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a b s t r a c t

An accurate closed-form solution is obtained to the SIR Epidemic Model through the use of Asymptotic

Approximants (Barlow et al., 2017). The solution is created by analytically continuing the divergent

power series solution such that it matches the long-time asymptotic behavior of the epidemic model.

The utility of the analytical form is demonstrated through its application to the COVID-19 pandemic.

© 2020 Elsevier B.V. All rights reserved.

There are several problems of mathematical physics in which

the only available analytic solution is a divergent and/or trun-

cated power series expansion. Over the past decade, a new ap-

proach has evolved to overcome the convergence barrier in series

solutions. An asymptotic approximant is a closed-form expression

whose expansion in one region is exact up to a specified order and

whose asymptotic equivalence in another region is enforced. The

remarkable feature of asymptotic approximants is their ability to

attain uniform accuracy not only in these two regions, but also

at all points in-between, as demonstrated thus far for problems

in thermodynamics, astrophysics, and fluid dynamics [1–7]. The

current need to model and predict viral epidemics motivates us

to extend the application of asymptotic approximants to the com-

monly used Susceptible–Infected–Recovered (SIR) model. This

model is formulated as a system of nonlinear ordinary differential

equations. Although no exact analytic solution has yet been found

for the SIR model, a convergent series solution may be formulated

via the homotopy analysis method [8]. Here, we provide an alter-

native and simple analytic approach. Interestingly, the SIR model

shares the same asymptotic features as boundary layer flow over

a moving flat plate, for which asymptotic approximants have

already been applied [4]. The analytic nature of the asymptotic

approximant derived in what follows is advantageous. Model

parameters may be extracted for available COVID-19 data via a

least squares (or equivalent) technique without the need for an

embedded numerical scheme.

The SIR epidemic model considers the time-evolution of a sus-

ceptible population, S(t), interacting with an infected population,
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I(t), where t is time. This model is expressed as [9]

dS

dt
= −rSI (1a)

dI

dt
= rSI − αI (1b)

with constraints

S = S0, I = I0 at t = 0, (1c)

where r , α, S0, I0 are non-negative constant parameters [9].

Once (1) is solved, the recovered population is extracted as:

R(t) = α

∫ t

0

I(ζ )dζ . (2)

Eq. (1a) can be thought of as a standard collision model in a 2nd-

order chemical reaction, where species S and I ‘‘collide’’ to deplete

the population of S to create the species I . In this interpretation,

r is a rate constant, which in practice may be reduced by pop-

ulation behavior such as ‘‘social distancing’’. In the case where

α=0 in (1b), the system (1) indicates that S + I = S0 + I0 for

all time. For α ̸= 0, then, the number of infected are reduced in

time in accordance with (1b), and it is seen that the parameter

α determines the rate of recovery of infected individuals. The

omission of a negative αI(t) term in (1a) is an implicit model

assumption that the recovered population is no longer susceptible

to the disease.

We now manipulate the system (1) into an equivalent first-

order equation to simplify the analysis that follows. Eqs. (1a) and

(1b) are divided to obtain

dI

dS
=

α

rS
− 1. (3)

https://doi.org/10.1016/j.physd.2020.132540

0167-2789/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.physd.2020.132540
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physd.2020.132540&domain=pdf
mailto:nsbsma@rit.edu
https://doi.org/10.1016/j.physd.2020.132540


2 N.S. Barlow and S.J. Weinstein / Physica D 408 (2020) 132540

Subsequent integration of (3) with respect to S and application of

the constraints (1c) yields

I =
α

r
ln

(

S

S0

)

− S + S0 + I0. (4)

Eq. (4) is substituted into Eq. (1a) to obtain

dS

dt
= βS + rS2 − αS ln S (5a)

where

β = α ln S0 − r(S0 + I0). (5b)

From Eq. (1c), the constraint on S is:

S = S0 at t = 0. (5c)

System (5) is equivalent to (1) to solve for S and, once solved, the

solution for I may be obtained using (4), which may be integrated

to find R from (2).

The series solution of (5) is given by

S =

∞
∑

n=0

ant
n, a0 = S0 (6a)

an+1 =
1

n + 1

⎡

⎣βan +

n
∑

j=0

aj
(

ran−j − αbn−j

)

⎤

⎦ , (6b)

bn>0 =
1

n

n−1
∑

j=0

aj+1ãn−1−j, b0 = ln a0, (6c)

ãn>0 =
−1

a0

n
∑

j=1

ajãn−j, ã0 =
1

a0
. (6d)

The result (6) is obtained by applying Cauchy’s product rule [10]

to expand S2 and S ln S in (5). The expansion of ln S is obtained

by first applying Cauchy’s product rule to the identity SS−1 = 1

and evaluating like-terms to obtain a recursive expression for the

coefficients of the expansion of S−1, given by (6d). The expansion

of S−1 is subsequently integrated term-by-term to obtain the

expansion of ln S, whose coefficients are given by (6c). Although

the series solution given by (6) is an analytic solution to (5), it

is only valid within its radius of convergence and is incapable

of capturing the long-time behavior of S. This motivates the

construction of an approximant to analytically continue the series

beyond this convergence barrier.

The long-time asymptotic behavior of the system (5) is re-

quired to develop our asymptotic approximant, and so we pro-

ceed as follows. It has been proven in prior literature [11] that S

approaches a limiting value, S∞, as t → ∞, and this corresponds

to I → 0 according to (5). The value of S∞ satisfies Eq. (4) with

I = 0 as [11]

α

r
ln

(

S∞

S0

)

− S∞ + S0 + I0 = 0. (7)

We expand S as t → ∞ as follows:

S ∼ S∞ + S1(t) where S1 → 0 as t → ∞. (8)

Eq. (8) is substituted into (5) and terms of O(S1
2) are neglected to

achieve the following linearized equation

dS1

dt
= κS1 (9a)

where

κ = rS∞ − α. (9b)

In writing (9b), the definition of β in (5b) has been employed.

Additionally, to obtain (9), Eq. (7) has been used which eliminates

all O(1) terms in the linearized system. The solution to (9) is

S1 = εeκt , (10)

where ε is an unknown constant that can only be determined

via connection with short-time behavior. Consistent with the

assumptions made, we find κ < 0 such that S1 → 0 as t → ∞.

Thus the long-time asymptotic behavior of S is given by

S ∼ S∞ + εeκt , t → ∞. (11)

Higher order corrections to the expansion (11) may be obtained

by the method of dominant balance [12] as a series of more

rapidly damped exponentials of the form enκt where n > 1. This

long-time asymptotic behavior of successive exponentials mimics

that of the Sakiadis boundary layer problem describing flow along

a moving plate in a stationary fluid [4]. It is natural, then, to

apply the Sakiadis approximant [4] to capture this asymptotic

behavior while retaining the t = 0 behavior given by (6a). The

Sakiadis approximant imposes the exponential form of the long-

time asymptotic behavior (11) for all time; the coefficients of

the exponentials are determined by matching their short-time

expansion to the known power series developed about t = 0 in

the form of (6a). However, here we find that a reciprocal expres-

sion that achieves the same t → ∞ behavior (11) (through its

binomial expansion) converges faster than the original Sakiadis

approximant.

The assumed SIR approximant is given by

SA,N =
S∞

1 +

N
∑

n=1

Ane
nκt

(12a)

where the An’s are obtained by taking the reciprocal of both sides

of (12a), expanding each side about t = 0, and equating like-

terms. The coefficients of the subsequent reciprocal expansion of

the left-hand side (that of S−1) are given by (6d). After equating

like-terms of this expansion with that of the reciprocal of the

right-hand side of (12a), one arrives at the following linear system

of equations to solve for the An values as

⎡

⎢

⎢

⎢

⎢

⎣

10 20 30 · · · N0

11 21 31 · · · N1

12 22 32 · · · N2

...
...

...
...

...

1N−1 2N−1 3N−1 · · · NN−1

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

A1

A2

A3

...

AN

⎤

⎥

⎥

⎥

⎥

⎦

= f⃗ , (12b)

f⃗ = S∞

⎡

⎢

⎢

⎢

⎢

⎣

0! ã0 − 1/S∞

1! ã1/κ
2! ã2/κ

2

...

(N − 1)! ãN−1/κ
N−1

⎤

⎥

⎥

⎥

⎥

⎦

, (12c)

where (12b) is a Vandermonde matrix whose inversion is explic-

itly known [14]. The SIR approximant (12) is thus a closed-form

expression that, by construction, matches the correct t → ∞
behavior given by (11) and whose expansion about t = 0 is exact

to N th-order. A MATLAB code for computing the An coefficients is

available from the authors [15].

Fig. 1a provides a typical comparison of the N-term series

solution (6) denoted by SS,N (dashed lines), the N-term approxi-

mant (12) denoted by SA,N (solid lines), and the numerical solu-

tion (indicated by symbols). Note that the series solution has a

finite radius of convergence as evidenced by the poor agreement

and divergence from the numerical solution at larger times, even

as additional terms are included. By contrast, the approximant
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Fig. 1. Analytical and numerical solutions to the SIR model (5) where the susceptible (S), infected (I), and recovered (R) populations are plotted versus time, all in

arbritrary units. (a) As the number of terms N is increased, the series solution, denoted SS,N (given by (6a), dashed lines), diverges and the approximant, denoted

SA,N (given by (12), solid lines), converges to the exact (numerical) solution (•’s). (b) The converged asymptotic approximant for S is used to obtain R and I (from

Eqs. (2) and (4), respectively). The model parameter values and initial conditions α = 2, r = 1/5, I0 = 25, and S0 = 75 are taken from a test case used in Khan et al.

[8] to validate the homotopy analysis method.

Fig. 2. Analytical and numerical solutions to the SIR model (5) where S, I , and R are in units of people and t is in months. All other notation and labels are the

same as in Fig. 1. The model parameter values and initial conditions α = 2.73, r = 0.0178, I0 = 7, and S0 = 254 are taken from estimates of the 1966 bubonic

plague outbreak in Eyam, England examined in Khan et al. [8].

converges as additional terms are included. For N = 15, the

approximant is visibly indistinguishable from the numerical solu-

tion (obtained by forward differencing) with a maximum relative

error on the order of the numerical time-step (here 10−2) over the

time range indicated. Increasing the number of terms beyond N =
15 does improve accuracy up to a point, but also increases the

likelihood of deficient approximants for which the denominator

can be zero for certain time values and specific values of N .

In general, the lowest number of terms that yields the desired

accuracy is chosen to avoid this behavior. The convergence of

the approximant with increasing N is a necessary condition for

a valid approximant. For the problems of mathematical physics

to which we have applied asymptotic approximants [1–7], we

have observed that convergence of approximants implies ex-
cellent agreement with numerical results. There is as-of-yet no
proof developed that guarantees this result, but this interesting
behavior has been a property of all approximants developed thus
far. In Fig. 1b, the converged (N = 15) asymptotic approximant
for S is used to obtain R and I (from Eqs. (2) and (4), respectively)
and is compared with the numerical solution for these quantities.

In Fig. 2, the approximant is applied to a case examined in
Khan et al. [8] to model the 1966 bubonic plague outbreak in
Eyam, England. In Fig. 3, the approximant is applied to COVID-
19 data for Japan [13]. An increased number of terms in the
approximant is required to achieve the same relative errors in
Figs. 1–3. For all cases examined, we observe that this trend
correlates with the breadth of the initial S plateau.
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Fig. 3. Analytical and numerical solutions to the SIR model (5) where S, I , and R are in units of people and t is in days. All other notation and labels are the same

as in Fig. 1. The model parameter values α = 0.0164 and r = 2.9236×10−5 were obtained via a least-squares fit between the asymptotic approximant and Japan

COVID-19 outbreak data [13] (◦’s), using initial conditions I0 = 2 (from the first point in the data set [13]) and S0 = 4206. Here t = 0 is January 22, 2020 (see main

text for interpretation of the COVID-19 data).

Note that the reported COVID-19 outbreak data [13] in Fig. 3

is originally provided in terms of confirmed cases and recovered

individuals per day. The difference between these two quantities

is used as an approximation to compare with the quantity I of

the SIR model. It is acknowledged that the actual COVID-19 data

is influenced by transient effects not included in the SIR model

such as the exposure lag-time; these effects are incorporated in

more sophisticated models such as SEIR [11]. The approximation

of I from COVID-19 data is not restrictive in the current con-

text, as our purpose is to show the efficacy of the closed form

approximant rather than assess the validity of the SIR model.

In Fig. 3, a least squares fit of the asymptotic approximant to

I data is used to extract SIR parameters α and r based on data

from the initial stages of the COVID-19 epidemic in Japan. To do

so, (4) is used to relate I analytically to the solution for S (here,

the approximant SA,30); note that S∞, used in the approximant,

is affected by these parameters explicitly according to (7). The

value of S0 is not provided in the data set [13], and a least-squares

algorithm is ineffective at determining an optimal value. Here,

we choose the value of S0 to be twice that of the maximum

value of I approximated from the data, as it captures a typical

curve shape for S seen in applications of the SIR model [11].

In regards to the sensitivity of fitting parameters to the choice

for S0, a 100% difference in S0 leads to roughly a 50% difference

in r and a 6% difference in α. The fit is made especially simple

owing to the analytical form of the approximant that obviates

the need to embed the numerical solution in such an algorithm.

The population of recovered individuals, R, is extracted from the

solution for I by direct integration in accordance with (2). Note

that the predicted curve for R in Fig. 3, obtained solely by fitting

data for I , is in good agreement with approximations from COVID-

19 data for the recovered population, and serves as a check on the

consistency of the data and algorithm.

It is evident from the results presented here that an asymp-

totic approximant can be used to provide accurate analytic so-

lutions to the SIR model. Future work should focus on whether

the asymptotic approximant technique can yield a closed form

solution to more sophisticated epidemic models.
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