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with imperfect polarizing optical elements
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The first three columns of the instrument matrix A of the four-detector photopolarimeter (FDP) are determined by
Fourier analysis of the output current vector I(P) as a function of the azimuth angle P of the incident linearly
polarized light. Therefore 12 of the 16 elements of A are measured free of the imperfections of the (absent) quarter-
wave retarder (QWR). The effect of angular beam deviation by the polarizer is compensated for by taking the
average, (1/2) [I(P) + I(P + 1800)], of the FDP output at 1800-apart, optically equivalent, angular positions of the
polarizer. The remaining fourth column of A is determined by the FDP's response to the right- and left-handed
circular polarization states. Because these states are impossible to generate with an imperfect QWR, a novel
procedure is developed. In particular, the response of the FDP to the unattainable right- or left-handed circular
polarization state is found by taking the average of the responses of the FDP to an elliptical near-circular state and
that state rotated in azimuth by 900. This calibration scheme is applied to measure A of our prototype FDP of four
Si detectors at X = 632.8 nm. A is determined, in external and internal reference frames, free of imperfections in the
polarizing optical elements. The FDP, with its uncontaminated A matrix, is used subsequently to evaluate the
imperfections of the QWR with the help of an appropriate model.

1. INTRODUCTION

The four-detector photopolarimeterl-3 (FDP) is perhaps the
simplest instrument for measuring the state of polarization
of a monochromatic or quasi-monochromatic light beam as
specified by the four Stokes parameters.4 It consists of a
stationary arrangement of four photodetectors as that pro-
duces an output current vector I = [ i i 2 it, which is
linearly related by

I =AS (1)

to the input Stokes vector S = [So Si S2 S3]t, where the
superscript t indicates the transpose. A is a 4 X 4 real
matrix, called the instrument matrix, which is characteristic
of the FDP at a given wavelength.

In this paper we describe a new calibration procedure with
which the instrument matrix A is determined accurately by
using an imperfect polarization-state generator (PSG). In
particular, we show that A can be obtained free of the small
imperfections of the essential optical elements of the PSG,
at least to first order. Furthermore, we show how the FDP
(a box of four Si detectors) can subsequently be used with an
appropriate model to quantify the PSG imperfections.

2. DESCRIPTION OF THE SYSTEM

A, computer-controlled FDP has been constructed of four
windowless planar-diffused Si photodiodes, operational am-
plifiers, an analog-to-digital converter, and a personal com-
puter with peripherals, as described elsewhere.2

The FDP is calibrated at A= 632.8 nm, using a 1-mW He-
Ne laser5 whose output beam is nominally circularly polar-
ized externally. The PSG is the polarizing optics of a
Gaertner ellipsometer consisting of a Glan-Thompson crys-
tal-prism polarizer (indicated by P in Fig. 1) and a fixed
quartz-plate quarter-wave retarder (QWR) in place of the

variable, compound, Babinet-Soleil compensator.2 (The
nonplanar light path and the gain settings of the operational
amplifiers also differ from those used in the first experi-
ment.2 ) The state of polarization of light incident upon the
FDP is controlled by rotating the polarizer and the QWR
around the light beam as an axis. The azimuth angles of
these elements, denoted by P and C, respectively, are read-
able on graduated circles to 0.010 resolution.

3. CALIBRATION WITH POLARIZATION
STATES OF UNEQUAL POWERS

Because of the inevitable presence of residual linear prefer-
ences in the source beam (small but nonzero second and
third Stokes parameters) and imperfections in the polariz-
ing optical elements of the PSG, a rotation of the polarizer
and the QWR in the beam, to generate different polarization
states required for calibration, also changes the power level
of the beam. The effect of varying the power level of the
beam as the calibration state is changed (or as a result of
instability in the source) can be rendered inconsequential by
normalization. This is done by dividing the output current
vector I of the FDP by the output current ir of a reference
detector Dr that receives a polarization-independent frac-
tion of the light entering the FDP through a beam splitter
(indicated by BS in Fig. 1). There are different possible
choices of a beam splitter. In the system that we now use, a
pellicle beam splitter is used that also serves as the entrance
window of the FDP. The beam splitter is tilted by a small
angle (<5°) with respect to the light-beam axis. Because
the reference beam is generated by near-normal-incidence
reflection from the beam splitter, its power is a fixed fraction
of the incident power, independent of the incident polariza-
tion. 6

In calibration, it is the normalized current vector

I = I/i, (2)
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PSG

Fig. 1. Schematic diagram of the FDP and the PSG used for its
calibration. L indicates the source of a collimated monochromatic
unpolarized or circular polarized light beam. P and QWR indicate a
linear polarizer and a quarter-wave retarder, respectively. BS indi-
cates a (slightly tilted) beam splitter, and Dr indicates a reference
detector.

that we use to determine the instrument matrix A. As is
noted above, the normalization of Eq. (2) eliminates the
effect of a significant source of error. It also justifies the use
of a normalized Stokes vector

S = Sn = [1 S1 S2 S]t (3)

to describe the input light to the FDP. The instrument
matrix determined by calibration is that which links In to Sn:

I = AS. (4)

Because we are interested in polarimetric analysis and not in
absolute photometry, determination of A to within a con-
stant multiplier (or a scale factor) suffices. In what follows,
normalization is understood and the subscript n is dropped
for simplicity.

4. RESPONSE OF THE FOUR-DETECTOR
PHOTOPOLARIMETER TO INCIDENT
LINEARLY POLARIZED LIGHT OF VARIABLE
AZIMUTH: DETERMINATION OF THE FIRST
THREE COLUMNS OF MATRIX A

The most significant imperfections of the PSG reside in the
QWR. In the visible and near-visible spectrum a crystal
polarizer can be used with a very low (•10-6) extinction
ratio, i.e., a nearly ideal polarizer. Therefore it makes sense
to determine as much of A as possible without the QWR.
Indeed, the first three columns of A are determinable with
only a linear polarizer in the calibration light beam.

Let A be written in terms of its columns as

A = [AO Al A 2 A 3]- (5)

The Stokes vector of incident linearly polarized (LP) light of
azimuth P is given by

SLP(P) = [1 cos 2P sin 2P 0J'. (6)

If Eqs. (5) and (6) are used in Eq. (1), the response of the
FDP to incident LP light (Fig. 2) is obtained in the form

ILP(P) = AO + Al cos 2P + A 2 sin 2P. (7)
Equation (7) is simple and revealing. It shows that if the

output current vector I(P) is recorded as a function of P over
one period (a range of 1800), as the polarizer is rotated, and is
fitted (in a least-squares sense) to the simple Fourier series
of Eq. (7) the vectorial Fourier coefficients give directly the
first three columns of A. Thus three fourths of the A matrix
is determined entirely free of the QWR imperfections be-
cause this element is simply absent from the beam.

Figure 3 shows the results that we obtain by applying this
procedure to our FDP. The normalized output current of
each detector is plotted as a function of the polarizer azi-

muth angle P over the range 0 • P < 1800 in 100 steps. The
diamonds represent the experimental points, and the con-
tinuous curves are obtained by a least-squares fit of a scalar
function of the form of Eq. (7) to the data. The fit appears
nearly perfect for all currents, lending credence to the cali-
bration method and the FDP theory. In fact, the residual
rms fitting errors of the four currents are 0.0012, 0.0046,
0.0009, and 0.0077, respectively. These numbers are re-
markable, considering that the currents are registered with a
resolution of 0.001, which is limited by our 12-bit analog-
to-digital converter. The first three columns of A, obtained
from the least-squares fitting of the data of Fig. 3, are

AO = [0.746 2.433 0.694 2.597] ,

Al = [0.157 -1.180 -0.244 -1 .9 3 4 ]t,

A2 = [-0.071 0.516 0.137 -0. 2 9 6 ]t. (8)

To achieve the excellent results shown in Fig. 3, it was
necessary to eliminate the effect of angular beam deviations
introduced by the polarizer (which is -0.05° for our Glan-
Thompson prism). This is done by taking the average,

Iav(P) = (1/2)[I(P) + I(P + 1800)], (9)

of the responses of the FDP recorded at 1800 -apart, optically
equivalent, positions of the polarizer. The responses of any
one detector at these presumably identical positions of the
polarizer differ (in a systematic way as the polarizer position
is changed) from the average response by as much as 5%.
Whereas averaging solves the angular beam deviation prob-
lem, it indicates, indirectly, that the field of view of our FDP
(in its present form) is restricted. Therefore, light-path
stabilization may be required for accurate polarimetric anal-
ysis.

5. RESPONSE OF THE FOUR-DETECTOR
PHOTOPOLARIMETER TO INCIDENT RIGHT-
AND LEFT-HANDED CIRCULARLY POLARIZED
LIGHT: DETERMINATION OF THE FOURTH
COLUMN OF MATRIX A

The remaining (fourth) column of A is determined from the
responses of the FDP to incident right-handed and left-
handed circularly polarized (RCP and LCP, respectively)
light. The Stokes vector of such a light is

Scp = [1 0 0 l]t, (10)

where the + and the - apply for the right- and left-handed
circular polarizations, respectively. Substitution of Eqs. (5)
and (10) into Eq. (1) gives

e

I~~~~~~D -o 

Fig. 2. Calibration of the FDP with LP light of variable azimuth P.
Fourier analysis of the output current vector I(P) as a function of P
determines the first three columns of the instrument matrix A.

R. M. A. Azzam and A. G. Lopez
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Fig. 3. The normalized response of each of the four detectors of the FDP as a function of the linear polarizer azimuth P when the calibration
scheme of Fig. 2 is used: (a) io, (b) ii, (c) i2 , and (d) i3 . The diamonds represent the measured response recorded at 100-apart, equispaced, an-
gular positions of the polarizer over the full range 0 • P • 1800. The continuous curves are obtained by a least-squares fit of the experimental
data points with a function of the form in = ano + a,, cos 2P + an2 sin 2P, where n = 0, 1, 2, 3 and ano, an1, and an2 specify the first three columns of
the instrument matrix A.

IRCP= AO + A3,

ILCP= AO - A3, (11)

which are the responses of the FDP to RCP light and to LCP
light, respectively. From Eqs. (11) the last column of A is
calculated as

A3 = (1/2)(IRCP - LCP) (12)

and an independent determination of AO is obtained:

AO = (1/2 )(IRCP + ILCP). (13)

AO of Eq. (13) should agree closely with AO determined from
the FDP's response to LP light, as is explained in Section 4.
However, Eq. (13) should be used merely as a consistency
check and not to revise AO, which is obtained from a plurality
of linear states.

The main difficulty in applying the foregoing procedure to
determine A3 is that it is practically impossible to generate

the exact RCP and LCP states because of imperfections in
the QWR. We have devised a scheme to overcome this
problem that is based on the following analysis.

The Stokes vector of a totally polarized light beam with an
elliptical vibration of ellipticity angle e and major-axis azi-
muth 0 is given by7

S = [1 cos 2E cos 20 cos 2e sin 20 sin 2E]'. (14)

We assume that the imperfections of the QWR are small so
that the PSG (the polarizer and the QWR) can generate an
elliptical near-circular state (ENCS). This ENCS is repre-
sented by a point that is near, but not coincident with, the
north or south pole of the Poincar6 sphere7 whose equator
represents the LP states. It is convenient to introduce a
small parameter

/3 = 450 - IE (15)

to represent the deviation of the ENCS from exact circular-
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ity (Fig. 4). ( = +450 and -45° correspond to the RCP and
LCP states, respectively.) In terms of a and 0, the Stokes

/ >0<; \ NCS vector of the right-handed ENCS is obtained from Eqs. (14)
and (15) as

SENCS(o) = [1 2/3 cos 20 2/3 sin 20 lJt, (16)

which is valid to first order in the small parameter /3.
Suppose that the polarizer and the QWR are rotated solid-

ly as one unit (preserving the relative orientation between
the transmission axis of the polarizer and the fast axis of the

Fig. 4. An ENCS is specified by its major-axis azimuth 0 (unre- QWR at or near 450) by an angle of 90g. This causes the
stricted) and the small deviation a3 of the ellipticity angle e from 450 PSG to produce an ENCS of the same but of the orthogo-
(/ = 45 - ). The right-handed polarization is indicated by the nal azimuth 0 + 900 [Fig. 5(a)]. The Stokes vector of this
clockwise arrow, for a beam that travels normal and out of the page 90 0 -rotated ENCS is given by
toward the reader.

SENCS(O + 900) = [1 -2/3 cos 20 -2/3 sin 20 lt (17)

from Eq. (16).
If the Stokes vectors of Eqs. (16) and (17) are substituted

into Eq. (1), we obtain the responses of the FDP to the
//\ NCS 101 ENCS and that state rotated in azimuth by 900. If the

average of these two responses is taken, we get

Ia = (1/2)[IENCS(0) + ENCS(o + 900)]

= (1/ 2)[ASENCS(0) + ASENCS(O + 900)]

//x\0+" IS. = AJ(1/ 2 )[SENCS(0) + SENCS(O + 900)11. (18)

2 From Eqs. (16) and (17) we have

(a) (1/ 2 )[SENCS(0) + SENCS(O + 900)] = [1 0 0 ll

= SRCP, (19)

which is the Stokes vector of the RCP state. Combining
Eqs. (18) and (19) gives

\ Ia = ASRCP = IRCP- (20)

Equation (20) leads to the following important conclusion:
2 / \ Z \ 6 It is possible to determine the response of the FDP to the

/2 \ p A/ \unattainable exact (right- or left-handed) circular state by
l t \ finding the average of the responses of the FDP to an ENCS

and that state rotated in azimuth by 900. Notice that and
/3 of the ENCS, and hence the PSG imperfections, need not
be known.

For specificity, Eqs. (16)-(20) are written for an ENCS
near the RCP state or the north pole of the Poincar6 sphere
[Fig. 5(b)]. Of course, the analysis can be repeated readily,
for an ENCS near the LCP state or the south pole of the
Poincar6 sphere.

When the above procedure is applied to our FDP, IRCp and
ILCP are obtained, free of PSG imperfections to first order,8

and the last column of A is determined by Eq. (12) as

A 3 = [-0.001 0.447 -0.405 -0.42 9 t. (21)

This completes the calibration process. The entire matrix
A is listed below for ease of reference:(b)

Fig. 5. (a) An ENCS of azimuth 0, ENCS(0), and a state produced 0.746 0.157 -0.071 -0.001
from it by a 900 rotation, ENCS( + 900). (b) Cross section of the 2.433 -1.180 0.516 0.447
Poincar6 sphere by a plane that contains the polar axis LR and A = (22)
passes through the points that represent the pair of ENCS's in (a). 0.694 -0.244 0.137 -0.405
The small angle /3 has the meaning given in Fig. 4. L2.597 -1.934 -0.296 -0.429_J

R. M. A. Azzam and A. G. Lopez
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6. THE INSTRUMENT MATRIX IN
EXTERNAL AND INTERNAL REFERENCE
FRAMES

In the course of calibration, the directions of the transmis-
sion (t) and extinction (e) axes of the polarizer, when the
polarizer scale reads zero (P = 0), specify an external (lab-
oratory) reference Cartesian coordinate system with respect
to which the Stokes parameters of the calibration light
beam, and hence also the instrument matrix A = Aext, are
defined. The instrument matrix of Eq. (22) is determined
with respect to this te system.

When the FDP is removed from the calibration site, it will
have no memory of this te laboratory coordinate system.

A unique instrument matrix Aint can be obtained from Aext
by a coordinate rotation between the external coordinate
system te and an internal coordinate system p0so, where p0
and so are directions parallel and perpendicular to the first
plane of incidence for light reflection at the first detector of
the FDP (Fig. 6). Aint is defined by

I = Aintspos, (23)

I = [AintR(ao)ISte

= AextSte, (26)

so that

Aext = AintR(ao). (27)

Postmultiplying both sides of Eq. (27) by R(-ao) yields

Aint = AextR(-ao), (28)

because R(ao) - R(-ao) is the 4 X 4 identity matrix.
Equations (27) and (28) establish the link between Ai0t

and Aext. From the form of the rotation matrix, Eq. (25), it
is evident that Ait and Aext have the same first and last
columns; only the middle two columns change in transform-
ing from one reference frame to the other. The angle ao is
determined by setting the third element of the first row of
Aint equal to zero, i.e.,

aO2 i = 0, (29)

a condition that follows from the analysis given in Ref. 3.
From Eqs. (25), (28), and (29), one obtains

where Sp0o is the Stokes vector in the p0so system that is
related to Ste by

SPA = R(ao)Ste. (24)

I 0 0 01
1a =0 cos 2a0o sin 2a0 (5

R~o0) = I 0 -sin 2a0 cos 2a0 0 (25)

o 0 0 1

is the Mueller rotation matrix,7 and ao is the angle between
the directions p0 and t. From Eqs. (23) and (24), we have

e

S

p
0

\ a0 Ft

Fig. 6. External and internal reference frames, te and poso, respec-
tively, with respect to which the Stokes parameters of light and the
instrument matrix A of the FDP are defined. t and e represent the
directions of the transmission and extinction axes of the polarizer in
its reference, P = 0, orientation. po and so are directions parallel
and perpendicular to the plane of incidence for light reflection at the
first detector inside the FDP. The relative orientation angle ao is
determined by a procedure given in the text.

aole(-sin 2a 0) + a02e (cos 2a0) = 0, (30)

where the superscripts i and e refer to the elements of Aint
and Aext, respectively. The solution of Eq. (30) for ao is

ao = (1/2)arctan(aO 2 e/aOle). (31)

For our FDP at X = 632.8 nm, ale = 0.157 and aO2e =

-0.071 from Eq. (22); this gives ao = -12.167° from Eq. (31).
Substitution of the corresponding R(-a 0 ) from Eq. (25) and
Aext from Eq. (22) into Eq. (28) gives

-0.746
2.433

- 0.694

L2.597

0.172
-1.288
-0.279
-1.640

0.000
-0.016

0.024
-1.067

-0.001
0.447

-0.405 ,
-0.429_

(32)

which is the desired calibration matrix in the internal refer-
ence frame p0so.

7. DETERMINATION OF THE
IMPERFECTIONS OF THE QUARTER-WAVE
RETARDER

Having determined the instrument matrix A of the FDP
[Eqs. (22) and (32)] free of the PSG component imperfec-
tions, we can work backward to evaluate the more important
of these same imperfections, namely, those of the QWR. We
can count on the FDP with its reliable A matrix to measure
accurately the state of polarization of light that is actually
being produced by the PSG. In this curious roundabout
way, first the imperfect PSG teaches the FDP, and subse-
quently the FDP (a box of Si detectors) determines the PSG
imperfections!

The (imperfect) QWR is characterized by its slow-to-fast
relative amplitude transmittance T and relative phase
retardation A. The ideal QWR has T = 1 and A = 900. We
assume the imperfection parameters of the QWR,

r = T- 1,

6 = A-7r/2, (33)

R. M. A. Azzam and A. G. Lopez
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to be sufficiently small, as befits its role as a calibration
component. The QWR is set in a graduated scale mount
such that, when the scale reads zero, C = 0, the fast axis is
parallel to (aligned with) the transmission axis of the polar-
izer in its P = 0 position. Because this relative alignment is
never exact, we introduce a small offset angle y,

-Y = Ctrue C, (34)

Equations (43)-(45) overdetermine the imperfection param-
eters r, 6, and -y.

The P = 0, variable-C method is applied by using our FDP.
The true normalized Stokes parameters at the output of the
PSG are those determined by the well-calibrated FDP by
using the inverse relation

S = A-11

where C and Ctrue are the scale reading and the true value of
the fast-axis azimuth of the QWR measured from the refer-
ence t axis.

At the (true) zero azimuth of the fast axis, the Mueller
matrix of the QWR is given by91 0

1 -T 0 0

MQWR= Li 0 - J , (35)

0 0 1 -,

to first order in T and 6 and ignoring an overall amplitude
and phase factor in transmission through the QWR.

The Stokes vector at the output of the PSG (consisting of
an ideal linear polarizer and the imperfect QWR) is given by

S = R(-C -Y)MQWRR(C +)SLP(P)- (36)

Expansion of Eq. (36) using Eqs. (6), (25), and (35) yields
explicit expressions for the Stokes parameters of the light
impinging upon the FDP as a function of the azimuth set-
tings P and C and the imperfection parameters r, 6, and y.

For the purpose of determining r, 6, and y it is sufficient to
set one optical element at zero azimuth and to rotate the
other. Consider first the case of P = 0 (fixed polarizer) and
variable C (rotating QWR). The normalized Stokes param-
eters obtained from Eq. (36) as functions of C take the forms

S, = (1/2 + 1/2 cos 4C) + As,, (37)

S2 = (/2 sin 4C) + As 2, (38)

S3 = (sin 2C) + A 3 , (39)

where the terms within the parentheses on the right-hand
sides of Eqs. (37)-(39) give the Stokes parameters transmit-
ted by an ideal PSG and where As1, As2, and As 3 are the
Stokes-parameter perturbations caused by the QWR imper-
fections. The latter can be expressed as Fourier series of C
in the following form:

As, = a + a2 cos 2C + a4 cos 4C + b4 sin 4C + a cos 6C,

(40)

AS2 = d2 sin 2C + c4 cos 4C + d4 sin 4C + d6 sin 6C, (41)

AS3 = e 2 cos 2C + f4 sin 4C. (42)

The 11 Fourier coefficients (or amplitudes) a, a 2 , * * , A
that appear in Eqs. (40)-(42) are determined in terms of the
three imperfections parameters (T, 6, 'y); hence they are not
all independent. The following relations (are supposed to)
hold:

ao =-a 4 =-d 4 =-6/2, (43)

a2 -a 6 d213 = -d 6 = -f4/2 = -/4, (44)

b4 -C 4=e 2 -2-y. (45)

(46)

where I is the measured output current vector of the FDP
and A-' is the inverse of the previously determined imper-
fection-free instrument matrix of Eq. (22):

0.917

A- = 1.385
-1.389

_ 0.267

0.099
-0.102

0.804
0.503

0.106
0.285
1.766

-1.862

0.001
-0.378
-0.826
-0.050_

(47)

In Fig. 7 the diamonds represent s, 2, and 3 that are
obtained from Eq. (46) and the recorded current vector of
the FDP, as functions of the fast-axis azimuth reading C of
the QWR in 100 steps of C. The continuous curves repre-
sent the ideal normalized Stokes parameters of light trans-
mitted by a perfect PSG, which are given by the terms within
the parentheses on the right-hand sides of Eqs. (37)-(39).

The (vertical) deviations of the experimental points
(FDP-read normalized Stokes parameters) from the ideal
curves in Fig. 7, denoted by As,, As2, and AS3 , are plotted
separately versus C in Fig. 8. From Fig. 8 it is apparent that
Asi (i = 1, 2, 3) represent a predominantly systematic error.
This is confirmed by invoking our imperfect-QWR model.
By a least-squares analysis, Asi are fitted to Fourier series of
the forms of Eqs. (40)-(42), ignoring the theoretical con-
straints of Eqs. (43)-(45). The results are represented by
the continuous curves. The fits for As, and As2 are excel-
lent, with residual rms errors of 0.0012 and 0.0027, respec-
tively, which are of the order of the precision limit of our
FDP with its 12-bit analog-to-digital converter. Because
AS3 is nearly an order of magnitude less than As, and As2, the
fit in Fig. 8(c) reproduces only the essential features of the
systematic dependence of AS3 on C. The residual rms error
of AS 3 is 0.0041.

The Fourier coefficients a2, a4, ... , A that produce the
best fit (the continuous curves in Fig. 8) are listed in Table 1.
As the reader can readily verify, these coefficients satisfy
Eqs. (43) and (44) reasonably well. These equations provide
self-consistent and reliable estimates of the intrinsic QWR-
imperfection parameters and T:

6 = -0.061(+0.003),

= 0.016(+0.002).

(48)

(49)

Recall that 6 is the deviation of the relative retardance of the
QWR from r/2 and is the deviation of the slow-to-fast
relative amplitude transmittance from 1.

It should be noted that the above procedure can be used to
measure the imperfections of any QWR by using the FDP.
(After all, the FDP has no recollection of the specific QWR
that was used for its calibration!) This application of the
FDP to the characterization of an important and widely used
optical element (the QWR) represents a useful byproduct of
this study.

Equation (45) is not well satisfied, and the orientational

R. M. A. Azzam and A. G. Lopez



R. M. A. Azzam and A. G. Lopez

Si

S2

Vol. 6, No. 10/October 1989/J. Opt. Soc. Am. A 1519

C C

(a) (a)

0.5-

- 0.

- 0.

C

(b) C
(b)

1.0

S3

C

(c)

Fig. 7. Normalized Stokes parameters, (a) s, (b) 2, and (c) 3, as
measured by the well-calibrated FDP (diamonds) and as produced
by an ideal PSG (curves). In this test the polarizer is set at zero
azimuth (P = 0), and the QWR is rotated to vary its fast-axis
azimuth C (in 100 steps). Deviation of the experimental points
from the idealized theoretical curves is indicative of imperfections
in the QWR.
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Fig. 8. Deviations of the FDP-determined normalized Stokes pa-
rameters from their ideal values: (a) Asj, (b) As2, and (c) AS3 are
plotted versus the QWR fast-axis azimuth C with the polarizer set at
P = 0. The discrete points (diamonds) are the measured deviations,
and the curves are obtained by a least-squares fit, using Fourier
series of the forms given by Eqs. (40)-(42).
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Table 1. Fourier Coefficients for the Stokes-
Parameter Perturbations [Eqs. (40)-(42)] in the P= 0,

Variable- C Testa

Coefficient Value

ao 0.0285
a4 -0.0298
d4 -0.0325

a2 -0.0035
a6 0.0035
d2 -0.0144
d6 0.0036
14 0.0081

b4 0.0017
c4 -0.0008
e2 -0.0063

a The coefficients are arranged in such a way as to facilitate checking of the
theoretical identities of Eqs. (43)-(45) and determination of the imperfection
parameters T, 6, and y of the QWR. The test is performed on a prototype
FDP with four Si detectors at X = 632.8 nm.

misalignment parameter - is ill determined by this particu-
lar test.

A more reliable and self-consistent determination of y has
been obtained by setting C = 0 (fixed QWR) and varying P
(rotating polarizer). In this case, Eqs. (37)-(45) are re-
placed by

s = (cos 2P) + As1,

S2 = (0) + AS2,

S3 = (-sin 2P) + As3;

As = a' + b2' sin 2P + a4' cos 4P,

AS2 = 2' cos 2P + d2' sin 2P,

AS 3 = e2' cos 2P + 4' sin 4P

(50)

(51)

(52)

(53)

(54)

(55)

and

a ' = -a4 ' = 14' =

b2' = c2 ' = e2 ' = 2yY

d2' = -a,

(56)

(57)

(58)

respectively.
Figure 9 shows Asi(P) versus P for the C = 0, variable-P

method. The coefficients a', b2', ... ., f4' obtained by least-
squares fitting of Eqs. (53)-(55) to Asi( (i = 1, 2, 3) are listed
in Table 2. In this case, Eq. (57) is well satisfied, and a good,
self-consistent estimate of -y is obtained:

y = -0.108 (0.013 0). (59)

The C = 0, variable-P method provides a single estimate of
the key imperfection parameter 6, = -0.057, in good agree-
ment with the value given in Eq. (48). The three values of r
that are determined by Eq. (56) are not consistent; however,
their average, T = 0.011, agrees reasonably with that of Eq.
(49).

To summarize, we recommend that the P = 0, variable-C
test be used for determining the intrinsic imperfections pa-

100 120 140 160 180

P

(C)
Fig. 9. Deviations of the FDP-determined normalized Stokes pa-
rameters from their ideal values: (a) As,, (b) As2 , and (c) AS3 are
plotted versus the polarizer azimuth P with the QWR set at C = 0.
The Fourier series that fit the experimental data points are given by
Eqs. (53)-(55). The residual rms errors in fitting As,, As 2, and As3
are 0.0011, 0.0042, and 0.0016, respectively.

AS. -10

-12-

-16-

120 140 160

P

(a)

AS2 0
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AS,
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rameters - and 6 of the QWR. The C = 0, variable-P test
may be performed in addition to obtain a reliable estimate of
the fast-axis-azimuth offset (or misalignment) parameter y.

8. APPLICATION TO OTHER FOUR-
DETECTOR PHOTOPOLARIMETERS

The analysis and calibration methods of this paper apply in
their entirety to another four-detector polarimeter, also in-
troduced by Azzam. 11 This is the so-called division-of-am-
plitude photopolarimeter (DOAP) (see Fig. 10), which uses

three beam splitters. One beam splitter (indicated byBS) is
conventional, and the other two (indicated by WP) are Wol-
laston prisms, or equivalent polarizing beam-splitter cubes.
The beam splitters break the beam into four beams with
each beam intercepted by one detector.

The FDP and the DOAP can be considered from the
common electrical engineering black-box point of view.
Both are characterized by the same Eq. (1), which links an

output current vector I to an input Stokes vector S.
The only equations that are peculiar to the FDP and that

do not apply to the DOAP are Eqs. (29)-(31). Evidently,
another criterion needs to be developed for the DOAP to

determine the relative orientation of the external calibration
reference frame te and the internal (or intrinsic) reference

Table 2. Fourier Coefficients for the Stokes-
Parameter Perturbations [Eqs. (53)-(55)] in the C = 0,

Variable-PTesta

Coefficient Value

ao' -0.0076
a4 ' 0.0057

14' -0.0035

b2t -0.0036
c2' -0.0033
e2f -0.0044

d2' 0.0572

a The coefficients are arranged in such a way as to facilitate checking of the
theoretical identities of Eqs. (56)-(58) and determination of the imperfection
parameters T, 6, and y of the QWR. The test is performed on a prototype
FDP with four Si detectors at X = 632.8 nm.

D2

WP1

D3

Fig. 10. DOAP, to which much of the analysis of this paper also
applies. (See Ref. 11 for details.)

coordinate system. The latter consists of the directions
parallel (p) and perpendicular (s) to the plane of incidence
on the beam splitter indicated by BS, which is the plane of
the page in Fig. 10. The search for this criterion, however,
falls outside the scope of this paper.

9. CONCLUSION

We have presented methods for the accurate calibration of
the FDP in the presence of small imperfections in the optical
elements of the PSG. We have shown that the effect of
these imperfections can be compensated for, or eliminated,
so that a clean (uncontaminated) instrument matrix A is
determined. The FDP (a box of four Si detectors) with its
good A matrix is then capable of characterizing the imper-
fections of the same optics used for its calibration.

It has also been noted that much of the analysis and
procedures described in this paper also apply to the DOAP.1
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