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Abstract

We describe a novel camera calibration algorithm for

square, circle, and ring planar calibration patterns. An it-

erative refinement approach is proposed that utilizes the pa-

rameters obtained from traditional calibration algorithms

as initialization to perform undistortion and unprojection

of calibration images to a canonical fronto-parallel plane.

This canonical plane is then used to localize the calibration

pattern control points and recompute the camera parame-

ters in an iterative refinement until convergence. Undistort-

ing and unprojecting the calibration pattern to the canoni-

cal plane increases the accuracy of control point localiza-

tion and consequently of camera calibration. We have con-

ducted an extensive set of experiments with real and syn-

thetic images for the square, circle and ring pattern, and

the pixel reprojection errors obtained by our method are

about 50% lower than those of the OpenCV Camera Cal-

ibration Toolbox. Increased accuracy of camera calibra-

tion directly leads to improvements in other applications;

we demonstrate recovery of fine object structure for visual

hull reconstruction, and recovery of precise epipolar geom-

etry for stereo camera calibration.

1. Introduction

Camera calibration is an important problem in which

even small improvements are beneficial for tasks such as

3D reconstruction, robot navigation, etc. Algorithms for

calibrating a pinhole camera can be primarily classified into

two categories; those that require objects with known 3D

geometry [5], and those that use self-calibration, including

the use of planar calibration patterns [18, 22, 15, 17]. Due

to their ease of use, calibration algorithms that use planar

patterns have gained widespread acceptance. In addition to

the square planar pattern, circle and ring patterns have also

been used [16, 7, 4, 3, 24, 21, 11, 9]. The calibration pro-

cedure typically consists of either localizing the calibration

pattern control points (square corners, circle or ring centers)

[18, 22, 7, 9] and then solving for the camera parameters, or

using some geometric property of the pattern itself to solve

for the camera parameters directly [4, 3, 24, 21, 11].

A major source of error that affects both camera cali-

bration approaches; of either localizing the control point

or using geometric properties of the pattern directly, is that

the input camera calibration images are non-fronto parallel

images that suffer from nonlinear distortion due to camera

optics. Therefore, precise localization of control points or

accurate determination of geometric properties under such

conditions is a very difficult task, where even small errors

may lead to imprecise camera calibration. The difficulty of

localizing square control points in distorted non-fronto par-

allel images was noted by Zhang in [23], however, no steps

were presented to rectify it. Heikkila noticed a variant of

this problem where the center of the projected circle is mis-

taken for the projected center of the circle and proposed a

refinement approach for control points that is restricted to

only the circle pattern [7, 8] and does not extend to other

planar patterns such as the square and the ring pattern.

In this paper, we advocate an iterative refinement ap-

proach for accurate localization of calibration pattern con-

trol points that is applicable to all planar patterns: square,

circle and ring. We propose to undistort and unproject

the input pattern images to canonical fronto-parallel images

with no distortion; pattern control points are then local-

ized in these canonical images. We can localize the con-

trol points with high accuracy in the canonical images be-

cause they are fronto-parallel and do not suffer from distor-

tion effects. Once the control points have been localized,

they are then used to recompute the camera calibration pa-

rameters. This process is then repeated until convergence.

This iterative refinement approach can be bootstrapped us-

ing standard calibration routine like OpenCV [1, 22], which

provide initial estimates for radial distortion and camera pa-

rameters. We have conducted an extensive set of experi-

ments with real and synthetic images of square, circle, and

ring calibration patterns and our results demonstrate recov-

ery of calibration parameters with accuracy far exceeding

the traditional approach as employed by OpenCV [1] (see

Section 5). In addition, we also present results on two appli-

cations: visual hull reconstruction, where we show that fine

object structure can be recovered from accurate calibration

using the proposed approach, and stereo camera calibration,

where we show that the proposed approach results in precise

recovery of epipolar geometry.



Figure 1: Top row: Input images of the ring calibration pattern. Bottom row: Input images have been undistorted and unprojected to

canonical fronto-parallel images. Control points can be precisely localized in the canonical images as compared to the input images.

2. Related Work

Square control points were first used in their earliest

form by Brown [2] and were made popular by the subse-

quent work on camera calibration by Tsai [18]. Sturm et

al. in [15] use imaged absolute conic to recover camera in-

trinsic parameters using linear calibration equations. Zhang

introduced an algorithm that required only a few images of

a planar checkerboard pattern to compute the calibration pa-

rameters [22]. The approach consisted of an initial closed-

form solution of the camera parameters, followed by a non-

linear refinement using Levenberg-Marquardt [14]. Zhang’s

approach to camera calibration has inspired OpenCV [1]

and serves as our benchmark to compare progress in cam-

era calibration accuracy, consequently we elaborate briefly

on the details of OpenCV in section 3.

Circular control points were introduced as an alterna-

tive to the square control points for camera calibration

[16, 7, 4, 3, 24, 21, 19]. Heikkila in [7] performed a

minimization over the weighted sum of squared differ-

ences between the observation and the camera model using

Levenberg-Marquardt [14]. Chen et. al. in [3] estimated

the extrinsic camera parameters and the focal length of the

camera from a single image of two coplanar circles with ar-

bitrary radius. Colombo et. al. in [4] presented a system to

compute camera parameters from an image of at least two

circles arranged coaxially. Coaxial arrangement occurs nat-

urally in situations under which rotational symmetry exists.

Meng et. al. in [13] proposed a calibration method similar

in spirit to [22] but with a calibration pattern consisting of

a circle with straight lines passing through its center. Wu et

al. in [19] exploited the quasi-affine invariance property of

two parallel circles to recover intrinsic camera parameters.

Researchers in [11, 9, 12] have employed the ring pattern

for camera calibration. Kim et. al. in [11, 12] developed al-

gebraic and geometric constraints of projected concentric

circle and used these properties to compute camera param-

eters. A single, large concentric circle image may, how-

ever, suffer from nonlinear distortion leading to inaccurate

determination of geometric properties of the concentric cir-

cle, and therefore, inaccurate camera calibration. A grid of

concentric circles, on the other hand, is less susceptible to

distortion effects. Jiang et. al. in [9] presented an automatic

method that constructs a sequence of points, strictly conver-

gent to the image of the circle center from an arbitrary point

on the ring pattern. These center points were then used for

camera calibration using Zhang’s algorithm [22].

The primary difficulty in obtaining accurate calibration

stems from the problem of working directly with the non-

fronto parallel distorted input images in which precise lo-

calization of control points or accurate determination of ge-

ometric properties of the calibration pattern is a difficult

task. Previous work has neglected to address this problem

directly [1, 3, 9, 11]. Square control points in OpenCV [1]

are localized in distorted non-fronto parallel images, which

results in their imprecise localization in images. Methods

that rely on the properties of the circular and ring features

[3, 9, 11] can not handle the non-linear distortion by itself

because it is not possible to distinguish if the difference in

the feature parameters comes from the distortion or from

projective effects. The goal of our work is accurate camera

calibration by addressing the problem of precise localiza-

tion of control points in input images. We propose an iter-

ative refinement approach for localizing the control points.

We undistort and unproject the input images to a canonical

fronto-parallel image, which is then used to precisely local-

ize the control points and re-estimate the camera parame-

ters. This procedure is performed in an iterative manner till

convergence, resulting in an accurate recovery of camera

parameters (see results in Section 5).
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3. Traditional Camera Calibration

Planar patterns based on square control points are a pop-

ular choice for calibrating a camera. There are widely used

standard Matlab toolbox and OpenCV routines for cam-

era calibration [1]. At least two different images of the

pattern are required for calibration, although usually five

to six images are used for higher accuracy and numerical

stability [22]. The calibration process includes two steps:

corner detection and calibration parameter optimization us-

ing Levenberg-Marquardt [14]. Corners are detected using

the Harris interest point detector and then refined using a

gradient-based search. In the optimization step, the ini-

tial calibration parameters are first estimated by a closed-

form solution and then optimized by Levenberg-Marquardt

to minimize the reprojection error [22].

3.1. OpenCV Square Control Point Refinement

Traditional calibration approach as employed by

OpenCV [1] performs initial corner detection using the Har-

ris interest point operator. These control points are then fur-

ther refined using an iterative subpixel localization with a

gradient-based search,

∑

i∈N

∆pi
× (q − pi) = 0, (1)

where q is the control point, pi is a location in the neighbor-

hood N of the control point q and ∆pi
is the image gradient

at location pi. The above equation can be solved for q,

q =

(

∑

i∈N

∆T
pi

∆pi

)−1
∑

i∈N

∆T
pi

∆pi
pi. (2)

When the calibration pattern is distorted and not in the

fronto-parallel pose, then the orthogonal relationship be-

tween the gradient ∆pi
and the position vector pi does

not hold, and consequently, the gradient based search pro-

cess fails to perform sub-pixel localization of control points.

Figure 2 (a & b) show the input image and the gradient vec-

tors around a corner respectively. It can be observed that

the gradient is not orthogonal to edges, contradicting the

assumption made by the OpenCV algorithm [1].

4. Iterative Control Point Refinement

Figure 2 (c & d) show the canonically transformed image

and gradient vectors around a corner respectively. In this

canonical view, we can observe that the gradient is indeed

orthogonal to the image edge and, therefore, using a canon-

ical image for sub-pixel localization will result in precise

control point localization. The canonical fronto-parallel im-

age can be obtained by following an iterative approach to-

wards the refinement of calibration pattern control points.

!"# !$#

!%# !&#

Figure 2: (a) Calibration pattern input image. (b) OpenCV [1]

requires orthogonality of gradient to the image edges, which is

not satisfied in the distorted non fronto-parallel input images. (c)

Canonically transformed view proposed in this paper. (d) We can

observe that the gradient, to a large degree, is indeed orthogonal to

the image edges in the canonical view.

In the first iteration, we use OpenCV to obtain an ini-

tial estimate of camera parameters [1, 22]. This initial es-

timate is then used to undistort the input images for radial

distortion and then unproject them onto a canonical fronto-

parallel plane in the world coordinate system (see Figure 1

for an example). Since the canonical images have been both

undistorted and unprojected, control points can be detected

easily and localized precisely as compared to the original

input images. After localizing the control points of a pat-

tern, we then reproject the control points using the estimated

calibration parameters into the camera coordinate system.

These projected control point locations are then used to re-

compute the camera parameters and the process repeats un-

til convergence (see Figure 4 for the complete algorithm).

An important aspect of our iterative refinement approach

for pattern control points is that it is pattern agnostic. We

have applied this approach to refine the control points of

square (checkerboard), circle and ring pattern. Different

patterns, however, do need different control point detection

algorithms.

Square Control Point: In case of the square pattern

(checkerboard), we have used two different control point lo-

calization approaches. In the “OpenCV Iterative” approach,

we localize the control points using the approach outlined

in OpenCV (see Section 3.1). In the “Square Iterative” ap-

proach, we have used a checkerboard template to localize

the square corners using normalized cross-correlation.
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Figure 3: Localization error of the control points against

the known ground-truth control point locations in synthetic

images. Number in the bracket is the RMS localization error

in pixels. In terms of the patterns, Ring is the most accurate

pattern to localize. Iterative refinement of control points

leads to improvement in the localization accuracy of control

points for all patterns. Figure best seen zoomed in.

Circle Control Point: In case of the circle pattern, we

use the circle center as a control point and localize it in the

input images by using the center of the ellipse fitted to the

circle edge [6], we call this approach “Circle (ellipse fit)”.

The detected center of the ellipse is not the projected center

of the circle because of perspective distortion introduced by

the non-frontal orientation of the calibration grid [8]. How-

ever, since we perform calibration in an iterative fashion,

the center of the ellipse can be used as a starting point and

subsequently refined. In the “Circle Iterative” approach, we

transform the circle pattern to a canonical fronto-parallel

plane, the calibration pattern images are then correlated

with a circle filter (Gaussian blurred circle template) to lo-

calize the peak of normalized cross-correlation. We perform

quadratic fitting in the neighborhood of the peaks to obtain

sub-pixel accurate circle control points.

Ring Control Point: We follow the same approach for

detecting the center of rings as outlined earlier for the cir-

cle pattern except that we use the average of the inner and

the outer ellipse centers as our ring control point for the

non-iterative approach, which we call “Ring (ellipse fit)”.

During the iterative refinement stage (“Ring Iterative” ap-

proach), we use a Laplacian as our cross-correlation filter to

localize the control points of the ring pattern in the canoni-

cal fronto-parallel images. This estimate of the ring control

point is then further refined using quadratic fitting to obtain

sub-pixel accuracy.

Figure 3 shows the control point localization error for a

set of radially-distorted synthetic images (details on the syn-

thetic image generation are given in Section 5.1). We can

observe that by using the ring pattern for calibration instead

of the square pattern, we can obtain a reduction in the Root-

Mean-Square (RMS) localization error from ∼ 15 pixels to

∼ 1.7 pixels. Incorporation of the proposed iterative refine-

Objective

Given N images of the planar calibration grid, estimate the camera

parameters.

Algorithm

1. Detect control points: Detect calibration pattern control

points (corners, circle or ring centers) in the input images.

2. Parameter Fitting: Use the detected control points to esti-

mate camera parameters using Levenberg-Marquardt [1].

Do until convergence

1. Undistort and Unproject: Use the camera parameters to

undistort and unproject input images to a canonical pattern.

2. Localize control points: Localize calibration pattern control

points in the canonical pattern.

3. Reproject: Project the control points using the estimated

camera parameters.

4. Parameter Fitting: Use the projected control points to re-

fine the camera parameters using Levenberg-Marquardt [1].

Figure 4: Camera calibration using iterative refinement of

control points.

ment stage for the control points leads to a further one-order

magnitude improvement from ∼ 1.7 pixels to ∼ 0.23 pix-

els. Our results show that improvements in the accuracy of

control point localization directly leads to improvements in

the accuracy of camera calibration.

5. Evaluation

We have conducted detailed evaluation of our proposed

approach of iterative refinement of control points for camera

calibration on both synthetic and real images. In addition,

we have also evaluated the proposed approach on different

calibration patterns with different control point localization

algorithms. We show the benefits of increased camera cali-

bration accuracy, due to the proposed approach, towards the

task of visual hull reconstruction and stereo camera calibra-

tion.

5.1. Evaluation on Synthetic Images

We generated five synthetic images with radial distortion

for each calibration pattern (square, circle, and ring) that

consisted of a fronto-parallel image of the grid along with

four images with +/− 45◦ rotation along the x and y axes

respectively.

Table 1 compares the estimated camera parameters using

the OpenCV approach [1] versus the proposed approach.

The “Ground Truth” column presents the camera parame-

ters that were used to generate the synthetic images, Fx, Fy

are the focal length, U0, V0 is the principal point and K1,K2

4



Table 1: Calibration result for synthetic images. Compared to the traditional approach of OpenCV [1], the proposed iterative

refinement approach leads to a dramatic improvement in calibration accuracy. In addition, the ring planar pattern produces

accurate results as compared to the circle planar pattern, which in turn is better than the square planar pattern.

Parameters Ground OpenCV OpenCV Square Circle Circle Ring Ring

Truth [1] Iterative Iterative (ellipse fit) Iterative (ellipse fit) Iterative

Values Final σ Final σ Final σ Final σ Final σ Final σ Final σ

Fx 800 819.2 8.1 799.7 1.8 804.2 0.5 800.6 0.8 800.2 0.2 800.7 0.8 800.1 0.18

Fy 800 817.8 7.9 799.4 1.7 803.8 0.5 800.7 0.7 800.1 0.2 800.8 0.7 800.1 0.18

U0 319.5 304.4 12.8 321.1 3.8 316.6 1.1 321.0 1.7 320.6 0.4 320.8 1.7 320.6 0.4

V0 239.5 248.8 12.2 239.9 2.6 242.5 0.8 240.5 1.1 240.5 0.3 240.4 1.1 240.5 0.3

K1 -0.30 -0.18 0.1 -0.31 0.02 -0.28 0.01 -0.31 0.01 -0.30 0.002 -0.31 0.01 -0.30 0.003

K2 -0.30 -0.44 1.21 -0.19 0.27 -0.29 0.01 -0.17 0.12 -0.28 0.03 -0.18 0.12 -0.28 0.03

RMS 0 0.4855 0.1263 0.0319 0.0517 0.0125 0.0515 0.0119

Figure 5: Scatter plots for the Root Mean Square (RMS) error between the detected control points and the re-projected control points

using the estimated calibration parameters. The figures from the left to the right correspond to the columns of the table under which they

are positioned respectively. It can be observed that the proposed approach of iterative refinement of the control points leads to accurate and

stable recovery of calibration parameters across the patterns. Figure best viewed when zoomed in.

are the radial distortion parameters. The column denoted by

“OpenCV” presents the calibration parameter estimates as

obtained by OpenCV using the square corner control points.

We next apply our iterative approach to detect and localize

square corners in the canonical fronto-parallel images and

we can see a dramatic improvement in the accuracy as noted

in the “OpenCV Iterative” column. The RMS error drops

from 0.48 pixels to 0.126 pixels, a reduction of 75%. In the

“Square Iterative” column, we have combined our iterative

approach with the checker-board template that uses normal-

ized cross-correlation to localize the square corners, provid-

ing more accuracy and stability, resulting in a further drop

in the RMS error to 0.032 pixels. Changing from the square

pattern to the circle pattern, the “Circle” and the “Circle It-

erative” columns present our results without and with itera-

tive refinement of the circular control points (circle-centers)

respectively. Note that not only is the circle pattern more

accurate than the square pattern even without the iterative

refinement, but also better compared to the “Square Itera-

tive” approach after the iterative refinement. Finally, we

present results on the ring pattern without and with iterative

refinement in the columns “Ring” and “Ring Iterative” re-

spectively. We can see that the ring pattern is more accurate

as compared to the circle pattern and the RMS error drops

to 0.0119 pixels. In summary, it is evident that the pro-

posed approach of iterative refinement of the control points

improves the accuracy of camera calibration.

Figure 5 shows the scatter plot for the RMS error be-

tween the ground truth control point location and the re-

projected control point locations from the resulting camera

calibration using the different approaches. It can be ob-

served that not only does the proposed approach recover

the calibration parameters accurately but it is also stable as

the scatter plot is symmetric around the origin reflecting the

symmetry of the synthetic images around the origin. In all

of our experiments, we use only 2 iterations for the refine-

ment of the control points. Figure 6 (a) shows the RMS

calibration error comparing the proposed approach of iter-

ative refinement of control points and the non-iterative ap-

proach as the number of images are increased. Figure 6 (b)

shows the RMS calibration error as additive Gaussian noise

corrupted ground-truth control point locations are used as

the localized control points for calibration. We can observe

that in both these scenarios, the proposed approach of iter-

ative control point refinement recovers the camera parame-

ters with accuracy and stability.

5.2. Evaluation on Real Images

We collected five images from a camera for each pat-

tern to evaluate our proposed approach. Table 2 compares

the traditional approach of OpenCV [1] versus the proposed

approach. The different columns of the table have the same

description as before (from the previous sub-section) and

present results for camera calibration using different pat-

terns, and with and without iterative refinement. We can

see by looking at the RMS error of the traditional versus the

proposed approach that the iterative refinement of control

points in the canonical images leads to large improvements

in the accuracy of camera calibration. In particular, the

proposed approach of iterative refinement of control points

5



Table 2: Camera calibration result for images taken from a camera. We can notice that the proposed iterative refinement helps

to reduce the error of the traditional approach using OpenCV [1] and the square planar pattern from 0.198 to 0.059 using the

iterative refinement along with the ring planar pattern.

Parameters OpenCV OpenCV Square Circle Circle Ring Ring

[1] Iterative Iterative (ellipse fit) Iterative (ellipse fit) Iterative

Final σ Final σ Final σ Final σ Final σ Final σ Final σ

Fx 337.85 8.77 334.51 4.05 335.58 2.40 330.39 3.84 330.39 1.95 328.28 3.18 327.17 1.64

Fy 338.90 8.71 335.38 4.02 336.57 2.39 332.15 3.80 332.11 1.94 329.91 3.15 328.64 1.62

U0 164.23 3.12 163.81 1.48 163.65 0.87 164.84 1.53 165.08 0.77 164.80 1.33 164.71 0.68

V0 130.11 3.45 130.89 1.62 130.37 0.96 131.47 1.57 131.08 0.79 131.16 1.41 130.80 0.72

K1 -0.11 0.06 -0.14 0.03 -0.13 0.02 -0.12 0.02 -0.14 0.015 -0.17 0.02 -0.17 0.001

K2 0.11 0.42 0.27 0.19 0.22 0.12 0.08 0.17 0.16 0.09 0.24 0.12 0.25 0.06

RMS 0.198 0.139 0.081 0.135 0.068 0.115 0.059
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Figure 6: (a) Root-Mean-Square (RMS) error remains stable as

the number of images are increased. (b) In the case of additive

Gaussian noise corrupted ground-truth control point locations be-

ing used as the localized control points, we can see that the pro-

posed iterative approach consistently performs better than the non-

iterative approach. Figure best seen in color.

leads to ∼ 60%, ∼ 50%, and ∼ 50% improvement in the

RMS error over the non-iterative approach for the square,

circle and the ring calibration patterns respectively.

Table 3 shows a comparison of the proposed approach

of camera calibration for the circle pattern against OpenCV

and the approach presented by Kannala et al. [10] for cam-

era calibration using real images. In comparison to OpenCV

[1], the proposed approach obtains roughly 50% RMS error

reduction at a moderate computational cost. In comparison

to Kannala [10], the proposed iterative refinement approach

not only obtains a 35% improvement in the RMS error, but

also is more than 60 times faster.

5.3. Application: Visual Hull Reconstruction

Visual hull reconstruction refers to the task of construct-

ing the 3D convex hull from multiple silhouette images.

Since, the process relies on the intersection of the silhou-

ettes, it therefore requires accurate camera calibration. This

requirement becomes all the more demanding for applica-

Table 3: Calibration comparison for circle pattern using real

images. The proposed iterative approach achieves the low-

est RMS error at a moderate computational cost.

Parameter OpenCV Kannala Circle Iterative

[1] [10] (Proposed)

RMS (pixels) 0.135 0.111 0.068

Time (seconds) ∼ 4 > 600 ∼ 10

tions that involve the reconstruction of fine details of an ob-

ject. In this experiment, we generated a set of 60 cameras

located around an object at 6◦ interval. Gaussian noise was

then added to the camera parameters in accordance with the

noise levels obtained from each calibration approach in Ta-

ble 1. We then use the visual hull reconstruction algorithm

of Yamazaki et al. [20] to reconstruct polyhedral visual hull

for the two synthetic objects: seaweed and ant. Figure 7

shows the result of visual hull reconstruction for the sea-

weed and ant objects respectively. We can observe that the

fine details of the objects, such as the thin branches of the

seaweed or the ant tentacles, are completely lost after cali-

bration is done using OpenCV [1]. The proposed approach

of iterative refinement of control point, on the other hand,

is able to recover the fine object structures due to accurate

calibration. Note that the ring iterative approach is more

accurate compared to the circle iterative approach.

5.4. Application: Stereo Camera Calibration

In this experiment, we calibrate two cameras using the

different calibration algorithms and quantitatively check the

accuracy of the resulting calibration using epipolar lines.

Specifically, a pair of epipolar lines must pass through the

same point in the left and the right image. We intrinsically

calibrate the two cameras and then solve for the extrinsic

parameters to recover metric stereo camera calibration. The

fundamental matrix is then recovered from the intrinsic and

the extrinsic camera parameters. Figure 8 shows two sets

of objects that were used to test the accuracy of the cali-
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Figure 7: Visual hull reconstruction requires accurate camera calibration. Ground Truth: Synthetic model of a seaweed from which

60 images were taken at an interval of 6
◦ around the object. OpenCV: Visual hull reconstruction after calibration using the OpenCV

camera calibration toolbox. Circle & Ring Iterative: Visual hull reconstruction after calibration using the proposed circle and ring iterative

approaches respectively. Notice the difference in the reconstruction of thin branches of the seaweed and the tentacles of the ant.

Table 4: The proposed iterative refinement approach leads

to an accurate recovery of the epipolar geometry across the

different planar calibration patterns.

Epipole OpenCV Square Circle Ring

error (pixels) [1] Iterative Iterative Iterative

Flower 10.02 4.64 3.22 0.45

Sculpture 9.32 4.58 2.58 0.17

bration. Figure 8 (first and fourth row) are the correspond-

ing left and right images for the the two objects used in

the experiment and the lines of the same color must pass

through the same point (denoted by a ‘+’ sign) in the both

the images. Table 4 presents the epipole error that is de-

fined to be the distance between the epipole line and the

image point. The “OpenCV” column shows that the calibra-

tion using OpenCV contains large errors (∼ 9 pixels). The

other columns in the table show improvement in the stereo

calibration as we move from the “Square Iterative” column

to the “Ring Iterative” column, which is the most accurate

of the calibration approaches. Note that the presence of a

large non-uniform overhead lighting during calibration pat-

tern image capture made the task of calibration difficult.

However, this non-uniform lighting provides a good test-

ing scenario for comparison between the non-iterative and

the proposed iterative refinement approach for calibration.

6. Conclusions

We have proposed an approach for accurate camera cal-

ibration using iterative refinement of control points. Using

an initial calibration estimate, we propose to undistort and

unproject the input calibration images onto a fronto-parallel

plane for precise localization of the control points. The lo-

calized control points are then used to recompute the camera

calibration parameters and this iterative process continues

until convergence. We have presented results on synthetic

and real images outlining the increased camera calibration

accuracy obtained by the proposed iterative refinement ap-

proach for the square, circle and ring pattern. In addition,

we show the benefits of increased camera calibration accu-

racy for visual hull reconstruction and stereo camera cali-

bration.
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