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Abstract— The dispersion characteristics of a glide-symmetric
holey periodic surface are investigated, with special emphasis on
a detailed study of its stopbands. The unit cell is modeled as a
multiport network associated with multiple modes at each of the
lattice boundaries. Enforcing the periodic conditions, the real and
imaginary parts of the wavenumbers of the Floquet modes are
calculated through an eigenproblem posed in terms of the gener-
alized multimodal transfer matrix, which is computed from the
scattering parameters obtained with a full-wave simulator. This
procedure allows us to take into account the higher order modal
couplings between adjacent unit cells that are crucial for accurate
dispersion analysis. The resulting simulation-assisted approach
provides both a convenient computational tool and a very fruitful
physical insight that reveals the existence of complex modes,
the convergence of opposite-parity modes, and the anisotropy
in both passband and stopband. This approach enables a precise
calculation of the attenuation constant, which is not possible with
conventional techniques as the eigenmode solvers of commercial
software. Based on this approach, an extensive parametric study
is carried out, rigorously establishing a set of critical criteria for
the use of such a periodic surface as an electromagnetic bandgap
structure in gap waveguide technology. Moreover, the analysis of
the directional properties of the structure is applied to further
suppress the leakage.

Index Terms— Dispersion analysis, gap-waveguide, glide
symmetry, metasurfaces, multimodal analysis.

I. INTRODUCTION

A GLIDE-SYMMETRIC holey periodic surface is con-
structed in a narrow air gap formed by a parallel-plate

waveguide (PPW), where the holes in its upper and
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lower metallic plates are off-shifted by half the period in
both orthogonal in-plane directions. The attractive prop-
erties of such surface have driven studies on various
microwave/millimeter-wave devices, including lenses [1]–[3],
leaky-wave antennas [4], flanges with low leakage [5], [6], and
filters [7]. In addition, these surfaces find application in gap
waveguide technology as a cost-effective alternative for the
electromagnetic bandgap (EBG) structures based on bed-of-
nails [8], [9]. Glide-symmetric holey EBG presents a stopband
whose bandwidth is substantially broader than its nonglide
counterpart. This fact has been widely validated by both a the-
oretical analysis using a mode-matching technique [10], [11]
and experimentally [12], [13]. The use of holes to replace
the pins in conventional gap waveguides increases the design
robustness and alleviates the manufacturing challenges, espe-
cially in mmWave bands where the tall and thin metallic
pins are extremely sensitive to their details in submillimeter
scale [14]. In those applications with limited space for the
EBG (e.g., a phased array constrained by its element spacing),
a minimum number of holes needs to be determined for
a target attenuation [8], [9]. This necessarily requires the
precise knowledge of the stopband characteristics, which has
never been thoroughly investigated. In fact, the attenuation
provided by this stopband only has been estimated from the
leakage losses of a groove-gap waveguide whose lateral walls
are loaded with such glide-symmetric holes [12]. To accu-
rately characterize the structure performance, especially in
its stopband a comprehensive dispersion analysis needs to be
carried out.

In recent years, a lot of effort has been devoted to the
proper description of a pair of periodic surfaces that are
glide-symmetrically coupled to each other. As explained
in [15], the complex interactions between two surfaces bring
difficulties to the equivalent homogenization process that is
required by the transverse-resonance method widely used
in conventional metasurfaces [16], [17]. For this reason,
the mode-matching technique is employed in [10], [11],
and [18] for the Bloch analysis of both glide-symmetric cor-
rugations and holey metasurfaces. This ad hoc method yields
rigorous solutions but does not provide a direct physical inter-
pretation. Meanwhile, an equivalent circuit approach is pro-
posed for the 1-D glide-symmetric geometries [15], [19], [20],
giving a straightforward link between their physical behaviors
and the circuit topologies. The analytical nature of this
equivalent-circuit method allows for highly efficient computa-
tion, but it is restricted to deal with canonical structures with
circuit parameters known in closed form [21], [22].
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In this work, a simulation-assisted generic appro-
ach [23]–[27] is applied to analyze the glide-symmetric holey
metasurface, presenting excellent accuracy and a very fruitful
physical insight. Similar methods have also been adopted
in the analysis of conventional periodic structures [28]–[33].
Here, the dispersion analysis is carried out on a single unit cell
described by a generalized multimodal transfer matrix. This
matrix is converted from the simulated multimodal scattering
parameters associated with multiple modes defined at each
interface bounding the unit cell. By including the higher
order modes, this matrix properly accounts for those couplings
between adjacent unit cells that have a critical impact on the
method accuracy. Because of that, some previously undetected
phenomena are now found: among them, the existence of a
complex mode, interchange of mode parity, and anisotropic
behavior in the passbands/stopbands. This method also enables
an accurate calculation of the attenuation constant in the
stopband that is not possible with the eigenmode analysis
of commercial software. Moreover, an exhaustive parametric
analysis is performed, aimed at giving the first complete
guidelines for the design of such holey metasurface as an
EBG in gap waveguide technology. The knowledge of the
anisotropic characteristics of the structure is used to fully
exploit its stopband attenuation.

This article is organized as follows. In Section II, the multi-
modal characterization of the glide-symmetric holey metasur-
face is formulated. Then, in Section III, a careful dispersion
analysis is presented, with special emphasis on the attenuation
properties. In Section IV, the stopband attenuation of the glide
and nonglide scenarios are compared, and the designing rules
for this holey EBG are presented. Finally, the main conclusions
are discussed in Section V.

II. PROBLEM FORMULATION

The computation of the dispersion diagrams of periodic
structures is a topic with a very long tradition in several
physics and engineering areas [34]–[36]. Different semian-
alytical, numerical, and experimental approaches have been
reported for this task (see, for instance, [22], [37]–[45]).
In this section, we focus our attention on the characteristics
of the Floquet modes of the glide-symmetric holey meta-
surface depicted in Fig. 1(a). The periodic holes drilled in
the top and bottom metallic plates of the PPW are dis-
placed against each other by half the period in both x- and
y-directions.

In the framework of the network theory, a periodic structure
can be modeled as an infinite cascade of the equivalent
networks of its unit cells, each characterized by its transfer
matrix. Imposing the Bloch condition on the cell boundaries,
a dispersion analysis can be restricted to one single unit cell.
As explained in [35], [46], and [47], this unit cell can be well
described by a mono-modal network provided that: 1) only
one Floquet mode of interest is relevant on its terminal planes
bounding the cell and 2) the interactions between adjacent
cells via other modes are negligible on those planes, as in the
cases reported in [15] and [19]. However, these assumptions
are no longer valid for the more general scenario considered

Fig. 1. Glide-symmetric holey metasurface. (a) Full structure. (b) Unit cell.
The dark circles represent holes in the bottom layer and the white in the top
layer. The period is denoted as p, hole diameter as d, hole depth as h, and
the air gap between two layers as g. (c) Equivalent network of the unit cell
characterized by a multimodal transfer matrix.

in this work. As illustrated in Fig. 1(b), in the presence of
glide-symmetric holes, the unit cell boundaries are inevitably
located in the holey region, through which adjacent cells are
closely coupled to each other by means of evanescent-mode
interactions. For this reason, the unit cell in Fig. 1(b) is
modeled as a 4N-port network with its four terminal planes
placed on the side faces of the square lattice, each one related
to the first N significant modes, as shown in Fig. 1(c). Consid-
ering the equivalent voltage V

(n)
i and current I

(n)
i associated

with the nth mode at the i th terminal plane, the application of
the Bloch condition to these quantities at all terminal planes
gives rise to the following generalized eigenvalue problem
formulated through a generalized multimodal transfer matrix
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and kx and ky are the modal wavenumbers in the x- and
y-directions, respectively. Here, Vi , Ii (i = 1, 2) at terminal
planes 1 and 2 are grouped into the effective “input” quantities
and Vi , Ii (i = 3, 4) at planes 3 and 4 into the “output”
quantities.

For obtaining the transfer matrix [T] from the multi-
port scattering matrix [S] [48], let us consider the network
in Fig. 1(c), whose input ports are numbered 1, 2, . . . , 2N ,
corresponding to the 2N modes at terminal planes 1 and 2 and
output ports 2N + 1, 2N + 2, . . . , 4N corresponding to the
same sets of modes at terminal planes 3 and 4. The scattering
matrix of this network can be written in terms of 4 partitioned
2N × 2N submatrices as

[S] =



[Sii] [Sio]
[Soi] [Soo]

�

(2)

where the subscripts i/o represent the input–output ports. If the
transfer matrix [T] in (1) is also written in partitioned form as

[T] =



[A] [B]
[C] [D]

�

(3)

the following explicit relations can be used:

[A] = 1

2
[([I] + [Sii])[Soi]−1([I] − [Soo]) + [Sio]]

[B] = 1

2
[([I] + [Sii])[Soi]−1([I] + [Soo]) − [Sio]][Zo]

[C] = 1

2
[Zi]−1[([I] − [Sii])[Soi]−1([I] − [Soo]) − [Sio]]

[D] = 1

2
[Zi]−1[([I] − [Sii])[Soi]−1([I] + [Soo]) + [Sio]][Zo]

with [I]2N×2N being the identity matrix and [Zi]2N×2N and
[Zo]2N×2N diagonal matrices whose entries are the character-
istic port impedances. It should be noted that the specific value
of each port impedance does not affect the eigenvalues of [T]
as long as that impedance value is the same for the same mode
at both input and output ports [27], namely, as long as

[Zi] = [Zo]. (4)

The sets of (kx, ky) that satisfy (1) can be calculated on the
Brillouin zone edge of the complex k space by solving the
following dispersion equation as a function of frequency f :

D(kx , ky, f ) = det{[T( f )] − [�(kx , ky)]} = 0 (5)

where [�]4N×4N is a square diagonal matrix whose ele-
ments along the main diagonal are given by the row
vector [(e−jkx p)1×N , (e−jky p)1×N , (e−jkx p)1×N , (e−jky p)1×N ].
It is worth noting here that, in the general case of N

modes, the characteristic equation defined in (5) gives rise
to a 2N-degree polynomial of two variables (λx = e−jkx p

and λy = e−jky p). Since there is not an easy systematic
way of obtaining the frequency-dependent coefficients of this
characteristic polynomial, the suggested simple and general
way to solve for the 2N roots of the polynomial equation
is to fix the frequency and use a zero-searching algorithm
to locate the complex zeros of the resulting determinant
D f (kx , ky). Provided that the structure under study is recipro-
cal, the 2N roots of D f (kx , ky) should correspond to pairs
of plus/minus N modal wavenumber solutions (±kx,±ky).
Fortunately, the absence of poles and/or branch singularities
in D f (kx , ky) simplifies considerably the numerical task of
searching for the complex zeros. An additional interesting
feature of (5) is that, once the frequency is fixed, the com-
putational cost of constructing D f (kx , ky) is very reduced
since only matrix [�] needs to be updated in the searching
procedure.

III. MULTIMODAL BLOCH ANALYSIS

A proper geometrical definition of the unit cell is crucial
in the multimodal analysis for two reasons. First, it should
be considered that the field pattern of the Floquet modes in
the unit cell has a nonnegligible projection (reaction) onto the
modes of the corresponding waveguides at the input–output
ports. Thus, to ensure the accuracy of the method, a very
convenient practical rule is to maximize the open area on
the boundaries so that all relevant modal fields can be suited.
For instance, the interfaces of a nonglide holey unit cell are
preferably selected in the middle of the holes (as it will be
the case in Fig. 8 (inset) within the red frame). In contrast,
a nonglide unit cell that enclosed the complete hole would
lead to boundaries coinciding with the narrow slit of the
unperturbed PPW, geometry where the required higher order
modes could hardly settle themselves down. For the glide
holey unit cell, a convenient choice is the one shown in the
inset of Fig. 2(b). Second, the overall operational procedure
of the multimodal approach is greatly simplified by choosing
a centrally-symmetric unit cell that satisfies (4). Note that
this condition does not require the presence of geometrical
symmetries in the unit cell itself although the presence of such
symmetries could be advantageously used for the computation
of the required scattering matrix. Instead, condition (4) only
requires the existence of symmetry of the unit-cell boundaries
on account of the fact that the characteristic port impedance
for each mode only depends on the physical shape of that
port. For these reasons, the two most convenient choices in
the glide periodic configuration in Fig. 1(a) are unit cells A
and B shown in Fig. 1(b). In the following analysis, unit cell A
is employed although unit cell B yields the same results.

The multimodal scattering parameters of the unit cell
shown in the inset of Fig. 2(b) were simulated by CST
frequency-domain solver (FDS), with hexahedral meshing and
open boundaries set on the four physical ports at the side faces
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Fig. 2. Bloch analysis in the first Brillouin zone 0X (0◦-direction measured
from the x-axis). (a) Phase shift (βp/π ), with the insets depicting the
distribution of Ez -component obtained with CST ES. (b) Normalized atten-
uation constant (α/k0), with the inset showing the setups in CST FDS. The
dimensions as denoted in Fig. 1(b) are p = 3.2 mm, d = 0.8p = 2.56 mm,
h = 0.31p = 1 mm, and g = 50 µm. These dimensions apply throughout
this article, unless otherwise specified.

of the cell, each excited by N modes. Applying (3)–(5) for
ky = 0 and kx = β − jα in the range of 0 ≤ β ≤ π/p, 0 ≤
α ≤ k0, we obtain simultaneously β and α in the first
Brillouin zone 0X (or 0◦-direction measured along the x-axis),
as shown in Fig. 2. Here, a good numerical convergence of
the multimodal approach is achieved by taking N = 5 modes
at each physical port. It should be mentioned that although
a waveguide-port higher order mode excited below its cutoff
frequency is evanescent, its modal fields can be required for
describing the global propagation and attenuation properties;
fact that has also been validated in [26] and [27]. As shown
in Fig. 2(a), a good agreement is achieved in β between
the results obtained with the multimodal approach and CST
eigenmode solver (ES), whereas α in Fig. 2(b) cannot be
compared due to the lack of results for this parameter from
the ES in CST. The two lowest order modes [highlighted in
blue color in Fig. 2(a)] are actually two branches of the same
mode. This assertion is validated by the application of the
“correlation method” reported in [49] and also employed, for
instance, in [23], [24]. The perfect correlation found between
the modes of these two branches is also corroborated by the
fact that they have similar modal fields, as exemplified in the

Fig. 3. Root loci of the modes presented in Fig. 2 from 58 to 87.5 GHz in the
domain of 0 ≤ β ≤ π/p, 0 ≤ α ≤ k0. The zeros at the sampled frequencies
are distinguished by the colored markers, and those at the same frequency
are marked with the same color. The dashed arrow lines represent the image
results that always appear in pairs and, thus, are omitted for simplicity.

plots of their Ez-component at frequencies 1 and 2 (denoted
by F1 and F2) given in the insets of Fig. 2(a).

An interesting consequence of performing the zero search-
ing of (5) in the complex plane is the appearance of a pre-
viously unnoticed complex mode (highlighted in red), which
appears from 59 to 87 GHz within the stopband (mode that
cannot be captured by CST-ES which only calculates real
modes). Remarkably, the dispersion curve corresponding to
this mode does not reach βp/π = 1 but rather splits into two
modes (represented by the yellow line) at around 87 GHz.
For a better understanding of this modal transition, Fig. 3
shows the locus in the complex plane of the wavenumber
(kx = β − jα) as a function of frequency. An important
fact to consider here is that any of the possible solutions
(kx , ky) of the characteristic polynomial equation (5) is a
continuous function of frequency. It means that the N pairs
of solutions of (5) have to show continuous behavior when
plotted versus frequency. Consequently, the modal solutions
can neither appear nor disappear as frequency varies; instead,
they can only transition from one type of mode to another.
For the present nonradiative lossless structure under study,
this well-known observation [35], [50] implies that modes can
transition from propagative to either evanescent or complex,
and vice versa.

The abovementioned transitions can be observed in Fig. 3,
which shows the evolution of the relevant modes in the
range of 59–87 GHz. Below 58 GHz, corresponding to the
blue curves in Fig. 2, it can be observed that the mode
is propagative at low frequencies and then transitions into
an evanescent mode at ∼46 GHz. As frequency increases,
another evanescent mode appears with high values of α. Fig. 3
shows that this mode moves toward the previous evanes-
cent mode along the imaginary axis, and they meet together
at ∼59.1 GHz to transition into a pair of complex modes
with positive/negative phase constant (±β − jα). This type of
transition has already been reported in the literature for other
simpler nonperiodic and periodic structures [29], [50]–[54],
and it is expected to occur in any periodic structure although
its study in geometrically complex periodic structures would
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Fig. 4. Bloch analysis in the third Brillouin zone 0M (45◦-direction
measured from the x-axis). (a) β, with the insets depicting the distribution of
Ez -component obtained with CST ES. (b) α. β has been renormalized to

√
2 p,

and α has been rescaled by
√

2. The setups in CST FDS and dimensions are
the same as in Fig. 2.

require the use of advanced simulation-assisted approaches as
the one reported in this work.

The role of complex modes in bounded structures was the
object of intense research a few decades ago [50]–[53], [55],
and it was concluded that, in reciprocal structures, these modes
are always excited in pairs giving rise to a sort of “modulated”
evanescent mode [50], [53]. The complex mode in Fig. 2
is then the consequence of a common modal transition that
ensures the continuity of the modal wavenumbers with respect
to frequency, as illustrated in Fig. 3. The locus of this complex
mode can be seen to evolve with frequency until it reaches
the real axis of the complex plane at around 87 GHz, where it
meets another complex mode, and this pair now transitions to
another pair of propagative real modes [highlighted in yellow
in Fig. 2(a)].

A similar procedure, letting ky = kx ≡ k and solving (5)
for k in the domain of 0 ≤ βp/π ≤ 1, 0 ≤ α/k0 ≤ 1,
yields the results in the third Brillouin zone 0M shown
in Fig. 4. Same as in Fig. 2, numerical convergence of the
multimodal approach occurs again by taking N = 5 modes at
each excitation port. Since k stands here for either the x- or
y-component of the wave vector in the 45◦-direction, this
vector can be written as kxy = k(x̂ + ŷ), with |kxy | =

√
2k.

In fact, the same results for k = β − jα are found when using

Fig. 5. Root loci of the modes reported in Fig. 4 from 25 to 50 GHz.
The zeros at sampled frequencies are distinguished by colored markers, and
those at the same frequency have the same color. The solid blue and red
arrow lines represent the even- and odd-parity modes in Fig. 4, respectively.
A small dissipation loss of σ = 0.0277 S/m is employed in simulations to
avoid overlapping of the loci of these two modes.

unit cell A along the 45◦-direction and with unit cell C [defined
in Fig. 1(b)] in the same direction.

In contrast with the discussion for the 0◦-direction case
in Fig. 2, the dispersion diagrams in Fig. 4 seem to indicate
that now there are two modes of different nature at low
frequencies: one real propagative (k = β − j0: blue line) and
another evanescent (k =

√
2π/p − jα: red line). These two

modes appear to meet together at around 34 GHz, where they
transition into an evanescent mode and a propagative mode,
respectively. The first hint that the transition occurs in this
way (rather than the two propagative modes being just two
branches of the same mode) is given by the Ez-field patterns
shown in the insets of Fig. 4(a). It can be observed that the
E-field pattern of the first mode exemplified at frequency F3 is
evenly distributed with respect to the 45◦-direction, whereas
the pattern of the second mode at F8 is oddly distributed.
The evolution from one pattern to another can be appreciated
in the insets of Fig. 4(a). In particular, it is interesting to
note the strong difference between the patterns at F5 and
F6, which is in complete correspondence with the results
computed by the application of the “correlation method” [24],
[49]; namely, the correlation between the modal eigenvectors
associated with F5 and F6 modal solutions is practically zero.
Interestingly, the abovementioned modal transition finds some
similarities with the appearance of Dirac points reported in
2-D photonic crystals [56].

Additional verification of this modal differentiation is
provided in Fig. 5, which shows the frequency evolution
of the complex wavenumbers of these two modes in the
range 25–50 GHz. In similarity with the analysis carried out
in [54], a low level of losses is assumed in the free space
[relative permittivity given by εr = 1 − jσ/(ωε0)] to avoid
that the loci of the modes overlap. Different locus trajectories
of the modes plotted in Fig. 5 clearly show that these two
modes are independent solutions that turn out to have very
similar numerical values at ∼34 GHz. As σ → 0, the modal
trajectories run along the horizontal and vertical axes, making
it very difficult to determine whether the modal continuation
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Fig. 6. Analysis of scattering characteristics in the first Brillouin zone 0X
(0◦-direction) and third Brillouin zone 0M (45◦-direction) using CST FDS.
(a) Excited modes at the ports and solving setups for both directions. The
unit cells A and C in Fig. 1(b) are employed for the 0◦- and 45◦-directions,
respectively. (b) Scattering parameters of the excited modes in both directions.
The dimensions are the same as in Fig. 2.

happens as already discussed or as the one found for the
0◦-direction case.

In order to gain a deeper physical insight on the relevant
consequences of the directional properties of the present
structure (namely, observed anisotropy in the 0◦- and 45◦-
directions), Fig. 6(b) shows the magnitude of the transmission
scattering parameters associated with the relevant modes dis-
cussed earlier. The appearance of these directional properties
was also reported in the study of orthotropic waveguides [57]
and photonic/phononic crystals [56], [58]–[60]. In our case,
the S21 parameter is computed through CST FDS by using
a hexahedral meshing to simulate the two finite-periodic
configurations shown in Fig. 6(a). Specifically, a repetition of
three unit cells A and C in Fig. 1(b) is employed to analyze
the propagation along the 0◦- and 45◦-directions, respectively
(periodic conditions are imposed in the transverse direction).
The blue solid line in Fig. 6(b) clearly shows that the first
passband of the so-called “Mode1, 0◦” (directional passband
along the 0◦-direction) ends at 45.5 GHz. This result agrees
with our previous assumption that the two lowest order modes
in Fig. 2(a) were two branches of the same physical mode;

Fig. 7. (a) Full dispersion diagram of the Billouin zone 0XM0 and the
total stopband shaded in red. (b) Attenuation curves of the Billouin zone 0X
and M0 and minimum attenuation for any direction enveloped by the black
dashed line corresponding to the total stopband. The modes are distinguished
by different colors, and the dimensions are the same as in Fig. 2.

additionally corroborated by the fact that they have a similar
modal pattern, the projection of which at the input port is
exemplified in the blue-framed picture in Fig. 6(a). Also,
the location of the second passband of this mode in Fig. 6(b)
coincides with the second passband of the mode highlighted
in blue color at the top of Fig. 2. In the 45◦-direction,
the transmission coefficient of the even mode (denoted as
“Mode1, 45◦” and plotted with yellow dotted line) shows a
stopband that starts from 34 GHz, and the other mode with
odd parity (“Mode2, 45◦”, plotted with red dotted line) shows
a directional passband also starting at 34 GHz and ending
at ∼ 45.5 GHz. This fact supports our previous discussion
about the different nature of these modes in Fig. 4 and that
the wavenumber loci of these opposite-parity modes meet
at 34 GHz. The results in Fig. 6(b) can be seen to match
the complete Brillouin diagram shown in Fig. 7 for both the
phase and attenuation constants.

The abovementioned discussion about the directional pass-
band and stopband properties shown in Fig. 6(b) can bring
some important practical consequences. Commonly, the total
(omnidirectional) stopband of a periodic structure is defined as
the region where there are not propagative modes. However,
we have shown that there exists a partial (directional) stopband
bandwidth for even- and odd-parity modes. This fact can be
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Fig. 8. Comparison of the stopband of glide- and nonglide scenarios.
(a) Full dispersion diagram of the Brillouin zone 0XM0 with the overall
stopband shaded in colors. The data points on the Brillouin zone boundaries
(namely β = nπ/p, n = 0, 1, 2, 3) are omitted for simplicity. (b) Attenuation
at 0X (0◦) and M0 (45◦) and the minimum attenuation for any direction.
The results obtained with the multimodal method are represented by lines,
and those with CST ES are represented by markers in the corresponding
colors. The dimensions of the two unit cells are the same as in Fig. 2.

advantageously used for a given practical configuration in
which the designer knows a priory nature (i.e., the parity) of
the arriving waves, in similarity with the application of these
directional properties to the design of an acoustic frequency
filter reported in [60]. In Section IV-C, we demonstrate how
to employ the knowledge of the directional properties of the
stopband to enhance the suppression of the leakage from a
glide-symmetric holey groove gap waveguide.

IV. DESIGN GUIDELINES

A. Glide Symmetry

The analysis of Section III demonstrates the existence of
multiple modes that present directional properties in the fre-
quency band of interest. For better reference and comparison
of the stopband in the following studies, only the minimum
attenuation for any direction provided by the total stopband
will be examined (for instance, the one shaded in red color
in Fig. 7).

In Fig. 8, the stopband performance of the glide and
nonglide configurations are compared. The nonglide case is
analyzed following the same procedure as the one for its glide

counterpart introduced in Section III, except that only N = 3
modes at each port is required to achieve convergence in this
nonglide case, instead of N = 5 needed for the glide scenario.
This difference evidences the existence of more complex
higher order interactions in the glide-symmetric case, which
shows a wider stopband and higher attenuation levels in these
bands (the rejection within the stopband is stronger). Similar
to the glide configuration, the existence and transition of a
complex mode are detected from 84.9 to 88.9 GHz in the first
Brillouin zone 0X of the nonglide case. The opposite-parity
modes are also found in the 45◦-direction. Other than that,
these two cases exhibit very different behaviors in their
respective stopbands and passbands. The degenerate lowest
order modes in the 0◦-direction are found to exist only in
the presence of glide symmetry. Moreover, the glide topol-
ogy provides a higher value of attenuation than its nonglide
counterpart in the 0◦-direction. This difference is even more
prominent in the 45◦-direction, where both bandwidth and
attenuation of the stopband in the nonglide case are severely
limited by the proximity of its first and second passbands,
restricting the stopband for any direction. For these reasons,
the glide configuration is a superior solution for the EBG
applications compared with its nonglide version [5], [12], [13].

B. Optimal Dimensions

Extensive parametric studies on the stopband behaviors
of the glide-symmetric holey EBG have been carried out,
some of these results being shown in Fig. 9. As revealed in
Fig. 9(a), the stopband range always increases by decreasing
the unwanted air gap g. Taking the case of d/p = 0.8
in Fig. 9(a) as an example, the smaller value of g also
improves the stopband attenuation, as evidenced in Fig. 9(d).
In general, the smaller the gap, the better the performance
of the stopband. In practice, the upper and lower metallic
plates are tightly fastened by screws to ensure a close contact,
leaving a gap typically no larger than 50 µm, as assumed
in [4] and [14]. Thus, g = 50 µm will be considered
the worst case scenario for the following studies. Aimed at
maximizing the attenuation in a stopband centered around
60 GHz, Fig. 9(b) and (e) shows that the optimum diameter
of the holes is found around d = 0.8 p, which yields a
bandwidth of 57 % and a minimum normalized attenuation
of 0.52 for any direction at 60 GHz; α/k0 reaches 0.85 in the
0◦-direction at the same frequency. Therefore, it is crucial to
ensure this optimum radio of d/p since any value deviated
from the optimum one results in a rapid deterioration of
the stopband. In addition, Fig. 9(c) and (f) shows that the
hole depth has a minor impact on the stopband as long as
h > 1 mm (0.31 p). The insensitivity of this parameter sug-
gests that more cost-effective manufacturing can be facilitated
by simply drilling or molding rather than milling, as usually
done for the conventional bed-of-nails structures, given that
the hole allows for more tolerances in its bottom.

Based on the previous study, the following guidelines can
be used to enhance the design of the present glide-symmetric
holey EBG. First, the maximum air gap in the EBG region
needs to be estimated as a design reference according to
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Fig. 9. Parametric study of stopband characteristics. (a)–(c) Frequency bounds of the overall stopband as a function of the swept geometrical parameters.
(d)–(f) Attenuation as a function of the same set of parameters in the 0◦- and 45◦-directions represented by the gray dashed lines and dotted lines, respectively,
and the minimum attenuation for any direction provided by the stopband outlined by the colored solid lines. In all cases, the dimensions are p = 3.2 mm,
d/p = 0.8, h = 1 mm, and g = 50 µm, unless otherwise specified.

Fig. 10. Leakage direction of the fundamental TE10 mode of a rectangular
waveguide with a narrow slit of g = 50 µm. The leakage angle is calculated
by θ = arcsin β/k0, with β being the phase constant of the quasi-TE10 mode
and k0 the free-space wavenumber (same as in the PPW region).

the deformation constraints in the manufacturing process.
In general, g < 50 µm can be assumed, and g = 10 µm for
the deployment in small areas (good contact is, thus, ensured).
Then, a proper period p can be set to locate the stopband in the
band of interest. Next, letting d ≈ 0.8 p and h > 0.3 p ensures
the optimum bandwidth and attenuation. Finally, the number
of unit cells required to achieve the target suppression has to
be selected by referring to the data given in Fig. 9(d)–(f).

C. Arrangement of Holes

Once the optimal dimensions of the holey EBG unit cells are
determined, a practical case is now considered where the holes

are employed in the slit of a groove gap waveguide to sup-
press the leakage from the guiding structure. Gap waveguide
technology is ideal for millimeter-wave applications where
substrate integrated waveguides have elevated losses due to
the propagation in a dielectric material [61]. In some cases,
the use of glide-symmetric holes is more cost-effective than
pin-type periodic structures [13].

In groove gap waveguides (with TE10 mode), the leak-
age comes from the imperfect reflection of the impinging
constituent waves of wave vectors k = ±(π/w)x̂ + βŷ

on the lateral walls of the channel, which occurs at an
angle θ = arcsin(β/k0), as illustrated in the inset of Fig. 10.
Depending on the arrangement of the holes embedded in the
upper/lower walls of the slit region, the leaked waves can
undergo different directional stopbands due to the anisotropy
of the holey EBG unit cell and, thus, experience different atten-
uation rates. In Fig. 11, two configurations are compared when
the glide-symmetric holey EBG is excited with different inci-
dence angles by the TE10 mode of a rectangular waveguide.
This type of analysis, based on field attenuation, has also been
employed in the studies on other gap waveguides [13], [61].
The unit cells are arranged in such a manner that their
0◦/ 45◦-direction roughly aligns with the leakage direction at
60 GHz in Fig. 11(a)/(b). Since, in the considered frequency
range, a higher value of α is found in the 0◦-direction than
in the 45◦-direction (only the even mode of the holey EBG
should be considered), a higher attenuation rate is achieved
in the case of Fig. 11(a). To properly evaluate the attenuation
rate, one has to refer to the maximum levels of the electric
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Fig. 11. Suppression rate of the leaked electric fields in glide-symmetric
holey groove waveguides, whose lateral walls are loaded with the holey unit
cells [see Fig. 1(b)] rotated by (a) 45◦ and (b) 0◦. Same as indicated in Fig. 1,
the dark circles represent holes in the bottom layer and the white in the top,
with the same dimensions as in Fig. 2. The guiding channel replicates a
WR15 rectangular waveguide (width 3.76 mm and height 1.88 mm) with a
slit of 50 µm. The electric fields are simulated by the CST time-domain
solver.

field, which fluctuates periodically between holes and parallel
plate regions. At 60 GHz, for instance, the attenuation level
is suppressed below −30 dB beyond two rows of holes in
Fig. 11(b), while this level is further attenuated below −50 dB
in Fig. 11(a). Also, the attenuation rate at 80 GHz in Fig. 11(b)
is severely deteriorated in comparison with that of Fig. 11(a),
given the fact that the value of α provided by the even mode
of the unit cell is quite small [see Fig. 7(b) (purple line)].

The significant difference in the attenuation rates between
the two cases analyzed in Fig. 11 was somewhat expected at
the light of the results shown in Fig. 9. For instance, in the
worst case scenario with g = 50 µm, it can be observed in that
figure that α/k0 = 0.52 at 60 GHz, which means that two rows
of glide-symmetric holes should offer a total stopband atten-
uation given by e−2α·2p = −36 dB, in good correspondence
with the data in Fig. 11(b). Since the attenuation constant in

the 0◦-direction increases up to α/k0 = 0.85 at 60 GHz, giving
rise to an attenuation level of e−2α·2p = −59 dB, particular
advice for gap waveguide applications is to arrange the holey
unit cells so that their 0◦-direction aligns with the direction
of the impinging waves. This arrangement also minimizes the
reflections from the EBG by avoiding a saw-toothed interface
between the EBG and lateral wall of the waveguide groove
[see Fig. 11 (insets)], as mentioned in [4] and [13].

V. CONCLUSION

In this work, a multimodal transfer matrix approach is
employed in the Bloch analysis of the dispersion diagrams
of a glide-symmetric holey metasurface. Glide symmetries
were demonstrated to be able to reduce the dispersion of
conventional periodic structures [1] and widen the bandwidth
of EBGs [12]. The proposed approach in this article is able
to calculate both the phase and attenuation constants of the
modal wavenumbers of the structure. In particular, a precise
calculation of the attenuation constant is not possible with
conventional techniques, as the CST eigenmode solver. Here,
we accurately characterized the attenuation properties of
glide-symmetric EBGs, which is essential for the design of
flanges with reduced leakage [5], [6], filters [7], or gap
waveguide technology [13].

The proposed approach has also made possible the finding
of some relevant interesting phenomena, including the exis-
tence of complex modes, mode conversion, the convergence of
the even- and odd-parity modes, and the directional properties
in both passband and stopband. Based on an exhaustive
parametric study of the stopband properties using the present
multimodal approach, a complete set of criteria can be set up
for the use of a glide-symmetric metasurface as an EBG in
gap waveguide technology. Moreover, as a practical example,
we show that the knowledge of the directional properties of
the holey metasurface can be advantageously used to enhance
its stopband attenuation.
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