
Accurate Computation of Geodesic Distance Fields for Polygonal Curves

on Triangle Meshes

David Bommes, Leif Kobbelt

Computer Graphics Group, RWTH Aachen

Email: {bommes,kobbelt}@cs.rwth-aachen.de

Abstract

We present an algorithm for the efficient and accu-

rate computation of geodesic distance fields on tri-

angle meshes. We generalize the algorithm orig-

inally proposed by Surazhsky et al. [1]. While

the original algorithm is able to compute geodesic

distances to isolated points on the mesh only, our

generalization can handle arbitrary, possibly open,

polygons on the mesh to define the zero set of the

distance field. Our extensions integrate naturally

into the base algorithm and consequently maintain

all its nice properties.

For most geometry processing algorithms, the

exact geodesic distance information is sampled at

the mesh vertices and the resulting piecewise lin-

ear interpolant is used as an approximation to the

true distance field. The quality of this approxima-

tion strongly depends on the structure of the mesh

and the location of the medial axis of the distance

field. Hence our second contribution is a simple

adaptive refinement scheme, which inserts new ver-

tices at critical locations on the mesh such that the

final piecewise linear interpolant is guaranteed to be

a faithful approximation to the true geodesic dis-

tance field.

1 Introduction

The computation of geodesic distances on a triangle

mesh has many applications in geometry process-

ing, ranging from segmentation and low distortion

parametrization to motion planning and tool path

optimization. In most cases the true geodesic dis-

tance field is approximated by some fast marching

method which leads to acceptable results on nicely

structured meshes and away from singularities of

the distance function. However, such simple propa-

Figure 1: The isolines of the geodesic distance field

with respect to the boundaries of the car model are

visualized.

gation schemes tend to become numerically unsta-

ble on not-so-nice meshes as they often occur in

practical applications. Moreover, since they use the

same mesh as a representation for the input geom-

etry as well as the distance field, the precision is

limited by the mesh resolution. Surazhsky et al. [1]

present a practical implementation of the geodesic

distance algorithm of Mitchell et al. [2]. This was

the first time that an exact geodesic distance com-

putation has become applicable to arbitrary input

meshes of practically relevant complexities. How-

ever, in this algorithm, the distance computation is

initialized by one or more isolated points on the

mesh and the distance is propagated from them (in

Section 3 we present a summary of this algorithm).

Unfortunately, for many practical applications this

is too restricted. In general one would like to be

able to compute the geodesic distance with respect

to a curve on the surface, i.e., a polygon on the mesh

since this allows us to take arbitrary boundary con-

ditions into account. See Fig.1 for an example.

VMV 2007 H. P. A. Lensch, B. Rosenhahn, H.-P. Seidel, P. Slusallek, J. Weickert (Editors)

2 Previous work

In this paper we address two elementary mesh oper-

ations, geodesic distance computation and adaptive

refinement.

Dijkstra’s algorithm for computing shortest paths

along edges can be used as an approximation for

the geodesic field. Lanthier et al. [3] improved the

initial poor results by adding many extra edges to

the mesh.

Kimmel and Sethian [4] adapted the fast marching

method to compute closer approximations of

geodesic distances. On well-shaped input meshes

this method performs very good, but in the case of

obtuse angles or needle triangles even improved

update rules and special handling as proposed be-

fore [5, 6, 7] can lead to large errors. Fast marching

algorithms are able to approximate the geodesic

distance field induced by polygonal sources, but

the quality strongly depends on the mesh structure

near the medial axis, which is typically not suited

to represent the geodesic field, as we show in this

paper.

The most famous exact algorithm was developed

by Mitchell et al. [2] in 1987 and the first practical

implementation was proposed eighteen years later

by Surazhsky et al. [1]. They showed that the worst

case complexity of O(n2 log n) is quite pessimistic

and in practice the average is close to O(n1.5)
which makes the algorithm practical for common

model complexities. Details of this algorithm are

presented in the next section. They also introduce

a merging operation to design an approximation

algorithm with guaranteed error bounds. Liu et

al. [8] studied a robust implementation strategy

which handles all degenerate cases that occur in

real world data. In this paper we will generalize

this exact and approximate algorithm from point

sources to arbitrary source polygons.

In the context of adaptive mesh refinement

two common techniques, namely red-green-

triangulations [10] [11] and
√

3-subdivision, lead

to regular structures and preserve the triangle qual-

ity.
√

3-subdivision is composed of one-to-three

triangle splits and edge flips which changes not

only the tessellation but also the geometry (and

hence the geodesic distance field) of a triangle

mesh and is thus not suited for our application.

s

x

y

b1b0

d0 d1

p1p0

s

w

(a) (b)

Figure 2: (a) Starting on the point source s a

(shaded) pencil of rays is propagated through three

unfolded triangles along of straight lines. Each win-

dow is highlighted by an arc which is always on

the edge side pointing to the source. (b) An edge

aligned two dimensional coordinate system is used

to compute new windows which are induced from

window w.

At the core of red-green-triangulations is the one-

to-four triangle split. Red and green tags are used to

preserve consistency. The refinement conserves the

original geometry and could be integrated into our

framework. However for our application a simpler

and more local refinement is possible which we

propose in section 6.

3 The exact geodesic algorithm

Since our algorithm is an extension of [1] we

briefly explain the basic principles and the resulting

base algorithm.

In the plane, the geodesic distance coincides

with the Euclidean distance. Hence, with respect to

an isolated point, it is the square root of a quadratic

function. On a triangle mesh, i.e. on a piecewise

planar surface, the geodesic distance with respect

to a point turns out to be a piecewise function

where in each segment the distance is given by the

square root of a quadratic function plus an optional

constant offset. This offset has to be introduced to

properly handle saddle points on the surface.

The central idea of the algorithm [1] is to prop-

agate exact distance information from one triangle

to its neighbors with a Dijkstra-type algorithm. The

key observation is that it is sufficient to store the

piecewise distance function on the edges of the tri-

pl pr

A Bq

C
w1 w2

v2’v1’

pl pr

w1 w2

v1 v2

pl pr

w1 w2

(a) (b) (c) (d)

Figure 3: (a) The geodesic distance field w.r.t point p is computed on a cap consisting of triangles A,B,

and C. (b) Cutting along the edge pq unfolds the cap isometrically and enables the distance propagation

in the plane through windows w1 and w2. (c) The temporarily propagated windows v′

1 and v′

2 overlap in

the middle region. (d) The final windows v1 and v2 are properly cut to represent the piecewise geodesic

distance along the edge.

angle mesh since this is sufficient for the propaga-

tion and also for the exact evaluation of distances

everywhere on the surface.

For each edge of the mesh the algorithm main-

tains a list of segments, so-called windows. Each

window defines the geodesic distance field within a

pencil of rays covering both neighboring triangles

(see Figure 2). When distance information is prop-

agated across a triangle, the (incoming) windows

have to be mapped to the opposite side. The propa-

gation includes the proper intersection of windows,

because unlike the planar case on a surface prop-

agated windows can overlap. Since the distance

function is continuous, the intersection requires to

find the point where the distance function values in

both windows are identical.

We illustrate the procedure with a simple exam-

ple. The cap of Figure 3 (a) consists of three isosce-

les triangles A,B and C. Now we want to compute

the geodesic distance field w.r.t the point p. Since

p is coplanar with the triangles A and B they are

covered with a pencil of rays emanating from p

through single windows w1 and w2. To propagate

the distance information through w1 and w2 we cut

the cap along the edge connecting p and q and un-

fold the triangles isometrically into the plane, i.e.

all edge lengths and angles of the triangles are pre-

served (see 3 (b)). In this setting p is doubled into

pl and pr . Now we are ready to propagate the pen-

cil of rays defined by w1 and w2 across triangle

C and create new temporarily overlapping windows

v′

1 and v′

2 depicted in Figure 3 (c). Evaluating the

distances induced by both pencils of rays the win-

dows can be intersected and properly cut to final

windows v1 and v2 (see Figure 3 (d)) which cor-

rectly represent the continuous piecewise geodesic

distance function along the edge.

A nice feature of this window formulation is that

all computations can be formulated in local two di-

mensional coordinates, i.e. only the mesh topology

and scalar edge lengths are required. The neces-

sary condition for this edge based algorithm is that

geodesic paths can only pass through vertices with

a total angle greater or equal than 2π, i.e. saddles

and flat points. This result was proven by Mitchell

et al. in [2]. Saddle points and concave boundary

points act as pseudo sources which generate addi-

tional new windows covering the geometric shadow

of the locally expanded surface.

3.1 Base algorithm

At first all source windows in the immediate vicin-

ity of source points are created and pushed into a

priority queue preferring shorter distances, because

we want to compute the minimal geodesic distance.

Notice that in general the result is independent of

the propagation order but the priority queue en-

sures that windows are propagated as a wavefront

which gives a strong speedup and makes the al-

gorithm practical. Working off the queue the cur-

rent window is always propagated into the next un-

folded triangle, where new windows are created (

see Figure 2). When the front reaches saddle or

boundary vertices new source windows are added.

All new windows can overlap with already exist-

ing windows and must be intersected accordingly.

The algorithm terminates when all edges are parti-

tioned by the minimal geodesic distance windows,

i.e. when the queue is empty. The pseudocode al-

gorithm is presented below and all necessary com-

putations are explained in more detail in the next

sections.

Algorithm 1 Exact Geodesic Field

sourceWs = createSourceWindows()

PQueue.add(sourceWs)

repeat

curW = PQueue.popFront()

newWs = propagate(curW)

newWs += saddleAndBoundaryWs(curW)

newWs = intersect(newWs, oldWs)

PQueue.add(newWs)

until queue.empty()

3.2 Circular window propagation

In the next section we will define a second type

of windows, so from now on windows originating

from point sources are called circular windows. The

starting point for a propagation is depicted in Figure

2 (b). Given a window w the corresponding edge

p0p1 is aligned to the x-axis of the local coordinate

system with the origin in p0. Each window is de-

scribed by a six tuple (b0, b1, d0, d1, σ, τ) with σ

representing the optional constant offset between a

pseudo source and a real source. The binary flag

τ determines on which side of the x-axis the un-

folded pseudo source s lies (symbolized in pictures

by the arc). The window extents are encoded in b0

and b1 which are in the range [0..|p0p1|]. Due to

the fact that the distances d0 and d1 of the window

endpoints from the pseudo source are known the un-

folded position s can be reconstructed via circle in-

tersection.

sx =
1

2
(b0 + b1 +

d2

0 − d2

1

b1 − b0

)

sy = −1τ
√

d2

0
− (cx − b0)2

Using the local coordinates of p3 which are com-

puted analogously to s the new windows are found

by 2D ray intersection. There are different constel-

lations which can lead to one, two or three (on sad-

dle points) new windows.

3.3 Circular window intersection

If two windows overlap and one provides a smaller

distance everywhere the other is simply clipped

against it. If both are minimal in part of the over-

lapping interval, both ranges are clipped to the point

where both distance functions are equal. Notice

that clipped windows have to be reinserted into the

queue because their priority can change. Using the

unfolded pseudo source s from the previous section

the distance function dc of an arbitrary point (px, 0)
in the interval of a window can easily be formulated.

Due to the fact that s is not necessarily a real source

(e.g. saddles induce pseudo sources) the distance σ

from all traversed pseudo sources to the real source

must be added.

dc(px) =
√

(px − sx)2 + s2
y + σ (1)

Trying to find the intersection of two such dis-

tance functions, namely dc1(px) = dc2(px) the

computation ends up as the solution of a quadratic

equation Ap2

x + Bpx + C = 0. In this case there is

exactly one solution in the overlapping interval and

the coefficients of the polynomial are

A = α
2 − β

2

B = γα + 2s1xβ
2

C =
1

4
γ

2 − |s1|2β2

α = s1x − s0x

β = σ1 − σ0

γ = |s0|2 − |s1|2 − β
2

4 Generalization to arbitrary sources

Our goal is to generalize the original geodesic dis-

tance computation algorithm from isolated points to

polygonal curves on the surface. In a planar config-

uration the Euclidean distance function to a polyg-

onal curve falls into several segments. In some seg-

ments the distance function is, again, the square root

of a quadratic function. Those segments correspond

to the vertices of the polygon. In other segments,

the distance function is just linear. These segments

correspond to the edges of the polygon. See Figure

1 for an example.

Going from the plane to a piecewise planar trian-

gle mesh, we can still propagate the distance func-

tion from one triangle to its neighbors by storing

p

p

(a) (b)

Figure 4: (a) An arbitrary point source p on the

surface induces three windows in the correspond-

ing triangle. (b) The six windows of a point source

on an edge.

windows of the piecewise distance function on each

edge. The only difference regarding the last section

is that now we need to handle two different types

of windows: the ones where the distance function

is of the form (1) and the ones where the distance

function is linear. The Dijkstra-type propagation

algorithm then has to handle all kinds of window

intersections: circular-circular, circular-linear, and

linear-linear. In the following we will give the ex-

plicit formulae for the corresponding intersection

points where the two distance functions coincide.

Additionally we need the ability to create circular

source windows induced by arbitrary points on the

surface which will be discussed first.

4.1 Arbitrary points

The original algorithm [1] was proposed to allow

point sources only at vertex positions. However it is

straightforward to overcome this limitation. Given

an arbitrary point p on the surface the three edges

of its containing triangle are initialized with win-

dows emanating from this point as depicted in Fig-

ure 4. The new created windows are intersected

with all other windows on an edge to handle multi-

ple sources. Special care is needed for points lying

exactly on an edge. In this case the edges of both

triangles must be initialized.

4.2 Polygons on the mesh

As seen in Figure 5 straight line segments induce

linear and circular waves from its endpoints. Con-

sequently we create linear and circular windows for

each segment of a piecewise linear polygon. Ex-

ploiting the window intersection algorithms already

Figure 5: The geodesic distance field w.r.t the black

polygon. Linear waves emanate orthogonal to line

segments and circular waves emanate from each

endpoint of a line segment.

necessary for the window propagation the overall

initialization becomes very simple, because over-

laps are handled consistently.

As a preprocess we subdivide the piecewise lin-

ear input polygon such that every segment lies en-

tirely in one triangle. This can easily be done by

inserting vertices on all intersections between trian-

gle and polygon edges. Using this decomposition

it is possible to handle each polygon segment in-

dependently. We illustrate the procedure with one

line segment in a single triangle as depicted in Fig-

ure 6 (a). At first we add linear windows (green)

whose extents are computed by intersecting orthog-

onal rays starting from the endpoints of the line

segment with all triangle edges. Additionally, both

endpoints induce circular windows (yellow) which

are computed as described in Section 4.1. All new

windows are again intersected with windows al-

ready registered to an edge. Notice that due to the

exact equal distance intersection the result is again

independent of the order in which the windows are

added.

To complete the algorithm we next describe the

propagation and intersection of linear windows.

Now each window is expressed as a seven tuple

(id, b0, b1, d0, d1, σ, τ) in which the added type id

is either circular or linear. In the case of a circular

window we proceed exactly as described in Section

3. For linear windows the tuple components have

analogous meanings. The key difference is that the

emanating boundary rays of a window starting at

(bi, 0) in local coordinates are computed in a dif-

ferent way. They do not intersect at a pseudosource

center but are always parallel (see Figure 6 (b)). The

distance function over a linear window is a simple

linear function fully determined by bi and di.

xα
α

d0

d1

b1

d0−d1

y

b0 w

n

(a) (b)

Figure 6: (a) A line source within a triangle induces

a set of linear (green) and circular (yellow) win-

dows. (b) Computation of the propagation direction

in local coordinates.

4.2.1 Linear window propagation

The starting point is depicted in Figure 6 (b). Sim-

ilar to section 3 the window w covers the segment

between b0 and b1 on the edge e. The x-axis is

aligned to e and the y-axis lies in the plane of the

triangle where the window should be propagated

through. Using elementary geometric calculations

the propagation direction n = (nx, ny) can be

computed in terms of the local coordinate system.

The differences |d1 − d0| and b1 − b0 define the

angle between the linear front and the mesh edge:

sin α =
−nx

|d0 − d1|
=

|d0 − d1|
b1 − b0

Solving the previous equation for nx, ny can be

computed by the theorem of Pythagoras:

nx = − (d0 − d1)
2

b1 − b0

ny = −
√

(d0 − d1)2 − n2
x

Using these ray direction instead of the ray di-

rections induced by the unfolded pseudo source the

remaining part of the window propagation is iden-

tical to Section 3. Here overlaps of propagated

windows can happen as well. For this reason the

next paragraph describes all possible cases, namely

linear-linear and circular-linear window intersec-

tions. Both reduce to the solution of a quadratic

equation.

4.2.2 Linear window intersection

Again there are two different cases for window in-

tersections. The trivial one occurs when the dis-

tance function of one window is larger in the whole

overlapping interval. In this case it is easily clipped

against the other window.

The more interesting case happens when the mini-

mal distance function in the overlapping interval is

composed of both windows. In this case there must

be a point (px, 0) where both distance functions are

equal.

The distance function of a linear window along

an edge is a simple linear function (cp. Figure 6

(b)) which can be formulated in terms of n or di-

rectly using the window components. It fulfills the

interpolation condition dl(bi) = di.

dl(px) = px

d1 − d0

b1 − b0
︸ ︷︷ ︸

m

+
b1d0 − b0d1

b1 − b0

+ σ

︸ ︷︷ ︸

n

Now we are ready to compute intersections of

linear windows with linear and circular windows to

find the separation point px on the corresponding

edge:

1. linear-linear intersection

dp1(px) = dp2(px)
⇔ pxm1 + n1 = pxm2 + n2

⇔ px = n2−n1

m1−m2

2. circular-linear intersection

dc(px) = dl(px)

⇔
√

(px − sx)2 + s2
y + σ = pxm + n

Squaring the previous equation leads to a

quadratic equation Ap2

x +Bpx +C = 0 with coef-

ficients

A = 1 − m
2

B = −2(sx + m(n − σ))

C = s
2

x + s
2

y − (n − σ)2

Notice that unlike the previous intersections here

exist possibly two valid solutions which can lead to

a trisection of the overlapping interval. In this case

the cut circular window lies in the middle of two

disconnected parts of the linear window.

5 Approximation algorithm

The propagation of distance information across

many triangles leads to an increasing number of

windows per edge because windows split up at

vertices. A large number of windows increases

the time as well as the space complexity of the

algorithm. So the idea for the ε-Approximation-

Algorithm in [1] is to merge neighboring windows

on an edge whenever the induced relative error is

acceptable. Allowing for example a relative error of

ε = 0.1% leads to visually indistinguishable results

but enables the processing of huge models with

several millions of faces which are far too complex

for the exact algorithm. Again the proposed linear

windows fit naturally in the original framework and

share all properties necessary for window merging.

Before we describe the merging of linear windows

we shortly review the basic principles and the case

of circular windows. For details see [1].

To guarantee consistency of the geodesic field

some conditions must be checked before merging

two neighboring windows.

1. Directionality: Both windows propagate into

the same direction.

2. Visibility: The pencil of rays of the merged

window must at least cover all rays of the orig-

inal windows so that no gaps arise.

3. Continuity: The distance at the endpoints

bounding the merged window must be pre-

served to conserve distance field continuity.

4. Type: Both windows must be of the same

type, e.g. planar or circular.

Additionally the user can prescribe a relative er-

ror bound εU so that only those merges are per-

fomed where the relative difference between the

distance function of the new window d′(px) and

the original piecewise distance function dlr(px) =
dl(px) ∪ dr(px) is smaller than εU , i.e.

|dlr(px) − d′(px)|
dlr(px)

≤ εU

5.1 Merging of circular windows

Taking two neighboring circular windows

wl = (id, b0l, b1l, d0l, d1l, σl, τl)

wr = (id, b0r, b1r, d0r, d1r, σr, τr)

which meet at the common point (b1l, 0) = (b0r, 0)
the merged window w′ is already determined up to

σ′ due to the necessary conditions:

id
′ = id

b
′

0 = b0l

b
′

1 = b1r

d
′

0 = d0l + σl − σ
′

d
′

1 = d1r + σr − σ
′

τ
′ = τl = τr

The continuity constrain restricts w′’s pseu-

dosource s′ = (s′x, s′y) to lie on a conic curve

s2

y(sx). Because of the positivity of the d′

i and the

visibility constraint the valid domain of this conic

curve is further restricted. If it is the empty set, the

merge is disallowed and in all other cases the small-

est possible σ′ is chosen (see [1] for details and how

to evaluate the approximation error).

5.2 Merging of linear windows

The distance values di of a linear window can

always be transformed so that the corresponding

pseudosource distance σ vanishes. So w.l.o.g. two

neighboring linear windows

wl = (id, b0l, b1l, d0l, d1l, 0, τl)

wr = (id, b0r, b1r, d0r, d1r, 0, τr)

which join at the common point (b1l, 0) = (b0r, 0)
can be merged into a linear window

w
′ = (id, b0l, b1r, d0l, d1r, 0, τl = τr)

which satisfies all necessary constraints and is fully

determined by the original windows. Notice that

the visibility constraint is always fulfilled because

diverging linear windows can only occur in combi-

nation with an additional point source or a saddle.

The maximum approximation error is obtained at

the joining point and can be computed as

ε = |1 − d1r(b1l − b0l) + d0l(b1r − b1l))

d1l(b1r − b0l)
|

6 Adaptive refinement

The algorithm presented in the last section is able

to compute the exact geodesic distance field on a

triangle mesh with respect to an arbitrary polygon

embedded on the mesh. However, the distance in-

formation is not given explicitly but rather through

a set of windows defined on the edges of the mesh.

For most geometry processing algorithms this im-

plicit information has to be made explicit. The stan-

dard approach to do this is to simply sample the

distance function at the mesh vertices and then use

a linear interpolant on each face as an approxima-

tion of the original distance field. In order to have

some guarantee about the approximation tolerance,

we have to refine the mesh in regions where this tol-

erance is violated. Usually this happens in the vicin-

ity of the geodesic medial axis. To decide where to

refine we compare the exact geodesic distance on

edges with the linear interpolant and check if a user-

defined threshold is exceeded. In this case we split

the edge and insert a new sample point.

The geodesic distance field is smooth with con-

stant gradient magnitude everywhere except for the

geodesic medial axis. By properly placing the

newly inserted vertices on the medial axis (i.e. at the

maximum distance value) we can avoid excessive

local refinement. This feature sensitive placement

leads to optimal convergence and is in the spirit of

[9].

Since edge splits in arbitrary order lead to poor

triangles we employ a strategy similar to adaptive

red-green triangulations. An important feature is

that our refinement does not change the underly-

ing geometry and can be seen as a pure upsampling

of the original geodesic distance field. Due to this

fact no recomputation of the geodesic field is neces-

sary. The geodesic distance has to be updated only

for those edges that are newly inserted. The edge-

based refinement and the evaluation procedure are

described in more detail in the next sections.

6.1 Edge-based refinement

In each refinement step we evaluate for each edge

the maximal deviation between the exact distance

function given as a pieceweise function along the

edge and the linear function interpolating the exact

distance only at the edge endpoints. If this maxi-

mal deviation exceeds a user-defined threshold the

edge is tagged for refinement and the corresponding

point pmax is cached as the optimal splitting posi-

tion. Simply splitting all tagged edges would result

in poor triangle quality. We aim at applying a one-

to-four split (see Figure 7) of triangles lying entirely

in the refined region. The one-to-four split operator

(a) (b)

Figure 7: Implementation of a one-to-four split of

a triangle using only edge split and edge flip opera-

tors. (a) Each edge of the black triangle is first split

in arbitrary order. (b) The green edge, character-

ized by two adjacent triangles with only one origi-

nal edge segment, is flipped to complete the one-to-

four refinement.

can be composed of edge split and edge flip oper-

ations. For one triangle this requires the splitting

of all edges (in arbitrary order) and the flipping of

one specific edge (see Figure 7). To increase the

number of regular one-to-four splits we iteratively

tag all edges which are adjacent to triangles with al-

ready two tagged edges. This edges will be splitted

on their midpoint. Subsequently all tagged edges

are split at their cached split positions and all neces-

sary flips are done. Identifying which edges should

be flipped is easy if we mark all new created edges

as red during the splitting process. If both triangles

of a red edge are bounded by exactly two (the edge

itself plus one additional) red edges the edge must

be flipped.

6.2 Evaluation of interpolation error

The Geodesic Distance Function along a mesh edge

e is defined piecewisely and consists of linear and

circular segments corresponding to linear and cir-

cular windows. To compute the maximum devia-

tion between this exact function and the linear in-

terpolant defined by the exact distances on the edge

vertices it is possible to first evaluate the maximal

deviation for each segment individually and then

take the overall maximum.

In the case of a linear segment the evaluation is sim-

ple. The difference between two linear functions is

again a linear function and so the maximum is al-

ways on the boundary of the corresponding linear

window.

In the case of a circular window the maximum can

be computed analytically. The difference of both

distance functions along the edge

E(px) =
√

(px − sx)2 + s2
y + σ − (ax + b)

has a single extremum at

qx = sx − a

√

s2
y

a2 − 1

If qx is not in the valid interval [b0..b1] of the win-

dow the maximal deviation is on the boundary of

the window as in the linear case.

The optimal position for a new sample point is ex-

actly the position pmax where the deviation is max-

imal. However allowing split points to lie arbitrar-

ily close to the edge endpoints leads to degenerate

triangles. In practice we clamp the splitting posi-

tion to be in the range of 25 − 75% of the edge

length. Additionally if the optimal position lies be-

tween 12.5 − 25% or 75 − 87.5% we adjust the

new vertex so that the optimal position lies exactly

on the midpoint of the new created edge because

this leads to better triangulations. Given the optimal

sample position t ∈ [0..1] the update is as follows:

t 7→







0.25 0 ≤ t < 0.125
2t 0.125 ≤ t < 0.25
t 0.25 ≤ t ≤ 0.75
2t − 1 0.75 < t < 0.875
0.75 0.875 ≤ t ≤ 1

7 Results

We demonstrate the results of our algorithm on

models of different complexity. Table 1 shows the

corresponding timings for the computation of the

exact and approximated geodesic fields which were

generated on an AMD 64 3500+ system with 2GB

of RAM. Additionally the average number of win-

dows per edge (WPE) is listed. On the David and

the Fandisk model we computed the geodesic field

w.r.t. the red polygonal curves on the surface (see

figure 9). The visualization uses a 1D texture to

transfer the linear interpolant of the geodesic field

into a color. For the car model depicted in Figure

1 we computed the geodesic field for the boundary

and applied the adaptive refinement to get an satis-

factory visualization. The refined mesh is showed

in Figure 9. Obviously most of the mesh refine-

ment occurs in a thin local neighborhood near the

medial axis of the geodesic field. The plane model

in Figure 8 illustrates the quality gain of our adap-

tive refinement in more detail. The upper row shows

the original mesh with the corresponding linear in-

terpolant of the geodesic field. Even though the

Table 1: Timings

Model #Faces Time WPE Time WPE

exact exact 0.1% 0.1%

Plane 422 4ms 2.40 2ms 1.2

Fandisk 12k 1.90 s 9.06 0.12s 1.6

Car 34k 3.03 s 7.06 0.91s 3.4

David 8M - - 165s 1.3

Figure 8: plane (422 faces)

mesh structure looks nice the result is very noisy

near the medial axis and shows large errors. Ap-

plying the presented adaptive refinement we gain a

high quality explicit representation of the geodesic

field showed in the lower row together with the gen-

erated mesh structure. The approximation error re-

duced by a factor of 100 while the number of faces

increased by a factor of 4.

8 Conclusion and future work

We have presented a generalization of the exact and

approximate geodesic algorithm of [1] which al-

lows to use arbitrary polygons as the boundary con-

dition for the geodesic field. Our extensions inte-

grate very naturally into the original algorithm and

can easily be added to existing implementations. To

increase the quality of the vertex based piecewise

linear representation required for many applications

using geodesics we included a well suited adaptive

refinement technique which increases the quality of

the piecewise linear representation to a user pre-

scribed quality. The adaptive refinement strategy is

very local and yields satisfactory mesh quality.

Figure 9: Car (34k faces), Fandisk (12k faces) and

David (8M faces)

References

[1] V. Surazhsky, T. Surazhsky, D. Kirsanov, S.

Gortler and H. Hoppe. Fast exact and approx-

imate geodesics on meshes. Recognizing Sur-

faces using Three-Dimensional Textures. In

ACM SIGGRAPH Proc., 553–560, 2005.

[2] J.S.B. Mitchell, D.M. Mount and C.H. Pa-

padimitriou. The discrete geodesic problem

SIAM Journal of Computing, 16(4):647–668,

1987.

[3] M. Lanthier, A. Maheshwari, and J.-R. Sack.

Approximating weighted shortest paths on

polyhedral surfaces. In Proc. 13th Annu. ACM

Symp. Comput. Geom., 274–283, 1997.

[4] R. Kimmel, and J.A. Sethian. Minimal Dis-

crete Curves and Surfaces. In Proc. of Na-

tional Academy of Sci.95(15), 8431–8435,

1998.

[5] M. Novotni and R. Klein. Computing geodesic

distances on triangular meshes. In Proc. of

WSCG, 341–347, 2002.

[6] D. Kirsanov. Minimal discrete curves and sur-

faces. PhD thesis, Applied Math., Harvard

University.

[7] M. Reimers. Minimal discrete curves and sur-

faces. PhD thesis, Math., Univ. of Oslo.

[8] Y.-J. Liu, Q.-Y. Zhou and S-M. Hu. Handling

Degenerate Cases in Exact Geodesic Compu-

tation on Triangle Meshes. Computer Graph-

ics International, 2007, to appear.

[9] L. P. Kobbelt, M. Botsch, U. Schwanecke

and H.-P. Seidel. Feature-Sensitive Surface

Extraction From Volume Data. In ACM SIG-

GRAPH Proc., 57–66, 2001.

[10] R.E. Bank, A. H. Sherman and A. Weiser.

Refinement Algorithms and Data Structures

for Regular Local Mesh Refinement. In Sci.

Computing,IMACS/North Holland, Amster-

dam, 3–17, 1983.

[11] M. Vasilescu and D. Terzopoulus. Irregular

triangulation, discontinuities and hierarchi-

cal subdivision. In Proc. of Computer Vision

and Pattern Recognition Conference, 829–

832, 1992.

[12] L. Kobbelt.
√

3 Subdivision. In Proc. of ACM

SIGGRAPH 103–112, 2000.

