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Abstract

Camera tracking is a fundamental requirement for video-
based Augmented Reality applications. The ability to accu-
rately calculate the intrinsic and extrinsic camera parame-
ters for each frame of a video sequence is essential if syn-
thetic objects are to be integrated into the image data in a
believable way. In this paper, we present an accurate and
reliable approach to camera calibration for off-line video-
based Augmented Reality applications.

We first describe an improved feature tracking algorithm,
based on the widely used Kanade-Lucas-Tomasi tracker.
Estimates of inter-frame camera motion are used to guide
tracking, greatly reducing the number of incorrectly tracked
features. We then present a robust hierarchical scheme that
merges sub-sequences together to form a complete projec-
tive reconstruction. Finally, we describe how RANSAC-
based random sampling can be applied to the problem
of self-calibration, allowing for more reliable upgrades to
metric geometry. Results of applying our calibration algo-
rithms are given for both synthetic and real data.

1. Introduction

One of the fundamental components of any Augmented
Reality system is the ability to merge synthetically gener-
ated objects with images of a real environment. Camera
tracking, or match-moving, is an essential step of this pro-
cess, and the accuracy of the tracking algorithm can sig-
nificantly affect the perceived accuracy of the augmented
environment.

Camera tracking involves estimating, for each frame of
an image sequence, the intrinsic and extrinsic parameters of
the camera at the time when the frame was captured. The
extrinsic parameters describe the position and orientation of
the camera, and the intrinsic parameters contain measure-
ments such as focal length, principal point, pixel aspect ra-
tio and skew [14].

For some applications of Augmented Reality, calculation

of these parameters must be done in real-time, in order to
merge synthetic objects with a live video feed, or to display
them in a see-through head-mounted display. Vision-based
tracking algorithms used in these situations typically update
the estimate of camera motion in a sequential fashion, from
one frame to the next (see, for example [1, 25, 4]). These
algorithms often make assumptions regarding the nature of
the camera motion or scene structure, limiting their appli-
cability when a high degree of accuracy and generality is
required.

The sequential nature of these algorithms, along with
other non-realtime approaches (e.g. [7, 6]), means that the
calibrations produced are susceptible to drift. The overall
accuracy often favours the images used to initiate the se-
quential reconstruction, and later frames of the sequence
have a tendency to drift out of the original coordinate frame
when awkward or near-degenerate camera motions are en-
countered. This is caused by an accumulation of error over
the sequence, meaning that the calibrations are not always
satisfactory when the registration of objects to images must
be done as accurately as possible, with no visible drift or
jitter.

For off-line Augmented Reality applications, the prob-
lems caused by these approaches can be overcome, because
there is no need for the calibration to be achieved either
sequentially, or in real-time. Merging-based approaches to
projective reconstruction (such as [9]) calibrate small sec-
tions of the image sequence, and then merge these sections
together. This process attempts to distribute any error as
evenly over the sequence as possible, thereby reducing drift.

There are many applications for such off-line video-
based Augmented Reality – architectural and archeological
visualization [23], and post-processing for television or film
special effects being the most common. Indeed, it could
be argued that due to the prolific nature of film special ef-
fects, this off-line style of processing is currently the most
in-demand form of Augmented Reality.

An overview of our system for augmented video produc-
tion is given in Figure 1. This diagram shows the logical
connections between components of the system. The main
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Figure 1. An overview of the video-based Aug-
mented Reality system, showing the logical
connections between the components of the
system. In this paper, we concentrate on the
camera calibration module.

focus of this paper is the camera calibration module shown
in the middle of the diagram. The input video is first cor-
rected to remove the effects of geometric lens distortion (see
e.g. [26] for further details). The calibration process then
begins by automatically identifying and tracking a large
number of feature points throughout the sequence. Struc-
ture and motion recovery algorithms are then used to recon-
struct the position of these features, and the camera projec-
tion matrices for each frame. Because this reconstruction is
performed in an unknown projective basis, self-calibration
is required to upgrade the camera projection matrices to a
metric framework.

Additional parts of our system, which are described else-
where [10, 11], use this calibration data to assist in recon-
structing a geometric description of the environment. When
augmenting the video sequence with synthetic objects, this
scene description helps to resolve occlusions between real
and synthetic objects. The camera calibration data is finally
used to accurately register the synthetic object with each
frame of the video sequence.

The camera tracking algorithm presented in this pa-
per is novel in several ways. Firstly, we describe an im-
proved algorithm for feature tracking, based on the widely
used Kanade-Lucas-Tomasi (KLT) feature tracker [27, 24].
We use estimates of inter-frame camera motion to guide
the feature tracker, greatly reducing the number of incor-
rectly tracked features. We also present a reliable approach
to projective reconstruction, using carefully selected sub-
sequences of the video data, and hierarchical algorithms to
merge sub-sequences into a single reconstruction. Finally,
we show how random sampling algorithms can be applied to
the problem of self-calibration, allowing for more accurate
upgrades from projective to metric geometry. The result
of these improvements is an accurate and reliable camera
tracking algorithm that can be used for video-based Aug-

mented Reality.
The remainder of this paper presents the camera tracking

process in more detail. To begin with, Section 2 describes
the details of our automated feature tracking algorithm. Fol-
lowing that, Section 3 discusses the hierarchical merging
scheme used to construct a complete projective reconstruc-
tion. After details of our random-sampling self-calibration
algorithm are given in Section 4, we show results for syn-
thetic and real scenes in Section 5.

2. Feature Tracking

Our automatic feature tracking algorithm is based upon
the iterative KLT algorithm [27, 24], with modifications to
account for colour images [15] and changes in pixel bright-
ness and contrast [17]. Features of interest are selected us-
ing the Harris corner detector [12], applied so that the dis-
tribution of features over the image is as even as possible.

As features are tracked, they may be lost due to poor lo-
calization by the tracking algorithm, or because they move
beyond the frame boundary. When this occurs, we select
new features to replace those lost, and continue tracking,
always trying to maintain a constant number of features in
each frame. One novel aspect of our tracking algorithm
is that after the first tracking phase has completed, a sec-
ond pass moves from the end frame back towards the first,
tracking those new features that were introduced as replace-
ments. This back-tracking increases the tracking duration
for each replacement feature, and improves the overall ro-
bustness of the calibration.

The most significant improvement we have made to the
KLT tracking algorithm is to employ an estimate of inter-
frame camera motion to assist in the tracking of features
from one frame into the next. This so-called guided track-
ing has been found to significantly reduce the number of
outlying features. Reducing the number of these outliers is
important if the motion recovery algorithm described in the
next Section is to operate reliably. Note that this approach
to guided tracking is different from previous guided match-
ing algorithms [2] that attempt to match candidate features
between images, rather than explicitly track features from
one frame to the next.

The general approach taken is to track features through
the sequence until a reliable fundamental matrix [14] can be
estimated, and then to use this to determine the set of inly-
ing feature tracks, and hence the camera motion relative to
the starting frame. If a fundamental matrix cannot be esti-
mated reliably, a planar projective homography is used to
guide feature tracking instead. Tracking then moves back
to the starting frame, and the motion estimate is used to
identify those tracks where a feature position deviates sig-
nificantly from its estimated motion (i.e. epipolar line, or
homography-mapped image location).
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More explicitly, guided tracking begins by selecting a set
of candidate feature points in frame i = 0. These features
are then tracked into frames j = i + 1, j = i + 2, and so
on, until one of the following is satisfied:

� The end of the sequence is reached, or 10 frames are
processed,

� More than 50% of the features are lost, or

� When a planar homography is robustly estimated from
the feature motion between frames i and j, the overall
RMS error for the fit exceeds a user-specified thresh-
old.

The third item in this list is the most important: we assume
that if a planar homography fits the data poorly, then it is
likely that the fundamental matrix can be estimated reli-
ably. This is because the most significant degeneracies dur-
ing fundamental matrix estimation occur when there is lit-
tle camera translation, meaning that the feature set fails to
uniquely define the epipolar geometry, and the estimation
algorithms become numerically ill-conditioned [14]. By
looking at the overall quality of fit for a planar homogra-
phy to the motion of features between frames i and j, we
get an indication of when a fundamental matrix estimate is
likely to be well conditioned. Typically, we use a thresh-
old of around 4 pixels for homography fitting, as this has
been found to provide a balance between accurate epipolar
geometry and a large number of feature tracks.

Once a suitable frame, j, has been found, we use a ran-
dom sampling algorithm to estimate the fundamental matrix
between frames i and j [14, 29]. This allows us to identify
the set of features that have tracked reliably from frame i to
frame j. The tracking algorithm then uses these inlying fea-
tures to determine the epipolar geometry relating frame i to
each frame i+1; i+2; : : : ; j. The tracking of features from
frame i to these frames is then repeated, with the epipolar
geometry between two frames used to identify those fea-
tures that have tracked incorrectly. This is achieved by test-
ing to see if each feature moves a significant distance from
its corresponding epipolar line during the iterative tracking
procedure. Tracking for those features that deviate signifi-
cantly from the motion is halted. Once frame j is reached, a
new motion estimate is initiated, and the process repeats. If
10 frames are passed and a fundamental matrix has not been
found, planar homographies are estimated from the inlying
feature points, and used to map features from one frame
into the next, with the transformed locations used as initial
estimates for the KLT tracking algorithm.

Although a thorough examination of the benefits of this
tracking algorithm is beyond the scope of this paper, we
have observed that it consistently increases the number of
inlying features, thereby reducing the overall reprojection
error, and also improves the stability of the final calibration.

Figure 2. Inlying feature projections obtained
using the standard KLT tracker (left), and the
guided KLT tracker introduced in this paper
(right).

By way of example, Figure 2 shows one frame from a small
100-frame sequence captured from the passenger seat of a
car driving along a road. This sequence was tracked using
both the standard KLT tracker [24] and the guided algo-
rithm described above 1. For the standard tracker (targeted
to 250 features per-frame), 17; 772 inlying feature projec-
tions were found out of a total of 22; 115 (80% inliers).
Tracking time was just over 4 minutes on a 1:4GHz Athlon
CPU. In contrast, the guided tracking algorithm took 10
minutes, but was able to find 26; 871 inliers out of 28; 970
projections (93% inliers), using the same target of 250 fea-
tures per-frame. This increase in both the total and inlying
numbers of projections is due to the more reliable detection
of outlying features during tracking, which causes a larger
number of good candidate features to be found.

After calibration using the structure and motion recov-
ery algorithm described in Section 3, the mean reprojec-
tion error was 0:33 pixels using the feature tracks obtained
with the standard tracking algorithm (standard deviation of
0:23). Using the same calibration algorithms and the fea-
tures obtained with guided tracking, the mean reprojection
error was reduced to 0:28 pixels, with a standard deviation
of 0:20. The improved accuracy of the projective recon-
struction also produced a more accurate estimate of focal
length when self-calibration was applied (see Section 4).
Focal lengths after guided tracking varied between 855 and
857 pixels over the length of the sequence (the “true” focal
length, measured at the same zoom factor using vanishing
points, is approximately 860 pixels). Using standard track-
ing, the self-calibration algorithm was more error-prone, re-
sulting in focal length estimates varying between 553 and
554 pixels. Similar improvements in accuracy and stability
have been obtained for other test sequences.

1Feature track animations for this sequence, as well as those presented
in Figures 3 and 6 are included in the additional material accompanying
this paper.
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3. Merging-Based Projective Reconstruction

Once a suitable set of features have been identified,
we employ a merging-based projective reconstruction algo-
rithm to estimate the feature locations and camera projec-
tion matrices for each frame of the sequence. We have cho-
sen to take a merging approach to reconstruction because
sequential algorithms [1, 4] are heavily reliant on a good
initial estimate of structure, and are also susceptible to drift
over long sequences. Factorization methods (e.g. [16]) suf-
fer less from drift and error accumulation by calculating all
camera projection matrices and structure at the same time,
but suffer from a lack of robustness, flexibility, and mean-
ingful error criteria. To overcome these problems, in [9]
it was proposed to reconstruct small sequences and then
merge them hierarchically to create larger sequences. In
this section, we present a new method for merging-based
projective reconstruction that is both robust, and relatively
fast. Indeed, by altering the number of merging passes per-
formed, a simple trade-off can be made between accuracy
and calibration time.

3.1. Sub-Sequence Reconstruction

Reconstruction is achieved by first selecting a set of key-
frames with which to build small, sub-sequence reconstruc-
tions. For each pair of key-frames, a separate projective
reconstruction will be built, consisting of the camera pro-
jection matrices for each frame between the key-frame pair,
and the position of inlying features visible in those frames.
In Section 3.2, we will describe how these sub-sequences
may be merged together to form a complete projective re-
construction.

Key-frames are selected so that the epipolar geometry
between each can be estimated reliably, and so that over-
lapping sequences can be merged together using structure
and frames common to each. The selection process starts
by positioning a key-frame at frame 1. All possible pairings
of the first frame with consecutive frames in the sequence
are then considered. For each pairing (i; j), the following
score, S ij is evaluated:

S ij = w1(1:0�
n1ij

n2ij
) + w2

1

e2Hij

+ w3e
2
Fij

(1)

wheren2ij is the number of features that were reconstructed
in the previous key-frame pair, n1ij is the number of those
features that can also be reconstructed in this pair 2, eHij

is the median reprojection error when a planar homography
is fitted to the feature data using a random sampling algo-
rithm [29], and eFij is the median epipolar error when a

2A feature can be reconstructed in pair (i; j) if there are projections
into at least two frames i � k1; k2 � j. For the first pair, n2ij is simply
taken to be the total number of possible features.

fundamental matrix is estimated using a similar sampling
algorithm. w1;2;3 are weights used to alter the relative sig-
nificance of each score.

The first term in Equation 1 measures the fraction of fea-
tures that were reconstructed in the previous key-frame pair,
but cannot possibly be reconstructed in this pair. The sec-
ond term includes the homography error, eHij

, and is used
to test for degeneracy between the two views: it follows that
the smaller the value of 1

e2
Hij

, the worse the homography fits

the data, indicating that the estimate of epipolar geometry is
unlikely to be degenerate. Finally, the third term represents
the squared median epipolar error.

Typically, the homography error is small when there is
little camera motion between frames. Clearly, by detecting
this lack of motion, our calibration algorithm will be able to
handle these situations, and this type of degenerate motion
will not cause numerical problems. Note that there are other
less common situations where a homography can fit feature
motion and the camera does undergo significant motion, no-
tably where the features all lie on a planar surface. Alternate
detection methods have been proposed to deal with these
situations [22], and although these techniques could be in-
corporated into this framework, we will not consider these
situations further in this paper.

Assuming that a key-frame has already been placed at
frame i, the next key-frame should be chosen so that the
weighted sum of these three terms is minimised. This is
achieved by evaluating Equation 1 for a pairing of frame
i with each frame j = i + 1; : : :. This is continued until
less than 50% of the features that are tracked from frame i
remain in frame j. The frame with the lowest score is then
marked as the next key-frame, and the process continues
to the end of the sequence, searching for the best pairing
with this key-frame. Typically, we use relative weights of
w1 = 3, w2 = 10, and w3 = 1, giving more weight towards
the homography error and number of common features than
to the epipolar error.

Figure 3 shows a typical set of key-frames selected by
our algorithm, and illustrates how the key-frame selection
process is used to initiate the projective reconstruction of
camera motion. At the bottom of the figure are sample im-
ages from a 200 frame video sequence, captured using a
hand-held digital video camera. The graph directly above
these images plots frame number on the horizontal axis,
versus the magnitude of inter-frame camera motion (ob-
tained using the calibration algorithms described below) on
the vertical axis. Above the graph, a time-line indicates the
position of key-frames in the sequence 3.

It is important to notice that the middle third of the se-

3Note that each key-frame is marked with a vertical line, but for clarity,
only a sub-set of the key-frames are numbered. The un-numbered key-
frames are marked using short vertical lines (e.g. there are 4 additional
key-frames between frame 1 and frame 21).
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Figure 3. Key-frame selection, sub-sequence reconstruction and hierarchical merging for a 200 frame
sequence (see text for details).

quence contains relatively little camera motion. If key-
frames were selected uniformly along the sequence, the
camera motion between key-frames in this central region
would not necessarily be well-defined, causing numerical
problems when estimating the epipolar geometry. The key-
frame selection algorithm described above, however, has
detected this lack of motion, and key-frames have been po-
sitioned sparsely throughout this region.

Once a set of key-frames has been identified, two-view
projective reconstructions are built for each pair of key-
frames, using random sampling algorithms [29] to estimate
the epipolar geometry and projective structure. The recon-
struction of a sub-sequence is then completed by estimating
the camera projection matrices for non-key frames between
each pair, using the inlying features and a resectioning al-
gorithm [14]. Levenberg-Marquardt bundle adjustment [13]
is then applied to each sub-sequence, minimizing reprojec-
tion errors and distributing the overall residual error evenly
across the sub-sequence.

Note that this method of key-frame selection is differ-
ent to the approach described in [19, 18], where feature
matching between frames occurred after, rather than before
key-frame selection. Furthermore, in [19, 18], no explicit
attempt was made to avoid degeneracy, and key-frame se-
lection was based on image sharpness criteria rather than
reconstruction error.

3.2. Hierarchical Merging Scheme

At this stage of the reconstruction process, we have ob-
tained projective reconstructions for sub-sequences of the
entire video sequence. In order to obtain a projective recon-
struction for the entire video sequence, these sub-sequences
must be merged together. To reduce error, a robust hierar-
chical merging technique will be introduced. The benefits
of hierarchical merging schemes such as ours is that they
are able to distribute error more evenly over the entire se-
quence, thereby reducing drift and increasing the apparent
accuracy of object registration. Results will be shown later
comparing calibration error for the merging scheme against
a simple sequential algorithm.

Figure 3 illustrates the stages of our hierarchical merging
algorithm. Starting with the sub-sequence reconstructions
(first row above the key-frame line), pairs of sub-sequences
are robustly merged together using techniques described in
the next section. This pair-wise merging continues for a
user-specified number of passes through all the sequences,
with each pass reducing the total number of sub-sequences
by one. In Figure 3, three passes are shown.

After the user-specified number of pair-wise merging
passes have been performed, merging continues in a se-
quential fashion (top row in Figure 3), merging all sub-
sequences into the first. Clearly, sequential merging can
quickly produce a completed projective reconstruction con-
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taining all frames. This speed comes at the expense of ac-
curacy, however, when compared to merging adjacent pairs
of sub-sequences. By altering the number of rounds of pair-
wise merging, the user can easily trade speed against accu-
racy of reconstruction. Calibrations generated with varying
numbers of pair-wise merging rounds will be compared in
Section 5.

3.2.1. Projectivity Estimation

Although two overlapping sub-sequences will contain a
large number of common features, the projective basis in
which each is represented will be different. Because of
this, it is necessary to use corresponding scene structure to
compute the change in projective basis that maps one sub-
sequence onto another. This change in basis takes the form
of a projectivity,H inP 3. Suppose that a point j has match-
ing structure represented by Xj in the first sub-sequence,
andX0

j in the second sub-sequence. It follows that

Xj ' HX0

j

Pi ' P 0

iH
�1 (2)

where Pi and P 0

i are the camera projection matrices repre-
sented in each projective basis, and ' indicates equality up
to an arbitrary scale factor. We determine H by minimising
the following term:X

ij

d2(PiHX
0

j ; PiXj) (3)

for all structure j, and all frames i in sub-sequence 1 in
which this structure is observed. This measure states that,
for a common feature j, we wish to transform its location
X0

j in sub-sequence 2 into sub-sequence 1, and minimise
the re-projection error in all frames of sub-sequence 1 in
which the feature is visible, compared to the projections of
the feature position Xj . The distance function d(X;Y)
may represent either Euclidean or algebraic distance be-
tween the image locations X and Y:

d2E =
P3

k=1

�
Xk

X4

� Yk
Y4

�2
d2A =

P3

k=1(XkY4 � YkX4)
2

(4)
In all situations where merging is required, our scheme

ensures that at least one frame is common to both sub-
sequences. Because of this, the projection matrices of the
common frame, P0 and P 0

0 may be aligned with the stan-
dard projective basis by multiplying with their pseudo in-
verses, P+

0 and P+0
0 , in each sub-sequence, resulting in

P0P
+

0 = P+0

0 P 0

0 = [I3x3j0]. This effectively removes 11 of
the 15 degrees of freedom in the unknown projectivity [9].
The projectivity H that minimises Equation 3 will now be-
long to the 4-parameter family of homographies:

H = P+

0 AP
0

0;where A =

�
I3x3 0

a1;2;3 a4

�
(5)

where a = (a1;2;3;4) represent the 4 unknown parameters.
We will denote the projection matrices and structure in the
first sequence, after alignment with the standard projective
basis as follows:

P̂i = PiP
+

0

X̂j = P0Xj

Combining Equations 5 and 3 with an algebraic error mea-
sure, and substituting uij = P̂iX̂j yields two linear equa-
tions in terms of a for each projected point:

(p̂n � uij p̂3)AX̂
0

j = 0 (6)

where p̂n represents the n-th row of P̂i, and n 2 (1; 2; 3).
Equation 6 was first presented by Fitzgibbon and Zis-

sermann in [9]. Note that it is based on an algebraic dis-
tance, which is not a geometrically or statistically meaning-
ful quantity. It has been demonstrated that minimizing al-
gebraic distance may produce solutions different from those
that are expected [3, 14]. Significant improvements can be
made to this linear approximation by relating Euclidean and
algebraic error measures to Equation 6. A Euclidean error
measure gives:

de =
p̂nAX̂

0

p̂3AX̂0

� uij (7)

whereas algebraic error simply gives:

dA = p̂nAX̂
0 � uij p̂3AX̂

0 (8)

It can be easily verified that Equation 7 can be obtained by
dividing Equation 8 by p̂3AX̂0.

From Equation 2, we know that X̂ = �AX̂0 for an un-
known scale factor �. Examining the structure of A, how-
ever, reveals that the first 3 rows represent an identity map-
ping. This scale factor � can therefore be determined from
X̂n = �AX̂0

n for n 2 (1; 2; 3). It has been found in prac-
tice that � is best calculated using a least-squares solution
and the 3 available constraints to give [20]:

� =

vuuut1

3

2
4 X̂1

X̂0

1

!2

+

 
X̂2

X̂0

2

!2

+

 
X̂3

X̂0

3

!2
3
5
2

(9)

Since � is now known, we can approximate the division
of Equation 8 by p̂3AX̂0, by a term involving the projec-
tion of the equivalent structure from the other sub-sequence,
p̂3�X̂. This allows us to construct a new linear algorithm to
estimate the projectivity H that uses a close approximation
to Euclidean, rather than algebraic error:

p̂nAX̂
0

p̂3�X̂
�
uij p̂3AX̂

0

p̂3�X̂
= dEa

(10)
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3.2.2. Robust Merging

We apply the MSAC random sampling algorithm [29] to
the problem of estimating the projectivity relating two sub-
sequences, as this is an approach to parameter estimation
that is capable of dealing with data that may contain out-
lying samples. The basis of all random sampling methods
is to take a large number of minimal (or almost minimal)
samples of data, and estimate the model (i.e. the 4 unknown
parameters of the projectivity) using each minimal sample
set. Equation 10 defines two linear constraints on the 5 un-
known parameters of A for each projected point. To ensure
the linear system is suitably over-constrained, we choose
sets of 4 features common to each sub-sequence, and use
QR decomposition to solve for the projectivity.

It is hoped that one or more of these minimal sets will not
contain any outlying data, and so will produce a valid esti-
mate. The projectivity that minimizes a robust Huber func-
tion of the residuals given by Equation 10 is identified 4. In
general, random sampling algorithms are very fast due to
the small size of the feature sets used. In order to further
accelerate the estimation process for longer sub-sequences,
only residuals associated with key-frames are counted in the
Huber function. Although this is not essential, it has been
found to significantly decrease running time, without any
significant impact on overall error. Once the projectivity
that minimizes the residuals has been found, it is iteratively
refined using the Levenberg-Marquardtalgorithm, minimiz-
ing the same Huber function.

The final estimate of the projectivity can then be used
to merge the second sub-sequence into the first. For each
piece of common structure, we now have two candidate
positions: Xj and HX0

j , and the one with the smallest
RMS re-projection error is kept. Similarly, for overlap-
ping frames, we have two candidate projection matrices: P i

and P 0

iH
�1. Again, we keep the matrix giving the small-

est RMS re-projection error for all visible, inlying features.
All other features and projection matrices that are present
in the second sub-sequence but not in the first are trans-
formed using Equation 2. Features and projection matrices
that are present in the first sub-sequence, but not the second,
remain unchanged. After merging, outlying features are re-
identified, and bundle adjustment is applied to distribute any
error evenly throughout the new sequence. Merging contin-
ues, as described above, until the user-specified number of
pair-wise merging passes have been performed. The same
projectivity estimation algorithm is also used during the fi-
nal sequential merging pass.

4Note that the residuals for all points are measured, not just for the
minimal sample set used to estimate the projectivity.

4. Self-Calibration

The final stage of video sequence calibration involves
upgrading the reconstruction from a projective to a met-
ric framework. This is necessary because the projective
framework in which the sequence is reconstructed does
not preserve important quantities such as distances and an-
gles [14]. The relationship between projective and metric
geometry is generally unknown, and so this upgrade must
be achieved using self-calibration algorithms. Typically,
these involve estimating the position of the absolute conic
or its dual [30, 21]. For long sequences, an accumulation of
error in the projective reconstruction means that the position
of the conic often varies slightly along the sequence. Using
previous methods for self-calibration, we have found that
this variation often causes the conic estimation algorithm to
fail, due to the non-positive semi-definite nature of its inter-
mediate matrix representation (note that we have found that
this still occurs when the robust merging scheme described
in the previous section is used).

We take a novel approach to self-calibration, using a
RANSAC-based random sampling algorithm to estimate the
absolute dual quadric (ADQ). Using this method, we select
random sets of projection matrices from the completed se-
quence with which to apply the linear algorithm proposed
in [21, 22] and estimate the ADQ. We automatically reject
matrix sets that cause ADQ estimation to fail.

In addition, we are also able to include other contraints
on the camera parameters within the random sampling
framework. Our algorithm is capable of selecting a conic
that minimizes camera skew and deviations from a known
aspect ratio or principal point, and also of applying con-
straints on constant or known focal length. More specif-
ically, for each candidate set i = 1 : : :M of projection
matrices, we estimate the ADQ, and then determine the
calibration parameters for each frame j of the whole se-
quence [21, 22]:

Kj =

2
4 fjx sj cjx

0 fjy cjy
0 0 1

3
5 (11)

Assuming that the aspect ratio and principal point are
known, and the projective reconstruction has been trans-
formed so that they are 1 and (0; 0) respectively, we evaluate
the following residual for the candidate ADQ:

ri =
NX
j=0

!1s
2
j + !2(1�

fjy

fjx
)2 + !3(c

2
jx

+ c2jy ) (12)

where the first term measures deviation from zero skew, the
second term from unit aspect ratio, and the third from a prin-
cipal point of (0; 0), and with !1;2;3 used to weight the in-
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Figure 4. Error in camera position for a 500
frame synthetic test environment.

dividual terms 5. In situations where the focal length over
the sequence is known to be constant, we may calculate the
average focal length �fi =

PN
j=0 fjx , and add an additional

term !4( �fi � fjx)
2 into the summation of Equation 12 that

measures the deviation from this average value. Similarly,
if the focal length is known to vary, but it has been mea-
sured for one or more frames of the sequence (e.g. using
vanishing points [5]) then extra terms that account for these
deviations can be included in Equation 12 as well. After
identifying the ADQ that minimizes Equation 12, the same
residual measure is used in a non-linear optimization algo-
rithm to improve the estimate of the ADQ.

We have found that applying random sampling tech-
niques to the problem of self-calibration significantly in-
creases the usefulness and applicability of the basic linear
algorithm, especially for longer video sequences. In the
next section we present results for both real and synthetic
environments that demonstrate the benefits of both the self-
calibration algorithm and our hierarchical merging scheme.

5. Results

To test the accuracy of the projective reconstruction al-
gorithm outlined above, we have measured the amount of
error in camera position over the course of a simple 500
frame synthetic test sequence. The synthetic camera path
was created using a spline, to mimic a hand-held camera
moving in approximately a straight line. Every 25 frames,
the camera position was randomly perturbed from this line.
The camera focal length was set at a constant value of 900
pixels. Camera viewing direction was also controlled us-
ing a spline, initially set to look 30 degrees away from the

5Typically, we use weights of 4, 2 and 1 respectively. If the aspect ratio
or principal point are not known, their constraints can simply be ignored
by setting their respective weights to zero

camera path, rotating towards 90 degrees at the end of the
sequence, and randomly perturbed at 25 frame intervals.

Feature tracks were generated by positioning points ran-
domly in front of cameras in the sequence. Starting from
frame i in front of which a point was positioned, a feature
track was generated by projecting the point back into frames
i+1; i+2; : : :, and adding Gaussian noise of standard devia-
tion 0:5 pixels. Additionally, 15% of the feature projections
were made outlying by adding Gaussian noise of standard
deviation 10 pixels. The feature track was extended back-
wards from frame i to i�1; i�2; : : : in a similar fashion. In
both directions, the feature track was terminated at random
5% of the time, or when it moved out of the image bound-
ary. Feature tracks were generated in this fashion until 300
projections were present in each frame of the sequence. In
total, around 5000 features were created for each sequence,
with an average track length of just over 30 frames.

For each synthetic sequence, a projective reconstruction
was built, and then upgraded from a projective to metric
framework. Because self-calibration would introduce ad-
ditional errors, this upgrade was performed using known
projections of ground-truth data into two frames of the se-
quence (see [14], page 259). This allows us to examine the
error in the reconstruction, without it being affected by in-
correct self-calibration.

After metric structure and camera motion was obtained,
the error in camera position was measured as a percentage
of the total length of the camera path, when compared to
the original synthetic data. Figure 4 shows results for in-
creasing numbers of pair-wise reconstruction passes, at 50
frame intervals, averaged over 5 different sequences. Also
shown are results for a purely sequential merging scheme
(no merging passes), where sub-sequence reconstructions
were merged into the first using the same robust projec-
tivity estimation algorithm as for the hierarchical scheme.
Sequential merging took 4 minutes, with the hierarchical
scheme requiring an additional 1, 4, 10, 17 or 27 minutes as
the number of passes increased.

As the figure clearly shows, sequential merging intro-
duces a significant amount of drift over the course of the
sequence. Hierarchical merging, on the other hand, is ca-
pable of producing a calibration where the amount of ob-
served drift is drastically reduced. Even after only 2 pair-
wise merging passes, drift is reduced by a factor of 4. As the
number of passes increases, drift falls to less than 1:0%, but
computation time begins to increase rapidly, requiring a to-
tal of 31 minutes for 5 merging passes. This extra computa-
tion time is due almost entirely to the increased complexity
of bundle adjustment.
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Figure 5. Comparison of our RANSAC-based
self-calibration algorithm against a standard
linear method.

Figure 6. Examples of augmented video se-
quences (see text for details).

5.1. Self-calibration

To test the performance of our random-sampling ap-
proach to self-calibration, similar 500 frame synthetic se-
quences were generated, with an additional change in fo-
cal length modelled using a spline to simulating a camera
zoom. For each sequence, a projective reconstruction was
generated using the 5-pass merging scheme, and then the
self-calibration algorithm described in Section 4 was ap-
plied. We also applied the standard linear algorithm given
in [22], using all available projection matrices. Figure 5
shows the results in graph form for each intrinsic parame-
ter. The left-hand column shows graphs for the reference
focal length (top), the recovered focal length obtained with
the RANSAC algorithm (middle), and the focal length with
the standard algorithm (bottom). Mean and standard devi-
ation are shown. In the right-hand column, similar graphs
are shown for camera skew (top), aspect ratio (middle), and
the X component of the principal point (bottom). Refer-
ence values for skew, aspect ratio and principal point were
0, 1:066, and 360 respectively. The accuracy benefits of ap-
plying random sampling techniques to the problem of self-
calibration can be clearly seen, with all parameters exhibit-
ing serious deviations from the reference values when stan-
dard linear estimation was applied.

5.2. Example Augmented Sequences

Figure 6 shows frames from two video sequences that
have been calibrated using the techniques described in this
paper, and then augmented with synthetic objects. In each
case, three original frames are shown in a row, with the
same three augmented frames beneath. All sequences were
captured at PAL resolution using a Canon-MV1 digital
video camera, and are included in the material accompany-
ing this paper 6. Synthetic objects were rendered and com-
posited using OpenGL.

The top two rows in Figure 6 show a 420 frame sequence
containing a significant amount of camera zoom. As can
be seen in the accompanying video, our calibration algo-
rithm has been able to model this zoom correctly, and the
synthetic object remains accurately registered to the scene
throughout the sequence. Also notice that the relative size
of the synthetic object to its immediate surrounds remains
constant, indicating that the change in camera focal length
has been accurately recovered. Feature selection and guided
tracking for this sequence took approximately 25 minutes,
and 5-pass hierarchical merging took an additional 28 min-
utes.

The bottom two rows in Figure 6 show frames from a
panning sequence also captured by a hand-held camera.

6These sequences are also available for download from
http://aig.cs.man.ac.uk/icarus/ismar02
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This sequence was calibrated using a modified version of
the algorithm presented in this paper, whereby a projective
reconstruction was built using estimates of the planar ho-
mography relating each frame, rather than the epipolar ge-
ometry. Note that we are able to easily discount feature
tracks on the moving vehicles because they do not satisfy
the planar homography describing inter-frame camera mo-
tion. The estimate of the absolute conic in our RANSAC
calibration algorithm was achieved using the techniques de-
scribed in [8]. The modifications required to support this
type of camera motion were modest, showing the flexibility
of our calibration system. Tracking time for this 435 frame
sequence was 21 minutes, and calibration took an additional
7minutes. Note that all results presented are those produced
directly by our algorithm, without additional bundle adjust-
ment.

6. Conclusion

In this paper we have described a novel and accurate ap-
proach to the problem of calibrating a moving video cam-
era, with the aim of augmenting a video sequence with
synthetic objects. We have discussed modifications to a
standard feature tracking algorithm that uses an estimate of
camera motion to remove incorrectly tracked features, and a
hierarchical merging scheme for producing a complete pro-
jective reconstruction of the feature locations and camera
motion. Finally, we presented a new RANSAC-based ap-
proach to the problem of self-calibration.

Much work still remains to be done to produce a com-
pletely reliable camera calibration algorithm. Most notably,
improvements to the key-frame selection algorithm could
be made, using techniques similar to [28]. Similarly, meth-
ods of avoiding situations where the scene structure is domi-
nated by a single plane should also be investigated [22]. The
number of pair-wise merging passes is currently chosen by
the user, but automatic methods that attempt to determine
when further merging passes are unnecessary should be fea-
sible. One clear disadvantage of using feature tracking al-
gorithms (as opposed to feature matching as in [9]) is that
tracking will fail in instances where there is a large amount
of inter-frame camera motion. In this case, feature match-
ing algorithms should be employed in an attempt to allow
tracking to continue. Finally, the pair-wise merging scheme
needs to be compared against the hierarchical triplet-based
approach proposed by Fitzgibbon and Zissermann [9]. Al-
though a similar key-frame selection process to the one de-
scribed in this paper could clearly be applied to triplet-based
merging schemes, the benefits of the complex trifocal tensor
estimation algorithms need to be properly evaluated.

In addition to the problem of accurate camera registra-
tion, there are many other aspects of the environment that
need to be modelled if synthetic objects are to be compos-

ited in a believable way. Most importantly, the significant
sources of illumination in the scene must be identified so
that the objects may be shaded correctly and cast believable
shadows. Similarly, the blurring and noise of the camera
lens in the video sequence should be reproduced, so that
similar effects can be added to the synthetic objects.

A demonstration version of the ICARUS software, used
to produce all the results shown in this paper, will shortly be
available for download from http://aig.cs.man.ac.uk/icarus
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