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Accurate prediction of binding affinities has been a central goal of computational chemistry for decades, yet

remains elusive. Despite good progress, the required accuracy for use in a drug-discovery context has not

been consistently achieved for drug-like molecules. Here, we perform absolute free energy calculations

based on a thermodynamic cycle for a set of diverse inhibitors binding to bromodomain-containing

protein 4 (BRD4) and demonstrate that a mean absolute error of 0.6 kcal mol�1 can be achieved. We

also show a similar level of accuracy (1.0 kcal mol�1) can be achieved in pseudo prospective approach.

Bromodomains are epigenetic mark readers that recognize acetylation motifs and regulate gene

transcription, and are currently being investigated as therapeutic targets for cancer and inflammation.

The unprecedented accuracy offers the exciting prospect that the binding free energy of drug-like

compounds can be predicted for pharmacologically relevant targets.

Introduction

One of the “holy grails” of computational drug design is the

accurate prediction of the affinity of a drug for its target protein.

Despite the development of pharmacologically active molecules

being a multifactorial optimization problem, where other

considerations too, such as bioavailability and toxicity, play an

important role, high affinity of a compound for its intended

biological target is a necessary requirement for achieving a

potent, selective and ultimately efficacious drug. Unfortunately,

even when structural information is available, solvent effects,

conformational changes of the protein and/or the ligand and

entropy–enthalpy compensation make the rationalization of the

ligand–macromolecule association process a very complex

task.1,2 However, thanks to important advances in theory and

computing, particularly in the last decade, the prediction of

binding affinities using physics-based computer simulations

holds promise3,4 to achieve reliable binding energies estimates

by naturally taking into account complicating effects due to the

discrete nature of solvent and entropy changes upon binding.

Alchemical free energy calculations and steered methods

based on all-atom molecular dynamics (MD) simulation in

explicit solvent are the typical approaches that operate at the

highest level of theoretical rigor and that are also accessible

to current typical levels of computational power. Alchemical

methods, oen also referred to as free energy perturbation

(FEP), are based on a non-physical thermodynamic cycle, where

the binding free energy is computed as the sum of multiple

steps during which the ligand is “inserted” or “removed” from

different environments, such as a bound and unbound state.5

Steered or pulling method approaches follow instead a physical

pathway, by applying a force that pulls the ligand away from the

protein.6 This is typically achieved either with non-equilibrium

simulations using the Jarzynski relationship,7–9 or by harmonically

restraining the ligand at different distances from the binding

pocket and then computing a potential of mean force.5,10,11

Alternative popular approaches include endpoint methods that

involve implicit solvent post-processing of explicit-solvent

simulations, such as molecular mechanics with Poisson–

Boltzmann or generalized Born and surface area (MM/PBSA and

MM/GBSA) methods.12–15 Another promising approach is meta-

dynamics16 with a funnel-shaped restraining potential, where

biasing energies are added in order to sample multiple binding

events.17

Absolute binding free energies have been calculated with

alchemical methods for a few protein–ligand systems. One of

the most studied macromolecular systems has been the engi-

neered binding pocket of T4 lysozyme. Mobley et al. studied the

binding of thirteen single-ring fragment-like ligands to a L99A
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hydrophobic T4 lysozyme cavity mutant, obtaining a root mean

square (RMS) error compared to isothermal titration calorim-

etry (ITC) experiments of roughly 1.9 kcal mol�1.18 Boyce et al.

studied instead the binding of similar fragment-like ligands to a

slightly polar model cavity of T4 lysozyme (L99A/M102Q) in a

prospective fashion, obtaining a RMS error compared to ITC

for the ve compounds with measurable affinities of about

1.8 kcal mol�1.19 Another popular test system has been the

FK506-binding protein (FKBP12). The series of ligands evalu-

ated with FKBP12 were originally studied experimentally by

Holt et al. and are drug-like, with multiple rings and several

rotatable bonds, although sharing very similar chemical moie-

ties.20 Shirts rst reported a RMS error of about 2.0 kcal mol�1

for the affinity prediction of nine inhibitors,21 and a following

study by Wang et al. obtained an error of 2.0–2.5 kcal mol�1.22

For this system the experimental free energies taken as refer-

ence were derived from competitive inhibition of FKPB12

activity.20 Fujitani and coworkers obtained for eight FKBP-12

inhibitors a RMS difference from a linear t of only 0.4 kcal

mol�1, however, there was a large offset (�3.2 kcal mol�1)

relative to experiment.23 Other calculations have also been

reported albeit on smaller numbers of ligands and this makes it

harder to establish the actual errors.24–27

Driven by an interest to support the development of chem-

ical tools via simulation methods, we sought to assess whether

absolute free energy calculations based on standard imple-

mentations of alchemical transformations are now reaching

the point where they can be applied to diverse, drug-like organic

molecules and pharmacologically relevant targets. In order

to achieve our goal, we therefore compared predicted binding

free energies for 11 diverse, small molecule inhibitors that bind

to bromodomains (BRDs) with experimental measurements,

primarily isothermal titration calorimetry (ITC). BRDs are

epigenetic mark readers that specically recognize 3-N-lysine

acetylation motifs (Fig. 1) and have been found in 46 human

nuclear and cytoplasmic proteins.28,29 Acetylation is oen found

in macromolecular complexes implicated in chromatin remod-

eling, DNA repair and cell-cycle control, and especially on

histones.30 Histone acetylation is thought to result in transcrip-

tional activation and altered acetylation levels have been linked

to aberrant transcription in cancer and inammation.28,31,32 Thus

novel BRD inhibitors are nding broad application in medicine

and basic biological research30 and indeed various BRD inhibi-

tors are currently in phase I and II clinical trial for the treatment

of NUT midline carcinoma, acute leukaemia, progressive

lymphoma and atherosclerosis.29

Here we perform a retrospective analysis in order to assess the

performance of the calculations in terms of accuracy and preci-

sion in a best-case scenario. We subsequently carry out a pseudo-

prospective study where we repeat the exercise with traditional

docking methods to give the initial poses without using any

structural information for the protein–ligand complexes. Both

studies give excellent agreement with experimental data. We

discuss the results in terms of how such calculations could be

used to aid the drug discovery and development process.

Methods
System setup

The initial conformations of the complexes were taken from

holo crystal structures (3U5J, 3U5L, 4OGI, 4OGJ, 3MXF, 4MR3,

4MR4, 3SVG, 4J0R, 4HBV) with the exception of ligand 11, which

was modeled based on the structure 3SVG, and from the results

of the ligand docking into the apo protein (2OSS). Missing

atoms in the crystals were modeled with the WHAT-IF web

interface33 and all organic molecules that were not the ligand of

interest were removed from the system, whereas all crystallo-

graphic waters were retained. Aer adding hydrogens with

Maestro (v9.5, Schrödinger), ligands were parameterized with

the general AMBER force eld (GAFF v1.5)34 and AM1-BCC

charges35 using AmberTools12 36 provided with the FESetup

tool v1.1pre1 (http://ccpforge.cse.rl.ac.uk/gf/project/ccpbiosim).

GROMACS topologies and coordinates were generated from the

AMBER ones using acpype (v.2013-11-28 Rev: 399).37 We used

the Amber99SB-ILDN force eld38 for the protein and the TIP3P

model39 for water molecules. The complexes were solvated in a

Fig. 1 Bromodomain fold and acetyl-lysine binding pocket. (a) Cartoon representation of the structure of BRD4(1) bromodomain in complex

with an acetylated peptide. Crystallographically observed water molecules are represented as red spheres. (b) BRD4(1) acetyl-lysine binding site

with key interacting residues labeled.
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dodecahedral box, apart from ligands 1 and 4 that were solvated

in a cubic box, with periodic boundary conditions and a

minimum distance between the solute and the box of 12 Å.

Sodium and chloride ions were added to neutralize the systems.

Free energy calculations

Absolute binding free energy calculations were performed

beginning from both crystal ligand poses and docked poses as

detailed in the Results section, using the non-physical ther-

modynamic cycle illustrated in Fig. 2. All simulations were

carried out in GROMACS 4.6.5.40,41 The ligand van der Waals

interactions were decoupled and the charges annihilated using

a linear alchemical pathway with Dl ¼ 0.05 for the van der

Waals and Dl ¼ 0.1 for the coulombic transformations. For the

addition of the ligand restraints instead, 12 non-uniformly

distributed l values were used (0.0, 0.01, 0.025, 0.05, 0.075, 0.1,

0.15, 0.2, 0.3, 0.5, 0.75, 1.0). A total of 42 windows for the

complex simulations and 31 windows for the ligand simulations

were therefore employed. For each window, 10 000 energy

minimization steps were carried out using a steepest descent

algorithm. The system was subsequently simulated for 0.5 ns in

the canonical ensemble with harmonic position restraints

applied to the solute heavy atoms with a force constant of 1000

kJ mol�1 nm�2. Temperature was coupled using Langevin

dynamics42,43 with 298.15 K as the reference temperature. A 1 ns

position restrained run in the isothermal–isobaric ensemble

was then performed using the Berendsen weak coupling algo-

rithm.44 10 ns unrestrained production runs were performed

for data collection using Hamiltonian-exchange Langevin

dynamics with a 2 fs time-step in the NPT ensemble with the

Parrinello–Rahman pressure coupling scheme.45 3 million

swaps between any state pair were attempted every 1000 time

steps, following the Gibbs sampling scheme proposed by Cho-

dera & Shirts.46 This led to acceptance rates between neigh-

bouring states that ranged from 0.1 to 0.3 (mean and standard

deviation of 0.2� 0.1), but a probability of jumping to any other

state from 0.2 to 0.9 (mean and standard deviation of 0.7� 0.2).

This resulted in a total unrestrained simulated time of 43 ms for

this study. The relative position and orientation of the bound

ligand with respect to the protein was restrained by means of

one distance, two angles and three dihedral harmonic poten-

tials with force constant of 10 kcal mol�1 Å�2 [deg�2]. The

contribution of this set of restraints to the free energy can be

calculated analytically as described by Boresch et al.47 for the

non-interacting ligand in solution (DGsolv
restr), while it has to be

evaluated numerically for the interacting ligand in complex

with the protein (DGprot
restr). The equation used to evaluate this

Fig. 2 Non-physical thermodynamic cycle. Scheme of the alchemical thermodynamic cycle used to obtain the absolute binding free energies.

The fully interacting ligand (orange) in solution at the top left (A) is transformed into a non-interacting solute (B, white) during a series of

equilibrium simulations where its electrostatic and van der Waals interactions are scaled to zero, providing the termDG
solv
elec+vdw. The ligand is then

restrained while still non-interacting with the environment (C). This step (DGsolv
restr) is computed analytically in accordance with the protocol

described by Boresch et al.47 This state is equivalent to having the non-interacting ligand restrained within the protein cavity (D). The restrained

and non-interacting ligand in complex with the protein has its electrostatic and VdW interactions turned back on again (E), giving DG
prot
elec+vdw. The

restraints between ligand and protein are then removed (DGprot
restr), closing the cycle, and the final state is the unrestrained and fully interacting

ligand in complex with the protein (F).

This journal is © The Royal Society of Chemistry 2016 Chem. Sci., 2016, 7, 207–218 | 209
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contribution also includes a correction for the standard-state

dependence of the binding free energy.47 A so-core potential48

was employed for the van der Waals interactions transformed.

For all simulations the particle mesh Ewald (PME) algorithm49

was used for electrostatic interactions with a real space cut-off

of 12 Å, a spline order of 6, a relative tolerance of 10�6 and a

Fourier spacing of 1.0 Å. A switch function between 9 Å and 10 Å

was used for the van der Waals interactions. The P-LINCS

constraint algorithm50 was used only on H-bonds. The GRO-

MACS long-range dispersion correction for energy and pressure

was used, and an additional long-range dispersion correction

(EXP-LR) was applied as described in Shirts et al.51 For charged

compounds (1 and 4), the semi-analytical correction scheme for

electrostatic nite size effects proposed by Rocklin et al.52 was

employed. The residual integrated potential (RIP) was calcu-

lated for 11 frames (every 1 ns, from 1 ns to 10 ns) using APBS

1.3.53 The mean RIP value only was used for the correction; its

standard deviation, resulting from the different conformations

of the ligand and complex, was always below 0.05 kcal mol�1.

Data analysis

The results were analysed with the implementation of the

multiple Bennet acceptance ratio (MBAR) provided with the

python package pymbar (https://simtk.org/home/pymbar).54

The rst 1 ns of each window was discarded as an equilibration

period. Prior to the free energy estimate, the data from each

lambda state were subsampled in order to include only uncor-

related data-points by calculating the autocorrelation time and

statistical inefficiency of the potential energy. 200 boot-strap

sets were constructed by random resampling with replacement

of the uncorrelated data, where the rst set was the original

sample. The free energy was estimated with MBAR for all of the

200 sets and the nal estimate is the mean of all these free

energy estimates.55 The error of the nal estimate is the sample

standard deviation of the estimates for all bootstrap samples.

For the calculations beginning from the crystal ligand poses,

the whole calculations have been repeated three times in order

to assess the convergence of the results. The combined free

energy estimate and standard deviation for ligand and complex

simulations were determined by taking the mean and sample

standard deviation of all the 600 bootstrap samples. Therefore,

the nal uncertainty is representative of both the statistical

uncertainty of the MBAR free energy estimate and the error due

to nite sampling. Ligand 11 is an exception, as it was modeled

based on ligand 9 and the PDB structure 3SVG, and two equally

plausible binding modes were present, where the tri-

uorotoluene moiety is ipped by 180�. Therefore, two calcu-

lation repeats were carried out per binding mode, resulting in a

total of four binding free-energy calculations; the results of

multiple binding modes can be combined in a single binding

free-energy value as described by Mobley et al.56 The nal

binding free energy for each ligand is the difference between the

decoupling of the ligand from the water solution and from the

solvated complex; the nal error in the binding free energies is

thus the root sum square of the uncertainties of ligand and

complex calculations.

Docking

Rigid docking was performed withMOE v2013.08 using a crystal

structure (PDB 2OSS) of the apo protein of BRD4(1). The ve

highly conserved crystal waters present in all BET bromodo-

mains binding pockets were kept, whereas all other waters and

organic molecules were removed. The ligands' 2D chemical

structures were drawn inMarvin Sketch (v6.1.0, ChemAxon) and

a stochastic conformational search was performed in order to

generate 3D conformations. The number of conformations was

limited to a maximum of 100 per ligand and duplicates

conformations (RMSD < 0.25 Å) were removed. The docking

protocol employed the pharmacophore placement method and

the London DG scoring function. Each binding pose was then

minimized and rescored with the GBVI/WSA DG scoring func-

tion. The pharmacophore query was built based on the prop-

erties of the acetyl-lysine found in the PDB structure 3UVW, and

consisted of a hydrogen-bond acceptor site, to mimic the acetyl

oxygen, and a non-polar site, corresponding to the position of

the methyl moiety. The protein was parameterized using Amber

ff99SB.57 The ligand bonded parameters were obtained with 2D

extended Hückel theory,58 the VdW parameters were derived

from GAFF34 and the charges from Bond Charge Increments59

according to the AMBER10:EHT force eld option in MOE.

Duplicate poses were automatically removed based on their

hydrogen-bond and hydrophobic patterns, and poses with

positive binding free energy as predicted by the GBVI/WSA DG

scoring function were removed too, as they typically involved

clear clashes with the protein atoms. The remaining poses were

furthermore clustered by RMSD with a 3 Å cut-off in order to

have a coarser landscape of the possible binding poses, also

considering we were not interested in running the free energy

calculations on similar binding orientation that can intercon-

vert within the simulations timescale. Thus, only the best

scoring pose within each cluster would be used for free energy

calculations. This procedure aimed at reducing the number of

calculations to run while maximizing the chances of retaining

the poses that closely approximate the crystal.

Results
Absolute free energy calculations based on crystal structures

are accurate and precise

In this study we carried out thorough binding free energy

calculations using a non-physical thermodynamic cycle (Fig. 2),

starting from the crystal structures of BRD4(1) in complex with

11 inhibitors to a common binding site (Fig. 1, ESI Fig. 1†). We

were rst interested in evaluating the performance of the

predictions in a favorable scenario, that is, when the binding

conformation is known from experiment. The results from this

study, therefore, provide a picture of the best accuracy that can

be expected. In addition, we were interested in evaluating the

precision of the calculations, considering that large and exible

molecules are present in the test set (Fig. 3). Large uncertainties

in the results when dealing with such drug-like molecules

would indeed prevent a meaningful assessment of the accuracy

of the results. To this end, in addition to the bootstrap analysis

210 | Chem. Sci., 2016, 7, 207–218 This journal is © The Royal Society of Chemistry 2016
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to evaluate the statistical uncertainty of the free energy esti-

mator, we decided to repeat the calculations three times, in

order to obtain an approximation of the uncertainty due to

nite sampling (for ligand 11, four repeats were performed, as

explained in the Methods section). It was in fact noticed that

while bootstrap provided a more realistic uncertainty estimate

than the MBAR error estimate alone, it still underestimated the

sample standard deviation. Each calculation was the results of

73, 10 ns long, all-atom molecular dynamics runs for a total

simulated time of about 25 ms for this portion of the study.

The set of inhibitors considered comprises mostly drug-like

molecules with a diverse range of physicochemical properties:

number of atoms from 22 to 77; molecular weight from 241 to

525 Da; number of rotatable bonds from 0 to 11; calculated

log P from �0.4 to 5.3 (ESI Table 1†). The range of affinities

includes micromolar binders such as ligand 10 (�23 mM) and 11

(�80 mM), down to low nanomolar binders such as ligand 1

(�40 nM) and 2 (�50 nM). A number of different chemical

groups are represented and the dissimilarity of the set provides

us with more condence that the results obtained are not

excessively biased by the limited chemical space considered.

Table 1 summarizes the results obtained for this retrospec-

tive study (see ESI Table 2† for a breakdown of the energetic

contributions). Most calculations agree extremely well with the

experimentally determined values. Seven out of eleven predic-

tions have errors below 0.5 kcal mol�1, and all prediction errors

are below 2.0 kcal mol�1. This resulted in a mean absolute error

(MAE) of 0.6 � 0.1 kcal mol�1 and a root mean square (RMS)

error of 0.8 � 0.2 kcal mol�1. The calculated free energies

strongly correlate with the experimental ones, as shown in Table

1 and Fig. 5, with a Pearson's r of 0.84 � 0.05, and manage to

rank the ligand affinities effectively (Spearman's r ¼ 0.82 �

0.06). The precision of the calculations is encouraging too, as in

only three instances the uncertainty is above 0.5 kcal mol�1, and

in all case it is below 1.0 kcal mol�1 (see ESI Fig. 2† for

convergence assessment). The largest uncertainties, as expec-

ted, occur when the largest ligands are considered.

Fig. 3 Chemical structure of the ligands. The structures of the compounds analyzed in this study are shown and are labeled with Arabic numerals

in descending order of affinity.

This journal is © The Royal Society of Chemistry 2016 Chem. Sci., 2016, 7, 207–218 | 211
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Accurate predictions can also be achieved in absence of

structural information about the complex

In order to evaluate the usefulness of such calculations in a

prospective context, we carried out a docking and free energy

calculation exercise based upon docking results rather than

crystal structures. The main objective of this portion of the

study was to evaluate whether the accuracy observed in the

retrospective exercise could be achieved with amore prospective

docking-based approach. Three-dimensional ligand structures

were therefore generated through a conformational search aer

drawing the ligands in two dimensions. A pharmacophore

based on acetyl-lysine was then created and used to aid the

docking of the 11 inhibitors to an apo structure of BRD4(1)

(pdb-ID 2OSS). Unrestrained molecular dynamics simulations

explore binding conformations close to each other, hence the

docking poses obtained were clustered by root mean square

deviation (RMSD) in order to avoid selecting conformations that

interconvert during the simulations time scales. The total

number of docked poses obtained was 72, which was reduced to

25 aer the clustering procedure and removal of poses with

positive binding free energies as predicted by the scoring

function. Fig. 4 shows these 25 docking poses (scores and RMSD

to crystal are summarized in ESI Table 3†).

For all ligands, a binding pose that captures the main

features of its interactions with BRD4(1) was among the results.

The docking soware managed to reproduce the binding mode

of the inhibitors well. For eight out of ten ligands the RMSD is

below 2.0 Å. In addition, docking correctly identied the pose

closest to the crystallographic observed one as being the most

favorable for 7 out of 10 ligands. For ligand 1, two poses actually

capture the correct binding mode of the molecules within

BRD4(1) binding pocket (poses 1-a and 1-c), despite the fact

pose 1-a appears to be substantially different from the crystal

(RMSD of 8.4 Å). This is however due to the fact that a large part

of this inhibitor is solvent exposed and thus free to explore a

number of conformations. The extensive sampling in the

unrestrained simulations means that such deviation from the

crystal structure does not affect the free energy result (while it

does affect the docking score), and the ligand is still predicted

to be a strong binder when starting from pose 1-a (ESI Table 4†).

Docking, despite providing good binding conformations for the

ligands, and fairly good relative pose ranking for the same

ligand, scored the ligands inaccurately (Fig. 5b). With a RMS

error of 4.2 kcal mol�1 and a Pearson's r of �0.16, the affinities

provided do not help in discriminating between tight and weak

binders. Conversely, the free energy calculations based on MD

still managed to have excellent agreement with the experi-

mental affinities (Fig. 5c). Table 2 (full breakdown in ESI Table

4†) reports the results of the free energy calculations based on

the lowest energy docked poses, along with the RMSD of the

poses with respect to the crystal ones and the binding free

energy predicted by the docking scoring function for the same

ligand. Mean absolute and root mean squared errors were

respectively 1.0 � 0.1 kcal mol�1 and 1.4 � 0.1 kcal mol�1,

whereas the correlation to experimental values was of 0.77 �

0.04 for Pearson's r and of 0.72 � 0.08 for Spearman's r.

Absolute calculations can resolve ambiguities between

multiple potential binding modes

To illustrate the potential of alchemical calculations in

resolving ambiguous binding poses, the case of ligand 3 is

presented in more detail. Ligands 3 and 7 are closely related; in

fact ligand 3 is the synthetic precursor of ligand 7. Despite their

chemical similarity, the two ligands bind the BRD4(1) binding

Table 1 Summary of free energy calculation results based on crystal structures. DGcalc is the calculated standard binding free energy; DGexp is

the experimental standard binding free energy. Reported are also the PDB files used as input and the experimental method used for the affinity

measurement. All values are in kcal mol�1 a. All errors are one standard deviation. This is an estimate of the typical ITC standard deviation (1s)

based on the variability of the affinity values observed in the ABRF-MIRG002 inter-laboratory assessment;67 bthe error represents the standard

deviation of two measurements; gno error reported as only a single experiment was performed. Values for the difference between DGcalc and

DGexp might appear inconsistent due to rounding

Cpd DGcalc DGexp DGcalc–DGexp PDB Exp method Reference

1 �10.4 � 0.6 �9.8 � 0.1a �0.6 � 0.6 4OGI ITC 68

2 �9.5 � 0.4 �9.6 � 0.1a +0.2 � 0.4 3MXF ITC 69

3 �9.2 � 0.5 �9.0 � 0.1a �0.2 � 0.5 4MR3 ITC 70
4 �9.4 � 0.8 �8.9 � 0.1a �0.4 � 0.8 4OGJ ITC 68

5 �8.6 � 0.3 �8.8 � 0.1b +0.2 � 0.3 4J0R SPR 71

6 �9.9 � 0.8 �8.2 � 0.1a �1.7 � 0.8 3U5L ITC 72
7 �5.9 � 0.5 �7.8 � 0.1a +2.0 � 0.5 4MR4 ITC 70

8 �7.8 � 0.3 �7.4 � 0.1a �0.4 � 0.3 3U5J ITC 72

9 �7.7 � 0.4 �7.3 � 0.0b �0.4 � 0.4 3SVG AlphaScreen 71

10 �5.9 � 0.2 �6.3 � 0.1b +0.4 � 0.3 4HBV AlphaScreen 73
11 �5.4 � 0.2 �5.6g +0.1 � 0.2 Model AlphaScreen 74

Statistics

Mean absolute error 0.6 � 0.1

Root mean square error 0.8 � 0.2
Pearson's r 0.84 � 0.05

Spearman's r 0.82 � 0.06
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pocket in two very different modes, as shown in Fig. 6a. This

substantial change in binding pose is extremely hard to predict

by visual inspection or docking alone. Indeed, the most favor-

able binding pose (pose 3-a, docking score of �4.9 kcal mol�1)

for ligand 3 proposed by docking closely resembled the pose of

ligand 7 (Fig. 6b), which forms two hydrogen bonds with N140

through the dihydroquinazolinone scaffold and buries a

methoxy group at the bottom of the pocket. Pose 3-b was

assigned the second best docking score (�3.5 kcal mol�1) and

occupied the same cle as pose 3-a, however, with the amide

that is part of the dihydroquinazolinone scaffold pointing away

from N140, the double hydrogen bond to it is lost. These poses

thus have a large RMSD as compared to the X-ray pose (6.8 Å

and 7.8 Å for poses 3-a and 3-b respectively). The actual binding

mode of the ligand is correctly represented instead by the pose

3-c, which is assigned a worse docking score (�2.6 kcal mol�1)

than 3-a and 3-b, and it is characterized by the formation of one

hydrogen bond with N140 thanks to the oxygen of the dime-

thylphenol ring, and the burial of a methyl group in the

hydrophobic pocket in an analogous fashion to the binding of

the acetyl moiety in Kac. Pose 3-d binds BRD4(1) through a

similar pose as 3-c, forming one hydrogen bond with N140

Fig. 4 Binding poses suggested by docking. In red are the crystallographic structures, and in green are the docked ligands. The ligand number

and cluster letter are reported on each pose.

This journal is © The Royal Society of Chemistry 2016 Chem. Sci., 2016, 7, 207–218 | 213
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through the hydroxyl group and burying a methyl group deeply

in the protein binding pocket. However, while in 3-c and in the

X-ray structure the amide moiety of the dihydroquinazolinone

group points towards the solvent, in 3-d this is directed toward

the protein. As a consequence, pose 3-d shows an RMSD as

compared to the X-ray pose that is slightly larger (3.0 Å) than for

pose 3-a (2.0 Å). Pose 3-e occupies a similar volume to 3-c and 3-

d, but the dimethylphenol group responsible for binding is

solvent exposed and the two methoxy groups are instead

directed toward N140, resulting in a pose that overall has few

contacts with the protein and is very far from the crystal pose as

suggested by the large RSMD (7.8 Å).

Absolute free energy calculations were carried out starting

from all docking structures in order to evaluate whether the

method could unambiguously determine the lowest energy pose

in this challenging case. The binding free energy obtained for

the pose that best approximates the bound structure in the

crystal (pose 3-c), was �10.8 � 0.2 kcal mol�1, whereas the free

energy for the pose that binds BRD4(1) similarly to ligand 7

(pose 3-a) was estimated to be �6.2 � 0.2 kcal mol�1. Pose 3-d,

which is the second closest to the X-ray structure and retains the

main interaction patters, was estimated to have a high binding

affinity too (�10.5 � 0.2 kcal mol�1). On the other hand, poses

3-b and 3-e were predicted to have signicantly lower binding

affinities (�6.5 � 0.3 kcal mol�1 and �7.3 � 0.2 kcal mol�1

respectively) than 3-c. The results therefore unequivocally

identied the crystallographic binding pose as being the most

favorable one.

There is only one case where the free energy calculations

appear to be unable to unambiguously identify the most stable

binding pose and that is ligand 6. In this case both the scoring

function and the MD suggest that the two poses (6-a and 6-b)

have similar binding affinity for BRD4(1). Interestingly, ligand

6, when compared to the similar ligand 8, has an additional

methyl group on its triazepine ring that can potentially mimic

the methyl moiety of the acetylated lysine. Indeed, pose 6-b

binds the pocket placing such methyl group similarly to Kac.

Pose 6-b might therefore be a legitimate secondary binding

pose, even though its binding affinity is likely overestimated.

Discussion

As discussed by Mobley and Klimovitch,60 reliable binding free

energy predictions can have a substantial impact in drug

discovery campaigns even with modest levels of accuracy. In

a lead optimization exercise, screening �10–100 molecules

per week with 2.0 kcal mol�1 of noise would reduce the

synthetic effort by a factor of 3 when the goal is to achieve a

10-fold improvement in binding affinity (i.e. a 1.4 kcal mol�1

improvement in binding free energy). Moreover, absolute

calculations need only structural information of the target

in order to be employed. Despite currently still being computa-

tionally expensive, at this level of accuracy it is easy to recognize

the great potential for application in lead optimization

campaigns in a near future, complementing relative calcula-

tions.61 Assuming steady improvements in hardware and algo-

rithmic performance, in the long term it is possible to foresee

applications in lead discovery too as an accurate rescoring

method. Furthermore, we showed how alchemical calculations

are able to resolve ambiguities regarding unexpectedly large

differences in binding modes between extremely similar mole-

cules. The precision of the calculations was rigorously assessed in

order to take into account both the statistical and sampling

uncertainties. We have shown how for even the largest and most

exible ligands standard deviations below 1.0 kcal mol�1 are

achievable within the microsecond time-scale. It is important

however to remember that the accuracy of such calculations

comes at a high computational cost with respect to scoring

functions or endpoint methods. For each calculation, the

production simulations for the complex took on average �29

hours on 504 cores (Intel Xeon E5-2697 v2 2.7 GHz), and�7 hours

on 372 cores for the ligand. While the use of graphical processing

units can substantially accelerate the simulations, the screening

of hundreds to thousands of compounds would still be a very

onerous exercise. Nonetheless, the accurate experimental deter-

mination of binding affinities using biophysical methods such as

Fig. 5 Scatter and correlation plots of the results. Correlation plots for

(a) the free energy calculations starting from the X-ray structures, (b)

the docking free energy scores and (c) the free energy calculations

starting from the docked structures.
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ITC can be very time consuming too. Before the calorimetric

experiment can be prepared and executed, protein expression

and purication alone can take the order of a week, and the

ligand of interest might need to be synthesized through multiple

reaction steps. In addition, typically large quantities of titrant are

needed to carry out the experiment.

An interesting feature of absolute calculations is the

possibility to account for multiple binding poses in the nal

binding free energy estimate. This has been shown to be

important to accurately estimate the affinity of small frag-

ments,18 which by having a limited number of interactions

with the protein, and less shape complementarity require-

ments as compared to drug-like molecules, may adopt

multiple binding modes with similar thermodynamic stability.

Nonetheless, a requirement for successful absolute binding

free energies is to have a starting structure that captures the

main feature of the protein–ligand complex. We showed how,

thanks to the ability of MD to explore an ensemble of

conformations, having a starting ligand pose that considerably

deviates from the crystal pose does not affect the results as

long as the main features of the binding are maintained.

However, the methodology is still heavily dependent on the

Table 2 Summary of the free energy calculation results based on docking. Shown are the data for the predicted most stable binding poses for

each ligand. DGcalc is the calculated standard binding free energy; DGexp is the experimental standard binding free energy. For comparison, also

the affinities predicted with the docking scoring function are reported. All values are in kcal mol�1. All errors are one standard deviation. “X-ray

pose” indicates whether the lowest energy pose identified corresponds to the crystallographically observed binding mode; also the RMSD of the

pose as compared to the crystal is reported. aThis is an estimate of the typical ITC standard deviation (1s) based on the variability of the affinity

values observed in the ABRF-MIRG002 inter-laboratory assessment;67 bthe error represents the standard deviation of two measurements; gno

error reported as only a single experiment was performed. Difference values may include rounding effects

Compound DGcalc DGexp DGcalc–DGexp X-ray pose RMSD (Å) Docking DG

1 �10.9 � 0.8 �9.8 � 0.1a �1.1 � 0.8 Yes 3.2 �2.7

2 �10.1 � 0.4 �9.6 � 0.1a �0.5 � 0.4 Yes 1.9 �4.7
3 �10.8 � 0.2 �9.0 � 0.1a �1.8 � 0.2 Yes 2.0 �4.9

4 �9.0 � 0.8 �8.9 � 0.1a �0.0 � 0.8 Yes 1.8 �3.4

5 �8.3 � 0.2 �8.8 � 0.1b +0.5 � 0.2 Yes 1.2 �4.2
6 �10.6 � 0.3 �8.2 � 0.1a �2.4 � 0.3 No 5.0 �4.6

7 �6.6 � 0.3 �7.8 � 0.1a +1.2 � 0.3 Yes 2.2 �5.2

8 �10.2 � 0.2 �7.4 � 0.1a �2.8 � 0.2 Yes 0.8 �4.2

9 �7.7 � 0.1 �7.3 � 0.0b �0.5 � 0.1 Yes 1.8 �4.2
10 �6.2 � 0.1 �6.3 � 0.1b +0.1 � 0.2 Yes 0.7 �3.2

11 �5.4 � 0.1 �5.6g +0.2 � 0.1 n.a. n.a. �4.8

Statistics

Mean absolute error 1.0 � 0.1
Root mean square error 1.4 � 0.1

Pearson's r 0.77 � 0.04

Spearman's r 0.72 � 0.08

Fig. 6 Multiple potential binding conformations of ligand 3. (a) Overlay of the crystal structures for ligand 3 and ligand 7 (4MR3 and 4MR4

respectively). (b) Overlay of docking poses 3-a and 3-c.
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quality of poses generated by docking. An incorrect pose

prediction will lead to a false negative when calculating the

ligand affinity. In a recent methodological advance it has been

shown how it is possible to combine Hamiltonian replica

exchange with Monte Carlo ligand translation/rotation moves

to simultaneously estimate binding free energies and identify

ligand binding sites and orientations.62 Further developments

in such direction, coupled with increasing computing power,

might alleviate the need to rely on faster and less accurate

methods such as docking for pose prediction. Nevertheless, in

this study, docking was sufficient and succeeded in nding

good poses for all of the inhibitors considered, while visibly

failing to rank them or estimate their binding energies. The

latter is a well-known limitation of scoring functions.63 These

were however accurately estimated by the MD-based calcula-

tions, thus making the docking scores ultimately irrelevant for

the nal results. The accuracy of free energy calculations is

dependent on other force eld parameters too. The effect of

van der Waals and coulombic non-bonded parameters on

binding free energy results has been previously discussed18,64,65

including using QM calculations to handle polarization

better.66 When dealing with drug-like ligands it is apparent

that torsional parameters can also affect the performance of

the calculations.75,76 However, it is encouraging that current

MM parameters despite their approximations manage to

provide the level of accuracy here presented, which could be

even improved by simple renement and extension of existing

models. With small molecules force elds being constantly

revised in order to better cover the large chemical space of

organic compounds, MD-based affinity predictions hold great

promise for the future of structure-based drug design.

Conclusion

We have shown here that for a small and fairly rigid system such

as a bromodomain, free energy calculations based onmolecular

dynamics are able to achieve RMS errors that do not exceed 1.4

kcal mol�1 when starting from docked structures, and down to

0.8 kcal mol�1 when using crystal structures and a more

expensive protocol. The present results corroborate the poten-

tial of absolute free energy calculations for drug discovery

applications. To our knowledge, this is the rst study on abso-

lute binding free energy that takes into account a diverse set of

drug-like molecules and a biologically relevant target currently

investigated for its therapeutic potential. Notably, a similar level

of accuracy was recently reported for a large set of molecules in

terms of their relative binding free energies.61 The reliability of

the absolute free energy calculations warrants their use in drug

discovery campaigns at least for fairly rigid drug targets such as

bromodomains.
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