47] reveals that the nuclear radius, i.e., implicitly the nuclear
saturation density, depends very sensitively on the details of
the chiral interaction. This suggests that it might be profitable
to include �-isobar degrees of freedom and nuclear matter

1The hard core in local interactions also accounts for the finite
nucleon size when large momentum cutoffs can be tolerated [21].
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TABLE I. Parameters for the new �-full potentials with momen-
tum cutoffs � = 450 and 394 MeV. The constants ci, C̃i, and Ci are
in units of GeV−1, 104 GeV−2, and 104 GeV−4, respectively.

LEC �NLOGO(450) �NNLOGO(450) �NNLOGO(394)

c1 − −0.74 −0.74

c2 − −0.49 −0.49

c3 − −0.65 −0.65

c4 − +0.96 +0.96

C̃ (nn)
1S0

−0.314882 −0.339887 −0.338746

C̃ (np)
1S0

−0.315639 −0.340114 −0.339250

C̃ (pp)
1S0

−0.314300 −0.339111 −0.338142

C̃3S1
−0.234132 −0.253950 −0.259839

C1S0
+2.521650 +2.526636 +2.505389

C3S1
+1.025459 +0.964990 +1.002189

C1P1
+0.152206 −0.219498 −0.387960

C3P0
+0.671880 +0.671908 +0.700499

C3P1
−0.955644 −0.915398 −0.964856

C3P2
−0.824639 −0.895405 −0.883122

C3S1−3D1
+0.451306 +0.445743 +0.452523

cD − −0.454 +0.081

cE − −0.186 −0.002

properties into the construction and optimization, respectively,
of nuclear potentials [48,49].

In this paper we report on chiral potentials that accurately
describe bulk properties of finite nuclei and nuclear matter.
We optimized �-full interactions and included nuclear matter
properties as calibration data. We used the coupled-cluster
(CC) method to compute ground-state energies, charge radii,
and spectra of nuclei up to tin, plus the equation of state for
nuclear matter.

II. OPTIMIZATION

The �-full interactions are based on Refs. [23,50–53], and
its specific form was used in Ref. [46]. We employed standard
nonlocal regulator functions f (p) = exp (p/�)2n that act on
relative momenta p, see, e.g., Refs. [54,55]. We constructed
three potentials: two of them with � = 450 MeV (and power
n = 3 in the regulator) at next-to-leading order (NLO) and
next-to-next-to-leading (NNLO), the other one at NNLO with
a cutoff � = 394 MeV (and power n = 4). The softer inter-
action has a momentum cutoff and regulator power exactly as
the 1.8/2.0(EM) potential. At NNLO there are 17 low-energy
coefficients (LECs) that parametrize the interaction. The pion-
nucleon LECs c1,2,3,4 were held fixed during the optimization
and taken as the central values from the recent Roy-Steiner
analysis [56]—see Table I. The LECs of the nucleon-nucleon
and three-nucleon potentials were simultaneously constrained
by the following data: low-energy nucleon-nucleon scattering
data from the Granada phase shift analysis [57] up to 200
MeV scattering energy in the laboratory system; observables
of few-nucleon systems (with mass numbers A � 4) as listed
in Table II; the saturation energy and density, and constraints

TABLE II. Binding energies (E ) in MeV, charge radii (Rch) in
fm, for 2,3H and 3,4He computed with the interactions developed in
this work and compared to data [64,65]. The quadrupole moment
(Q) in efm2 for the ground state of 2H is also shown. The D-state
probability is 3.06%, 3.12%, and 2.97% for the three interactions in
column order.

�NLOGO �NNLOGO �NNLOGO

(450) (450) (394) Exp.

E (2H) 2.2586 2.2358 2.2298 2.2245

Rch(2H) 2.1511 2.1509 2.1531 2.1421

Q(2H) 0.2680 0.2675 0.2674 0.27a

E (3H) 8.4803 8.4809 8.4812 8.4818

Rch(3H) 1.7928 1.7801 1.7833 1.7591

E (3He) 7.7495 7.7162 7.7245 7.7180

Rch(3He) 1.9954 2.0036 1.9946 1.9661

E (4He) 28.3945 28.2975 28.3028 28.2957

Rch(4He) 1.7099 1.6960 1.6919 1.6775

aCD-Bonn value according to Ref. [5]. See the text for details.

on the symmetry energy and its slope of nuclear matter from a
lower bound on the neutron-matter energy [58]. The inclusion
of the latter is in contrast to the construction of the potential
NNLOsat [30] which exhibits deficiencies for neutron-rich
nuclei and neutron matter. The minimization of the objec-
tive function was performed with the algorithm POUNDerS
[59]. During this process we periodically calculated selected
medium-mass nuclei to further guide the optimization. This
allowed us to properly adjust the weights of the nuclear matter
properties in the objective function

f (�x) = w1

Np∑

p=1

r2
p(�x) + w2

Nq∑

q=1

r2
q (�x) + w3

Ns∑

s=1

r2
s (�x), (1)

where �x denotes the parameters of the interaction, ri(�x) =
(Otheo

i (�x) − Oexp
i )/δi is the residual of observable Oi with

uncertainty δi determining its weight, rp, rq, and rs are the
residuals for phase shifts, few-nucleon systems and nuclear
matter, respectively, and wi are their corresponding weights.
Note that the weight of the 2H quadrupole moment is in-
creased to improve its description.

The inclusion of nuclear matter properties into the opti-
mization procedure is not without challenges. Here, we used
coupled-cluster calculations [60], which are based on a dis-
crete lattice in momentum space. Nondegenerate reference
states are “closed shell” configurations, and we used peri-
odic boundary conditions in position space. Systems of 132
nucleons and 66 neutrons exhibit one of the smallest finite-
size corrections for symmetric nuclear matter and neutron
matter, respectively [60,61]. Unfortunately, such large particle
numbers are numerically too expensive to be used in the op-
timization. However, systems of 28 nucleons and 14 neutrons
exhibit predictable differences (about 10%) from systems con-
sisting of 132 and 66 particles, respectively [60]. This allowed
us to use the lower-precision computations with smaller sys-
tem sizes in the optimization. We checked periodically that
our estimates for the finite-size corrections were accurate.

054301-2
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FIG. 1. Computed neutron-proton phase shifts for the contact
partial waves with the �NLOGO and �NNLOGO potentials (dashed),
NNLOsat [30] (red, dotted), and compared with the Granada phase
shift analysis [57] (black squares).

To explore the resolution-scale dependence, we optimized
the interaction using two cutoffs, namely � = 450 and � =
394 MeV at the NNLO level. For � = 450 MeV we also
optimized an NLO interaction. Table I shows the optimized
LECs values for the three interactions of this work. In what
follows, we label these “Gothenburg–Oak Ridge” potentials
as �NLOGO(450), �NNLOGO(450), and �NNLOGO(394).
Most of the LECs of the newly constructed potentials are close
to the starting point of Ref. [46], with a few exceptions. In
particular, the cD and cE for the short-ranged three-nucleon
forces have different signs for �NNLOGO(450).

Figures 1, 2, and 3 show the phase shifts of the new
potentials for a few representative neutron-proton channels
and compares them to the Granada partial wave analysis
[57]. Overall, the phase shifts of �NNLOGO are improved
compared to NNLOsat, and they are close to the data for labo-
ratory energies below about 125 MeV. We note that the phase
shifts of �NLOGO(450) are within the uncertainty estimates
expected at this order [35,46,62]. One should see that some
partial waves such as 1P1 and 3D3 are less accurate than others
and might need higher orders of the potentials to give a better
description.

Table II summarizes the results of bound-state observ-
ables for light nuclei with A � 4. The theoretical results were
obtained with the no-core shell model (NCSM) [6] in transla-
tionally invariant Jacobi coordinates [63]. These calculations
used an oscillator frequency of h̄ω = 36(28) MeV for � =
450(394) MeV in model spaces consisting of Nmax = 40 and
Nmax = 20 oscillator shells for A = 3 and A = 4 nuclei, re-
spectively. They are converged within these model spaces. The
charge radii shown in Table II are obtained from the computed
point-proton radii with standard nucleon-size and relativistic

FIG. 2. Computed neutron-proton phase shifts for the selected
peripheral partial waves with the �NLOGO and �NNLOGO poten-
tials (dashed), NNLOsat [30] (red, dotted), and compared with the
Granada phase shift analysis [57] (black squares).

corrections, see, e.g., Ref. [30]. The two �NNLOGO poten-
tials reproduce the experimental energies within less than
0.5% and other observables within 2%. We note that it was
important to include the deuteron quadrupole moment as

FIG. 3. Computed proton-proton phase shifts for the contact and
selected peripheral partial waves with new �NLOGO and �NNLOGO

potentials (dashed), NNLOsat [30] (red, dotted), and compared with
the Granada phase shift analysis [57] (black squares).
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FIG. 4. Energy per nucleon (in MeV) for symmetric nuclear
matter (top) and pure neutron matter (bottom) with �NLOGO(450),
�NNLOGO(450), and �NNLOGO(394). The black rectangle indi-
cates the empirical saturation point.

a calibration datum in the optimization. The value for the
quadrupole moment that we targeted, i.e., Q = 0.27 efm2, was
obtained from a theoretical calculation based on the high-
precision meson-exchange NN model CD-Bonn.

Figure 4 shows the energy per nucleon in symmetric nu-
clear matter (top) and pure neutron matter (bottom) as a
function of density, using 132 nucleons and 66 neutrons,
respectively. The black rectangle indicates the empirical satu-
ration region with E/A = −16 ± 0.5 MeV and ρ = 0.16 ±
0.01 fm−3 [38,66]. The CC calculations were performed
in the CCD(T) approximation, i.e., with 2p-2h excitations
and perturbative 3p-3h corrections as done in Refs. [46,60].
We find the saturation density ρ0 = 0.169 fm−3, the sym-
metry energy S0 = 32.0 MeV and its slope L = 65.2 for
the �NNLOGO(450) potential, and ρ0 = 0.163 fm−3, S0 =
31.5 MeV, and L = 58.4 for �NNLOGO(394). These nuclear-
matter properties are more accurate than those reported in
Ref. [46], and in good agreement with the recent predictions
of the symmetry energy and its slope obtained using Bayesian
machine learning techniques to quantify EFT uncertainties of
the nuclear matter equation of state [67].

III. RESULTS

Our CC computations of heavier nuclei started from a
spherical Hartree-Fock state built from a model-space con-

TABLE III. Binding energies (in MeV) for selected nuclei with
the new interaction using CCSDT-1 and compared to data.

�NLOGO �NNLOGO �NNLOGO

(450) (450) (394) Exp.

16O 128.2 128.1(23) 127.5(19) 127.62
24O 165 170 (3) 169 (3) 168.96
40Ca 341 348 (7)(1) 346 (6) 342.05
48Ca 410 422 (9)(4) 420 (7) 416.00
78Ni – 631 (14)(20) 639 (11)(4) 641.55
90Zr – – 782 (14)(6) 783.90
100Sn – – 818 (16)(7) 825.30
132Sn – – 1043 (20)(30) 1102.84

sisting of 15 major oscillator shells with frequency h̄ω = 16
MeV. The three-nucleon force had the additional energy cut
of E3max = 16h̄ω. Our calculations employed the coupled-
cluster singles, doubles, and leading triples approximation
CCSDT-1 [68]. No further truncations were imposed on
the three-particle–three-hole amplitudes. This computational
achievement was enabled by the Nuclear Tensor Contrac-
tion Library [69]—a domain-specific library, dedicated to the
sparse tensor contractions that dominate in coupled-cluster
method—that is developed to run at scale on Summit, the U.S.
Department of Energy’s 200 petaflop supercomputer operated
by the Oak Ridge Leadership Computing Facility (OLCF) at
Oak Ridge National Laboratory.

Table III shows the binding energies of selected closed-
shell nuclei up to 132Sn. We found that �NNLOGO(394)
converges faster, especially for heavier nuclei, than
�NNLOGO(450). This is expected due to its lower
momentum cutoff. A dash indicates that the employed model
space was too small to achieve reasonably converged energies.
Uncertainties from the coupled-cluster method (about 30%
of the difference between doubles and triples energies) and
from the model space are given in subsequent parenthesis,
respectively. For lighter nuclei, the uncertainties from the
model-space are omitted because they are much smaller
than those of the method. The model-space uncertainties
combine the truncation of single-particle model space and the
employed E3max = 16 cut of the three-nucleon interaction.
Reference [15] found that for the 1.8/2.0(EM) interaction
the binding energy of 100Sn changes by less than 1% by
increasing E3max from E3max = 16 to E3max = 18. This
finding guided our estimated model-space uncertainty as
the 1.8/2.0(EM) has identical three-nucleon regulator and
momentum cutoff as the �NNLOGO(394) potential. It is
nontrivial to estimate the EFT truncation errors for bound
nuclear states since the relevant momentum scale is unknown
and the lack of a spin-orbit (LS) force at leading order (LO)
give energy degeneracies that hamper CC calculations of
non-LS-closed nuclei. Nevertheless, based on the observed
order-by-order convergence in Ref. [46], we estimate the
EFT truncation errors for the �NNLOGO interactions to
1 MeV and 7 MeV in the ground state energies of oxygen and
calcium isotopes, respectively. We also expect the truncation
error to be the dominating source of uncertainty in heavier
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FIG. 5. The ground-state energies of calcium isotopes obtained
with �NNLOGO and 1.8/2.0(EM) interaction compared with exper-
iment (data of 55−57Ca are taken from Ref. [74]).

nuclei. For symmetric nuclear matter and pure neutron matter
we expect a truncation error of ±1 MeV and ±2 MeV per
nucleon, respectively, with �NNLOGO, see Ref. [46] for
details.

Figure 5 shows the ground-state energies of selected
calcium isotopes and compares them to the 1.8/2.0(EM) in-
teraction [70] and to data. The lower borders of the bands are
results from CCSDT-1 while the upper borders are from �-
CCSD(T) [71] which treats triples excitations perturbatively.
For 53,55Ca we employed the particle-attached equation-of-
motion coupled-cluster (EOM-CC) method with perturbative
three-particle–two-hole excitations from Ref. [15], while for
56Ca we employed the two-particle attached EOM-CC method
from Refs. [72,73]. All interactions accurately describe iso-
topes from 40Ca to 56Ca. We note that the ground state of 60Ca
is bound by about 10 MeV with respect to 54Ca, consistent
with recent data [74–76].

Figure 6 shows that the interactions of this work yield sig-
nificantly larger charge radii than the 1.8/2.0(EM) potential.
Nevertheless, the �NNLOGO potentials still fail to explain the
unusually large charge radii of neutron-rich calcium isotopes.
For speculations about the origin of these large charge radii in
calcium isotopes we refer the reader to Ref. [77].

We employed EOM-CC methods with singles, doubles,
and leading-order triples excitations, EOM-CCSDT-1 [78],
to compute excited states of 16,22,24O and 48Ca. The EOM-
CCSDT-1 method is computationally demanding, and we
therefore limited the number of three-particle–three-hole ex-
citations by employing the energy cut Ẽpqr = ẽp + ẽq + ẽr <

Ẽ3max, where ẽp = |Np − NF | is the energy difference of
the single-particle energies with respect to the Fermi sur-
face NF . This energy cut improved the convergence of the
EOM-CCSDT-1 method with respect to the number of three-
particle–three-hole excitations [79,80]. In this work we also
employed the method developed in Ref. [80] to correct pertur-
batively for three-particle–three-hole excitations above Ẽ3max.
Here, we employed the energy cut Ẽ3max = 6 which was suf-

FIG. 6. Charge radii of calcium isotopes obtained with with
�NNLOGO and 1.8/2.0(EM) interaction compared with experiment.

ficient to converge all excited states to within approximately
100 keV. The results are summarized in Table IV with esti-
mated error bars. The �NNLOGO(450) potential only exhibits
marginal agreement with the data for 22O. In contrast, all
potentials accurately reproduce the first 3− state of 16O which
reflects that the charge radius is well reproduced in this nu-
cleus (see Ref. [30] for a more detailed discussion on this
point). The uncertainties are estimated based on Refs. [80,81].
Here, excited states were computed in different truncations
within the EOM-CC approach, and it was found that the triples
correction to the excited states were about 20% of the EOM-
CCSD correlation energy. Using this, we give a conservative
error estimate in the first parenthesis which amounts to 6%
and 15% of the total excitation energies for the interactions
with cutoffs 394 MeV and 450 MeV, respectively. The uncer-
tainties from the truncated model space are given in the second
parenthesis.

Finally we note that the potentials developed in this work
have recently been applied to several other open-shell and
deformed nuclei such as 29F [82], 40Ar [83], and neon and
magnesium isotopes [84].

TABLE IV. Energies (in MeV) of selected excited states for
different nuclei using �NNLOGO(450) and �NNLOGO(394) with
EOM-CCSDT-1 and compared to experiment. The uncertainties re-
flect estimated equation-of-motion coupled-cluster and model-space
truncation errors, respectively.

�NNLOGO(450) �NNLOGO(394) Exp.

16O 3−
1 6(1) 5.6(3)(1) 6.13

22O 2+
1 2.2(3)(1) 3.0(2)(1) 3.20

24O 2+
1 3.4(5)(2) 3.9(2)(1) 4.79

48Ca 2+
1 3.5(5)(2) 4.1(2)(1) 3.83
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IV. SUMMARY

We developed chiral interactions with � degrees of free-
dom by calibrating LECs to reproduce nucleon-nucleon
scattering phase shifts, bound-state observables of few-
nucleon systems, and properties of infinite nuclear matter. The
resulting �NNLOGO potentials yield accurate (within about
2%) binding energies of nuclei up to mass numbers A = 132,
and improved radii for medium-mass nuclei. The description
of neutron-rich calcium isotopes is improved by including the
symmetry energy in the optimization. Selected excited states
are also accurately reproduced. This shows that key nuclear
properties can be obtained by chiral interactions at next-to-
next-to-leading order.
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