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Abstract: We present an accurate and e�cient algorithm to compute the internal

Voronoi region and medial axis of a 3-D polyhedron. It uses exact arithmetic and

representations for accurate computation of the medial axis. The sheets, seams, and

junctions of the medial axis are represented as trimmed quadric surfaces, algebraic

space curves, and algebraic numbers, respectively. The algorithm works by recursively

�nding neighboring junctions along the axis. It utilizes discretization of space and

linear programming to speed up the search step. We also present a new algorithm for

analysis of the topology of an algebraic plane curve, which is the core of our medial axis

algorithm. To speed up the computation, we have designed specialized algorithms for

fast computation on implicit geometric structures. These include lazy evaluation based

on multivariate St�urm sequences, fast resultant computation, curve topology analysis,

and oating-point �lters. The algorithm has been implemented and we highlight its

performance on a number of examples.

1 Introduction

The medial axis of a solid object provides useful shape information in terms of geo-

metric proximity of its boundary elements. It is a skeletal representation that can be

formulated as the locus of the center of a maximal sphere as it rolls around the object

interior.

The medial axis of an object was �rst proposed by Blum [Blu67] for biological shape

measurement. It has also been used for a number of other applications, including path

planning, �nite element mesh generation, automated injection molding simulation and

feature recognition. Many researchers have proposed the medial axis transform as

an alternate representation to B-rep and CSG in a design and interrogation system

[Wol92, Hof94, SNTM92].

The medial axis of a solid is the closure of the locus of all points within the

solid that have two or more closest points on the boundary of the solid. When the

solid is a polyhedron, the medial axis is composed of bisectors of boundary features

(vertices, edges, and faces). These bisectors are planes and quadric surfaces. The
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medial axis consists of sheets, seams, and junctions. A sheet is the bisector of two

boundary elements, and may be represented as a trimmed quadric surface. A seam is

an algebraic space curve de�ned by the intersection of two or more sheets. A junction

point is de�ned by the intersection of three or more sheets.

The complexity of the medial axis is not fully understood. The total number of

sheets, seams, and junctions can be O(n2), where n is the total number of faces, edges,

and vertices in the polyhedron; it may even be O(n3). Many polyhedral medial axis

algorithms use either a spatial subdivision or some form of discrete representation of

the surface. Sheehy et al. [SAR95] claim that because of the inherent complexity

of a continuous approach, one has to use some form of discretization. However, it is

hard to accurately and e�ciently compute the medial axis based on such a discrete

representation. In the last few years, a number of authors have proposed computing

the medial axis based on a tracing approach [Mil93, Chi92, SPB95]. Starting with a

known junction (for instance, a vertex of the polyhedron), they trace along its inci-

dent seams and discover the adjacent junction points. In particular, Sherbrooke et

al. [SPB95] have presented the �rst implemented algorithm for computing the medial

axis based on a continuous representation of the boundary. However, they compute

numerical solutions of polynomial equations using oating point arithmetic, and com-

pute piecewise linear approximation of the seam curves. The accuracy varies with the

step size and the tolerances used for computing the junction points. Since the medial

axis of a polyhedron can be very sensitive to perturbations, it can be rather non-trivial

to design an accurate algorithm using �nite precision arithmetic. For example, �gure

13 shows the medial axis of a polyhedron which has four junction points very close to

each other. In practice, it is di�cult to accurately compute the medial axis of such a

polyhedron using �nite precision arithmetic.

The problem of accurate and robust computation using �nite precision arithmetic

is a major open problem in solid modeling [Hof89]. One solution to the precision

problem is to use exact arithmetic. For example, many algorithms based on exact

arithmetic have been proposed for reliable computation for boundary evaluation of

boolean combinations of polyhedral models [SI89, For95, BMP94, Hof89]. However,

medial axis computation involves low-degree nonlinear algebraic curves and surfaces.

For such problems, it is di�cult to compute tight bounds on the numerical error

generated due to oating-point arithmetic. As a result, it is hard to design reliable

algorithms using tolerance-based approaches. At the same time, progress is slow in the

application of exact arithmetic to nonlinear problems, mainly because exact arithmetic

is perceived to be impractically slow.

In this paper, we present an accurate and e�cient algorithm to compute the in-

ternal Voronoi region and medial axis of a 3-D polyhedron. Our overall approach is

similar to the 3-D tracing algorithm proposed by [Mil93, Chi92, SPB95]. However, we

use exact arithmetic and representation for accurate computation of the medial axis.

The algorithm recursively computes the vertices and edges of the medial axis based on

seam-tracing. We also present a new curve topology evaluation algorithm for reliable

tracing of the seams of the medial axis. Our contributions include:

� Search algorithm: An accurate and reliable algorithm for evaluating all the

seams and computing the \�rst" junction point lying on the seam.

� Representation: E�cient and exact representations of junction points, seams
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and sheets of the medial axis.

� E�ciency: We use techniques based on space discretization and linear pro-

gramming to speed-up the search step and avoid enumerating all possible com-

binations of junction points. To speed up arithmetic operations on algebraic

numbers, we have designed specialized algorithms for fast evaluation and com-

putation of the junction points, seams and sheets. These include lazy evalua-

tion based on multivariate St�urm sequences, fast resultant computations, curve

topology evaluation, and oating-point �lters.

� Handling Degeneracies: We identify the cases where degeneracies can a�ect

our algorithm, and propose ways to identify and resolve them.

The resulting algorithm has been implemented and we highlight its performance on

some example polyhedra. Its overall complexity is output sensitive and depends on

the combinatorial complexity of the medial axis.

Organization: The rest of the paper is organized in the following manner. We

survey the previous work in medial axis computation and exact arithmetic in section 2.

Section 3 gives an overview of our algorithm and describes the exact representations

of the elements of the medial axis. In section 4, we describe our new search and

curve topology analysis algorithms. We present a number of techniques to improve

the e�ciency of our approach in section 5. Section 6 discusses degeneracies in the

medial axis computation and how we handle them. We describe our implementation

in Section 7 and highlight its performance on a few polyhedra.

2 Previous work

2.1 Medial axis computation

There is considerable work on medial axis computation in solid modeling and compu-

tational geometry. The various approaches can be classi�ed into two main categories:

discrete methods based on sampling, and \continuous" or direct methods that do not

rely on the su�ciency of some sampling.

Sampling points on the surface: Many authors have computed the medial axis

using the Voronoi diagram of a set of points located on the polyhedron's surface. Usu-

ally the result is an approximation to the medial axis, though Sheehy et. al. [SAR95]

adaptively re�ne the sampling until all adjacency relationships are revealed. From

this, the exact medial axis may be constructed. However, the overall complexity of

this approach is not understood.

Spatial Subdivision: Another popular approach is to impose a regular grid on

space, and compute an approximation to the medial axis consisting of a set of cells. The

approximation can be considered an \image" of the medial axis, and does not contain

a complete description of the adjacency relationships. Among implementations of this

approach, that of Vleugels and Overmars [VO95] is notable in that they guarantee

correct topology of the approximate axis. Their topology-resolution routine subdivides

adaptively. Thus, like the boundary-discretization method, the complexity is di�cult

to formulate in terms of the input size.

2-D Continuous Algorithms: The classic divide-and-conquer algorithm for the

two-dimensional problem has been presented by Lee [Lee82]. A variant of that algo-

3



rithm is given in [Hel97]. Fortune has presented a sweepline algorithm [For87]. No

algorithms are known in the literature that extend these approaches to 3-D. Imai has

presented an incremental algorithm for 2-D polygons [Ima96].

Incremental 3-D Algorithm: Milenkovic has presented an an incremental al-

gorithm for computing the voronoi region of a polyhedron. It inserts the boundary

elements one at a time. At step k, the entire generalized Voronoi diagram of the �rst

k sites has been constructed. However, we are not aware of any implementation of

this algorithm.

3-D Tracing Algorithms: All the practical algorithms for computing the 3-

D medial axis are based on the tracing approach. Starting from a junction point,

a seam emanating from the junction is followed. The seam terminates at another

junction. Once this point is found, the algorithm recursively forks and follows all seams

emanating from that junction. The key step is the search for the seam terminator. In

the two-dimensional medial axis problem, the search is limited to smaller and smaller

subchains of the polygon. No such property holds for the three-dimensional problem;

each terminating junction is found at the expense of a search of (in the worst case) the

entire polyhedron. Thus the complexity is jointly proportional to the input size n of

the polyhedron and the output size m of the medial axis. The algorithm's worst-case

behavior is necessarily at least a factor of n larger than optimal O(m) time. A tight

upper bound on m, the size of the medial axis, is currently not known. It is known

that m = O(n3+�) for any � > 0 [AAS97], but we know of no example where m is

more than O(n2).

Milenkovic [Mil93] proposed the 3-D tracing algorithm, and discusses its complex-

ity. Chiang [Chi92] presented an algorithm for computing the medial axis of a planar

region bounded by piecewise C2 curves. It involves tracing branches using sets of

polynomial equations. Sherbrooke, Patrikalakis and Brisson [SPB95] have presented a

variation on the algorithm. They explicitly trace along the seam, creating a piecewise-

linear approximation to the curve. They applied their algorithm to generate the medial

axis of a number of polyhedra. Reddy and Turkiyyah [RT95] also present a version of

the tracing algorithm, and compare it to an algorithm based on the Voronoi diagram

of a set of points on the boundary.

Medial Axis of CSG Objects: Dutta and Ho�mann [DH90, DH93] and Ho�-

mann [Hof94] have presented algorithms for computing the medial axis of CSG objects.

Their algorithms compute the points of closest approach between pairs of boundary

elements. They have also studied exact representation of bisectors arising in medial

axis computation of CSG objects bounded by planes, quadrics and torii.

Medial axis to B-rep Conversion: A number of algorithms have been presented

in the literature to convert solids from a representation based on the medial axis to a

boundary representation [Wol92, Chi92, Bra92, Ver94].

2.2 Exact arithmetic in geometric computation

Exact arithmetic has proven useful in the linear domain. Exact arithmetic means

that each number is determined and stored to whatever precision is necessary. By

allowing arbitrary bit-lengths any integer or rational number can be computed and

stored exactly. For linear objects, rational numbers are usually all that is required to

perform a geometric operation. In the solid modeling community, exact arithmetic has

been used successfully for applications involving linear objects (e.g. [For95]). Some of
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the recently developed geometric libraries like LEDA and CGAL also provide support

for exact arithmetic.

In the nonlinear domain, however, exact arithmetic becomes more di�cult to apply

e�ectively. This is because computations on non-linear objects often require algebraic

numbers, which cannot be explicitly represented by a �nite number of bits. Tech-

niques using bit-length estimates may, in the worst case, require bit-lengths which

are exponential with respect to the degree of the algebraic functions [Can88, Yu92].

One approach to this problem is to use �eld extensions to allow representations of

each new number as it is computed. Many computer algebra systems and symbolic

libraries provide support for �eld extensions. However, computing with such numbers

can be quite expensive. Another approach is to represent an algebraic number as

the unique root of a polynomial (with rational coe�cients) within a rational interval.

This is similar to the idea of interval arithmetic. As long as the interval containing

the root can be tightened or cut on demand, many useful queries can be performed

exactly using this representation. In one dimension, this can be accomplished through

the use of St�urm sequences. In higher dimensions, multivariate St�urm sequences are

used. Milne [Mil92] and Pedersen [Ped91] have proposed methods for such computa-

tions. Keyser et. al. apply these methods to the problem of CSG boundary evaluation

[KKM97]. The authors demonstrate that the geometric operations for this problem

can be computed in rational surfaces using only 1-D and 2-D St�urm sequences. The

medial axis problem requires the use of either 3-D St�urm sequences or �eld extensions.

3 Algorithm Overview

Our approach builds on the tracing algorithm proposed by [Mil93], [SPB95], and

[RT95]. However, instead of computing a piecewise linear approximation, we exactly

compute all the components of the medial axis. Essentially, the algorithm constructs

the adjacency graph of the medial axis while traversing it. Our terminology is similar

to that of [SPB95].

The input polyhedron consists of faces, edges, and vertices. The coordinates of the

vertices are represented in terms of rational numbers. The faces, edges, and vertices

are collectively called boundary elements. The medial axis consists of sheets, seams,

and junctions. The sheets correspond to trimmed quadric surfaces. The seams are

algebraic curves with rational coe�cients and the junctions are points whose coordi-

nates correspond to algebraic numbers (of degree at most 8). A sheet is said to be

governed by two boundary elements, a seam by three (or more), and a junction by four

(or more). We denote the squared distance function associated with a point, line, or

plane by d2e(x; y; z), where e stands for the point, line, or plane. The squared distance

function is a quadratic formula in x; y; and z.

The algorithm starts by �nding a single seam. For example, if there is a vertex

of the polyhedron with three incident edges, all of which are convex, then its three

incident faces generate a seam. If no vertex of the polyhedron is trivalent, a more

sophisticated technique is used to get the algorithm o� the ground with an initial

seam. This is discussed in section 6.1.

Each remaining boundary element e in the polyhedron is then considered as a

potential quadruple (e1; e2; e3; e) generating a junction point on the seam. One seeks

the element e4 whose candidate junction p1 comes �rst along the seam, measured by
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arc length. The ingredients of the search are

� the seam governors e1; e2; e3;

� the starting point p0, a junction point governed by, say, (e0; e1; e2; e3);

� the search direction w, one of the two tangent directions at p0.

The determination of e4 and p1 is based, not on taking tiny steps along the seam, but

on an accurate topological analysis of the curve.

The newly-found junction point may be a vertex of the polyhedron. In this case,

the branch of computation �nishes, and an unsearched seam is taken from a priority

queue. Otherwise, the junction point is equidistant from (ignoring degeneracy for now)

four boundary elements (e1; e2; e3; e4). Assuming the junction point has not already

been visited, three new seams are inserted in the priority queue: those corresponding to

(e2; e3; e4); (e1; e3; e4); and (e1; e2; e4). When the priority queue is empty, the algorithm

terminates.

For each new seam, the search direction is decided by comparing the curve tangent

to the three bisector surfaces involving the discarded element. The correct tangent

direction lies on the non-discarded side of each of these three surfaces. The medial axis

transform of an object consists of is medial axis together with a radius function, which

assigns to each point on the axis the radius of the maximal ball at that point. The

radius function is constructed by composing the parametric form of a sheet, quadratic

in s and t, with the distance function to either of its governors, a quadratic in x; y;

and z. The radius function is in general a degree-four expression in s and t.

3.1 Exact Arithmetic

We assume that the boundary of the polyhedron can be represented using rational

numbers. However, there is a fundamental limitation to the use of exact rational

arithmetic in Euclidean geometry: constructions on rational numbers often result in

algebraic numbers. For an example in the plane, consider the set of points equidistant

from the line y = 0 and the line y = x: the \bisector" of these two lines is the union

of the lines y = (�1 +p
2)x and y = (�1 � p

2)x. Evidently, these lines cannot be

described using only rational numbers. Their equations have algebraic numbers of

degree 2, and writing them in \two-point form" does not �x the problem, since the

origin is the only point on either line with rational x and y coordinates.

Exact arithmetic with these numbers is possible by computing in an extended �eld.

In the example above, this amounts to representing all numbers as a + b
p
3, where

a and b are rational. However, computing in an extended �eld is signi�cantly more

expensive than computing over the rationals, especially when the �eld extension grows

over the computation.

We have chosen to avoid arithmetic involving such algebraic numbers, choosing

instead to design implicit geometric structures for those objects which cannot be

described with rational numbers, and using only rational arithmetic. In the ex-

ample above, we would represent the pair of lines together as the degenerate conic

�x2 + 2xy + y2 = 0. The choice not to separate the two lines (for usually only one

is relevant) will complicate our algorithms somewhat. The expense of dealing with a

degree-2 representation for a degree-1 object is analogous to the expense of dealing

with the quadratic �eld extension.
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Figure 1: The geometric elements of the medial axis

3.2 Exact geometric representations

This section describes our exact representations for the sheets, seams, and junctions

of the medial axis. The parts are illustrated in �gure 1.

A sheet is the bisector of two boundary elements. These are quadric surfaces,

amenable to two di�erent representations: an implicit form

F (x; y; z) = 0

where F is a polynomial of total degree 2, and a rational parametric form

�
X(s; t)

W (s; t)
;
Y (s; t)

W (s; t)
;
Z(s; t)

W (s; t)

�

where X;Y; Z, andW each are polynomials of total degree 2. The implicit form is just

the di�erence of two distance functions, and has rational coe�cients. The parametric

form, however, may have irrational coe�cients, depending on the two governors and

their con�guration. Our medial axis algorithm always uses the implicit form, and also

uses the parametric form whenever its coe�cients are rational.

The parametric form is computed directly from the governors. For instance, the

bisector of two skew lines can be parametrized by letting s run along one line and t

along the other. The point at the intersection of the normal plane at s, the normal

plane at t, and the bisector plane of s and t lies on the bisector surface. When s and

t are rational, the point on the bisector is rational. This plane-intersection technique,

presented for rational curves in space in [EK96], works for other bisector types as well.

It cannot work, however, for the generic line-plane and plane-plane bisectors, since

they are largely devoid of rational points.

A seam curve lies on three di�erent sheets; it is represented as the intersection

of any two. An explicit rational parameterization of these curves is, in general, impos-

sible; thus they are represented in implicit form only. The implicit form G(s; t) = 0 is

obtained by substituting the parametric form of one surface into the implicit form of
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Governors Con�guration Bisector Coe�s in Q?

Point-point Generic Plane Yes

Point-line Generic Parabolic cylinder (z = x2) Yes

Incident Plane Yes

Point-plane Generic Paraboloid (z = x2 + y2) Yes

Incident Line Yes

Line-line Generic Saddle surface (z = x2 � y2) Yes

Incident Orthogonal plane pair (z2 + x2 = 0) No

Parallel Plane Yes

Line-plane Generic Right circular cone (z2 = x2 + y2) No

Perpendicular Right circular cone Yes

Parallel Parabolic cylinder Yes

Line lies on plane Plane Yes

Plane-plane Generic Orthogonal plane pair No

Parallel Plane Yes

Perpendicular Orthogonal plane pair Yes

Figure 2: The surfaces that arise as sheets of the medial axis.

the other. If none of the surfaces has a rational parametric form with rational coe�-

cients, an implicit form is obtained by projecting the curve onto a plane (see section

4.2.3). Computations involving the curve are usually formulated in the (s; t) plane.

A junction is an algebraic point, represented jointly by

� a system of three algebraic equations in three variables with rational coe�cients;

� a three-dimensional box with rational coordinates containing exactly one root

of the system.

An implementation of trivariate St�urm sequences in exact arithmetic can �nd a box

with a single root, and re�ne its size arbitrarily. Reasoning about the point typically

involves reasoning about the box, while shrinking the box until a query can be answered

unambiguously. A vertex-junction is equidistant from all of its incident edges and faces,

and its coordinates are known exactly, so there is no need to associate any of the above

structure with such a junction.

4 The searching algorithm

In this section, we enumerate all possible morphologies for bisector surfaces and seam

curves based on all combinations of governors. Based on this classi�cation, three dis-

tinct seam-search algorithms are presented. Each is suited to a di�erent con�guration,

and they may be thought of roughly as evaluation of curves in one-dimensional, a

two-dimensional, and a three-dimensional space.

4.1 Bisector morphology

In �gure 2, we show all of the bisectors that arise in the medial axis of a polyhedron.

Note that some of the non-generic con�gurations arise in perfectly generic polyhedra.

For instance, the bisector of a plane and a line in the plane occurs between the Voronoi
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Governors Generic seam Analysis method

Point-point-point Line 4.2.1

Point-point-line Parabola 4.2.1

Point-point-plane Conic 4.2.1

Point-line-line Quartic 4.2.2

Point-line-plane Quartic 4.2.2

Point-plane-plane Conic 4.2.2

Line-line-line Quartic 4.2.2

Line-line-plane Quartic 4.2.2

Line-plane-plane Conic 4.2.3

Plane-plane-plane Line 4.2.3

Figure 3: Some curves that arise as seams in the medial axis.

region of a face and that of an adjacent (non-convex) edge. The last column refers

to the coe�cients of the parametric form of the surface; the implicit form always has

rational coe�cients. The one bisector that is not a surface|that of a plane and a

point on the plane|can be safely ignored in our medial axis algorithm.

Our medial axis algorithm uses exact representations of the bisector surfaces. An

implicit form with rational coe�cients is always available, but in the indicated cases,

the parametric form may involve square roots. The consequences of this for our al-

gorithm are discussed in section 4.2. In the output, these surfaces can be given in

parametric form with algebraic coe�cients of the form a+ b
p
c for rational a; b; c, or

they can be approximated by parametric surfaces of the same geometric type with

rational or oating-point coe�cients with bounded error.

4.2 Seam morphology

The ten combinations of boundary elements are listed in �gure 3, with the most general

seam curve type for each combination. The \analysis method" corresponds to a choice

of three algorithms, described in the subsubsections below. The degenerate cases are

too numerous to list here.

4.2.1 Rational Parametric Curves

Sorting points along a rational parametric curve is a one-dimensional problem. Each

candidate junction is represented as an algebraic number, in implicit form (a polyno-

mial and a rational interval containing exactly one root).

The coe�cients of this parametric form may not be rational. In these cases, it is

feasible to perform the computation in an extension �eld of the rationals, but we �nd

it more e�cient to treat the curve as if it had no parametric form, as this avoids the

computational expense of handling �eld extensions.

4.2.2 Non-rational Curves lying on Rational Surfaces

In many cases, we are unable compute a rational parametrization of the curve with

rational coordinates. However, we may have a parametrization in rational numbers of

a surface that contains the curve. In such cases, we form an implicit representation of

the algebraic curve in the parametric domain of the surface.
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In the cases represented by the �rst eight rows of 3, at least one of the three

bisector surfaces admits a rational parametrization with rational coe�cients. We use

that parametric representation to evaluate the seam curve. Using the parametric form

of the surface, we project the curve back to the (s; t) plane. The topological analysis

algorithm (described in section 4.4) decomposes the curve into monotonic segments.

For each candidate boundary element, we choose the bisector surface associated with

one of the seam governors. The intersection curve with S is pulled back to the same

(s; t) domain. Intersections of the seam curve with the candidate-curves in (s; t)-space

correspond to potential junction points. Each potential junction point is located in

one of the monotonic boxes. It is then a simple matter to order the candidate junctions

and �nd the �rst one along the seam curve.

4.2.3 Non-rational Curves lying on Algebraic Surfaces

In the last two seam combinations, line-plane-plane and plane-plane-plane, the bisector

surfaces (cones and plane-pairs) may not have rational parametric forms with ratio-

nal coe�cients. Rather than using arithmetic in an extension �eld, we note that in

these two cases (including degenerate con�gurations) the seam curve is always a conic

or a line, and elect to treat these cases with specialized three-dimensional methods.

The candidate junctions are all isolated in (x; y; z)-space using tri-dimensional St�urm

sequences.

For the generic plane-plane-plane case, the equidistant point set corresponds to

four lines meeting at the intersection of the planes. The various slopes of these lines

are all, in general, irrational. The seam is contained in one of the eight \branches"

of this curve, and the plane equations of the three governors distinguish points on

this branch from points on the others. The ordering among the candidate junctions is

determined by, say, their x-coordinates.

For the generic line-plane-plane case, the curve consists of two non-intersecting con-

ics lying in perpendicular planes; the planes' various slopes are generally irrational.

Points on the irrelevant conic can be culled away by testing against the plane equations

of the two governing planes. The curve, represented implicitly by the intersection of

two bisector surfaces f(x; y; z) = 0, g(x; y; z) = 0, is then projected onto the xy-plane

by eliminating z from the pair of surface equations using the standard Sylvester resul-

tant. Before projecting, we transform the system so that eliminating z corresponds to

projection onto a plane close to the plane in which the conic lies. The projected curve

is a quartic in x and y. It is the product of two conics, but cannot be factored over the

rationals. A suitable domain is chosen and the curve topology routine is run on the

quartic curve. The boxes containing the candidate junctions project to hexagons. If

the projections overlap, the points are shrunk in 3-D and reprojected. Figure 4 shows

an example where the seam is an ellipse lying in an irrational plane. Not shown, and

not part of the seam, is a hyperbola in a plane perpendicular to the ellipse's plane;

under projection to a rational plane, the hyperbola will appear.

4.3 Local geometry of Junction Points

This section addresses the issue of discovering the seams that are incident to a junction.

Consider a junction governed by elements fe1; : : : ; ekg where k � 4. In the simplest

case, k = 4 and each of the three-element subsets of fe1; e2; e3; e4g govern a seam. But
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Figure 4: An elliptical seam in a plane with irrational slope

each of these seams can be followed in either of two directions. And when k > 4, not all

three-element subsets actually govern seams. These decisions are made by comparing

seam tangent vectors with bisector tangent planes.

Junction points can be seen to fall into two categories: internal junctions and

vertex-junctions. An internal junction q is characterized by:

� q is equidistant from four or more boundary elements;

� this distance is positive, and q lies in the interior of the polyhedron;

� q being equidistant from �ve or more boundary elements is indicative of a truly

degenerate situation;

� the coordinates of q are algebraic numbers of degree at most eight.

A vertex-junction v is characterized by:

� v coincides with a vertex of the polyhedron;

� v is equidistant from several boundary elements, but this distance is zero;

� the number of equidistant boundary elements is quite commonly more than four,

as it includes all incident faces and (reex) edges;

� the coordinates of v are rational by assumption.

It is clearly advantageous to distinguish these two types of junction point in the

implementation. It can be argued (see [SPB95]) that the connectivity properties of the

medial axis make it feasible to avoid searching out of vertex-junctions at all|they serve

as \sinks" for the recursion. Doing so typically removes many degenerate junctions

from consideration. However, we still need to deal with the problem of making correct

decisions at degenerate interior junctions.

For any type of junction|interior, vertex, degenerate, non-degenerate|the fol-

lowing predicate decides whether a potential seam actually participates in the medial

axis. Let E be a subset of the subset of junction governors, and ~E be its complement,
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so that E [ ~E = fe1; : : : ; ekg. Of course E must have at least three elements. For

each pair (e; e0) where e 2 E and e0 2 ~E, let h(e; e0) be the tangent plane to the

bisector surface of e and e0 at the junction point. Let w be one of the two tangent

vectors to the curve equidistant from the elements in E. The seam de�ned by E and

w participates in the medial axis if and only if for every pair (e; e0), the vector w,

compared to h(e; e0), points toward e and away from e0. Note that a particular E may

not generate a seam, and that if (E;w) does generate a seam, then (E;�w) cannot.
There are

�
k

3

�
possible seams incident to our vertex, ignoring the possibility that

a seam may be governed by more than three elements. Checking a seam requires

constructing 3(k � 3) tangent planes. Checking all possible seams, then, requires
1

2
k4�3k3+ 11

2
k2�3k vector-versus-plane checks. For a non-degenerate interior vertex,

we know there is a seam for each E, and it is just a matter of choosing which w goes

with each one; this requires only 4 tangent plane checks. For a very degenerate vertex,

though, the exhaustive method is too expensive. The combinatorial structure of the

seams incident to a junction point has the structure of a cell decomposition of the

surface of a sphere, and perhaps can be characterized as some sort of Voronoi diagram,

and computed e�ciently as such. This is an interesting issue for future research.

Comparison of the vector w to the plane h is performed in exact arithmetic as

follows. The seam is represented implicitly in <3 as the intersection of two surfaces.

A tangent w may be found by crossing the gradients of the two surfaces. The plane

h is the orthogonal complement of the gradient v of the bisector surface d2
e0
(x; y; z)�

d2e(x; y; z) = 0. When the surface is written this way (instead of in the opposite

order), the gradient points \towards" e, so the predicate on w can be evaluated as the

sign of w � v. The latter expression is the determinant of the three gradient vectors.

The determinant is expanded symbolically in terms of x; y; and z, and forms a cubic

polynomial in those variables. If the rational box containing the junction point lies

entirely on one side of the zero set of this cubic polynomial, then the sign can be

evaluated at any of the eight corners.

4.4 Curve Topology Algorithm

In this section, we present a specialized curve topology algorithm to evaluate the

seam curves. The algorithm divides an algebraic plane curve into segments which

are monotonic in both s and t. Such a division allows points on the curve to be

easily ordered along it. Although general algebraic decomposition algorithms (e.g.

[AF88]) can be used on this problem (after being modi�ed to handle the \root-in-

a-box" format), we have developed our own algorithm which is more specialized to

ordering points along the seam curve.

We will present only a high-level description of the algorithm here. An example of

the output of our algorithm is shown in �gure 5.

The algorithm we use makes two key assumptions. First, it assumes that the

algebraic plane curve contains no self-intersections or other singularities in the region

of interest. Although this signi�cantly restricts the curves we can use the algorithm on,

the curves which arise in the medial axis computation generally meet this requirement.

Second, we assume that all points on the curve are computed distinctly|that is, their

containing rational boxes do not overlap.

First, compute all of the turning points of our algebraic plane curve, f(s; t) = 0.

This is done by �nding all common solutions between f = 0 and fs = 0, and between
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Figure 5: The output of the curve topology algorithm.

f = 0 and ft = 0; subscripts denoting partial derivatives. This will isolate all of the

turning points in s and t, as well as inection points. Next, we �nd all of the \edge

points," intersections of f = 0 with the boundaries of the region of interest (which is

assumed to be rectangular and axis-aligned).

The next step is to determine the connections between the turning and edge points.

The curve between any two of these connected points will be monotonic in both s

and t. To make these connections, the algorithm proceeds by recursively subdividing

rectangular regions. A region falls into one of the following categories:

� Contains more than one turning point

� Contains one turning point and more than two edge points

� Contains one turning point and exactly two edge points

� Contains no turning points

Treating each of these cases separately, we recurse until all regions fall into the last

two categories.

At this point, the curve f = 0 has been divided into a number of segments mono-

tonic in both s and t in the region of interest. Finally, we subdivide further until the

bounding boxes of the curve segments do not overlap.

5 Improving the E�ciency

Our implementation uses a lower level library to perform exact computations with

algebraic numbers. We refer to them as kernel operations. At the top level, the

algorithm spends most of its time in the search step, typically involving one curve

topology invocation and the isolation of many candidate junction points in 2-D or

3-D.

In this section, we present three sets of techniques that improve the e�ciency of

the overall algorithm. These are:

13



� Speeding up the search algorithm using discretization of space and linear pro-

gramming.

� Reducing the number of kernel operations and root computations.

� Fast evaluation of kernel operations.

5.1 Speeding up the Search Algorithm

For 3-D St�urm computations, the shrinking of a box around a root is cheap compared to

the expense of setting up the system. The e�ciency of the searching step is signi�cantly

a�ected by the number of candidate elements checked against the seam analysis. Any

inexpensive method for rejecting candidate boundary elements without examining the

potential junction points is likely to speed up the algorithm.

We illustrate two methods for reducing the number of boundary elements con-

sidered during the searching step. Neither idea reduces the asymptotic worst-case

complexity of the algorithm. Both are essentially culling methods, capable of choosing

some elements which cannot govern certain junctions.

5.1.1 Discretization of space

Milenkovic [Mil93] has proposed the following method for speeding up the search step.

As a preprocess, subdivide space recursively, yielding an octree of axis-aligned boxes.

A simply-computed predicate, applied to each box, yields a (hopefully small) superset

of the set of boundary elements whose Voronoi regions intersect the box.

The searching step of the medial axis algorithm then proceeds as follows, in the

cases where the 2-D curve topology step (section 4.2.2) is required. Similar strategies

may be invented for the other cases (sections 4.2.1 and 4.2.3). The �rst 2-D box in the

topology diagram is considered as the domain of a B�ezier surface forming part of the

bisector surface S. The control points of this B�ezier surface are easily computed from

the parametrization of S, and the 3-D bounding box of the control points contains the

relevant segment of the seam curve. The algorithm then descends the octree, �nding a

minimal collection of nodes that cover the seam's bounding box. If the desired junction

point lies on this �rst curve segment, the boundary element that governs it will be

among the union of all of the closest-element-supersets of the nodes. Otherwise, the

algorithm moves to the second monotonic section of the seam curve in the domain of

S and repeats.

This strategy requires a heuristic for the termination of the preprocess. Milenkovic

[Mil93] essentially recommends letting it run (in breadth-�rst order, �nishing a level

entirely before subdividing again) until the running time becomes signi�cant compared

to the time which will be spent in computing the medial axis.

5.1.2 Linear programming

An alternate pre-process for speeding up the search algorithm is based on linear pro-

gramming. For each active boundary element, the preprocess �nds a polytope which

is known to contain the Voronoi region of the element. Only the structure local to

the element is examined. Some examples are given in �gure 6. The polytope can

be made �nite by drawing a bounding box around the element and taking half the
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Figure 6: Polytopes containing the Voronoi regions of (a) a face with reex edges,

(b) a face with convex edges, (c) a reex edge, (d) a reex vertex.

distance from each of these six planes to the corresponding plane of the bounding box

of the whole polyhedron. The number of planes in such a polytope is proportional to

the number of edges around a face or the number of edges incident to a vertex|for

practical purposes, a constant.

Next, the algorithm takes each pair of active boundary elements and tests their

polytopes for mutual intersection. With each element is associated a sorted list of the

other elements who are potentially Voronoi neighbors. When the seam equidistant

from elements e1; e2; e3 is traced, the desired element e4 must be a Voronoi neighbor

of all three of the seam generators. The algorithm then limits its attention to the

elements which are on all three lists.

The preprocessing involves
�
n

2

�
steps, each of which performs a linear programming

test (constant time) and a list insertion (O(log n) time). The overall preprocessing

running time is then O(n2 log n). The asymptotic running time of the medial axis

algorithm is not increased, since the list-intersection step takes at worst O(n) time for

each seam traced|the same amount of time that was already committed to examining

all the other boundary elements.

Thus the preprocessing time of O(n2 log n) is asymptotically small compared to

the worst-case complexity of the medial axis algorithm, O(n4), and not much greater

than the best-case medial axis complexity O(n2). Moreover, the constants in the pre-

processing time are much smaller than those in the medial axis implementation, since

the linear programming step can be programmed in oating-point. Fast randomized

algorithms for linear programming are well known [Sei90].
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5.2 Reducing the number of kernel operations

Roots of systems are only computed to the precision necessary. Our representation

is exact, but implicit, and the geometric algorithms usually pay attention only to the

rational box containing the root. At all times, the rational box is shrunk only as much

as necessary to answer the query. This is a form of \lazy evaluation" of solutions to

polynomial systems.

The e�ciency of oating-point arithmetic can be leveraged against the problem

of �nding roots to systems. While re�ning roots is based on bisection, an initial

estimate to the root can be based on a oating-point approximation. One St�urm test

is executed to verify the correctness of the approximation to within a certain precision.

In cases where the oating-point solver produces a correct answer to within the desired

precision, no further St�urm operations are needed.

Sometimes a root of a system of equations may be isolated by projecting the system

onto a lower-dimensional space. Given two bivariate polynomials, f(s; t) and g(s; t),

we can eliminate (using a Sylvester resultant) one of the two variables, leaving us with

a univariate polynomial, say F (s). The roots of F = 0 correspond to the s coordinates

of the common solutions of f = 0 and g = 0. We can examine these projections

of each root and count the number of roots contained in the projections by using

univariate St�urm calculations. If there is only one root in the interval for both the

s- and t-projections, then we can use the two univariate formulations instead of the

multivariate formulation in order to re�ne the root. Although the switch to a univariate

formulation may not be possible when the root is known to only a rough precision,

as the precision is re�ned, it becomes more likely that a univariate formulation will

su�ce, since as the box bounding the root is tightened, the projections of that box

become smaller and less likely to contain the projections of other roots.

5.3 Speeding up the kernel operations

Our implementation spends most of its time in the St�urm sequence code, re�ning roots

of systems in two and three dimensions. A multivariate St�urm sequence computation

is executed in two main stages. In the elimination stage, a system of many equations in

many unknowns is reduced to a single polynomial, the volume function. The sequence

evaluation stage counts the number of sign changes in the St�urm sequence of the

volume function.

5.3.1 Elimination

The elimination stage essentially turns a multivariate root-counting problem into a

univariate root-counting problem. It involves (in the trivariate case) adjoining an

extra equation u + (� � x)(� � y)( � z), substituting in various combinations of

rational numbers for �, �, and  corresponding to the corners of the box, and then

eliminating x; y; and z from the resulting system of four equations.

For two-dimensional systems, the elimination stage is accomplished by means of

three Sylvester resultants. The repeated resultants introduce extra factors into the

volume function, but these are easily identi�ed and quickly removed. The elimination

process is quick, and the time is spent mainly in the sequence evaluation stage.
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For three-dimensional systems, repeated use of Sylvester resultants can result in

extraneous factors. Instead, we use Macaulay's resultant [Mac02], which gives the

volume function as the quotient of the determinant of a matrixM and the determinant

of a sub-matrix of M . When the system consists of three quadrics in x; y; and z, as

it does in the worst case for the medial axis problem, M is an 84 � 84 matrix whose

entries are constants or linear polynomials in the variable u. We utilize the sparse

representation of the matrix to quickly evaluate the determinants.

The system can be arranged so that the Macaulay denominator depends only on

the coe�cients of the system, and does not contain �; �; ; or u. The determinant is

then a constant, so no polynomial division is necessary. One only needs to check the

denominator matrix for singularity. The denominator is also independent of the point

(�; �; ) in space at which the St�urm sequence is evaluated, so it need be checked only

once per system.

The Macaulay numerator is arranged into block form:�
A B

C(�; �; ) D(�; �; ) + uI

�

where A and B contain coe�cients of the system, and C and D depend on the point

(�; �; ). A is 76� 76, while D is 8� 8. By performing block Gaussian elimination on

this matrix, the bulk of the work of taking the determinant of the Macaulay numerator

is performed before �; �;  are known. The precomputation consists of �nding the

LU -decomposition of A and computing jAj and A�1B. Then, for each (�; �; ), we

compute H = D � C � (A�1B) and the 8� 8 symbolic determinant jH + uIj.

5.3.2 Sequence evaluation

St�urm sequences can be evaluated by constructing the actual sequence of polynomials

ff(u); f 0(u); f3(u); : : :g where fi = GCD(fi�1; fi�2), and counting the sign changes in

the sequence of constant terms. But the subresultant polynomial remainder sequence

algorithm [BT71] avoids the exponential coe�cient growth in the polynomial GCD,

and tends to be more e�cient, especially for high-degree polynomials. The subresul-

tant algorithm computes the coe�cients of the sequence's polynomials as determinants

of matrices. For root-counting, we need only the signs of the constant terms of the

polynomials in the sequence. The problem is thus reduced to computing the signs of

determinants of matrices with rational entries, or equivalently, integer entries.

The determinant-sign problem has been well-studied in computational geometry

([BEPP97], [BY97], [Cla92]), but most approaches are e�cient only for small matrices

(order less than 10 and entries of fewer than 53 bits). We �nd the fastest general-

purpose algorithm to be Gaussian elimination over a series of �nite �elds, followed

by reconstruction in accordance with the Chinese remainder theorem. We use the

implementation in the software package LiDIA [Gro97]. The �nite-�eld algorithm is

protected by a oating-point �lter, based on an idea by James Demmel and imple-

mented using the LAPACK library [Dem89]. The �lter computes the singular-value

decomposition of the matrix in double-precision oating-point, extracts the determi-

nant sign from the decomposition, and examines the singular values to decide whether

the sign is dependable. The �lter runs in about one-tenth the time of the Chinese re-

mainder algorithm, and for low-degree polynomials, it �lters 80{100% of the matrices.
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Task Time (sec)

Set up system 1.25

Evaluate at .0360

one point

Count roots 1:25 + 8� :0360 =

in one box 1.54

Figure 7: Timing for 3-D St�urm operations

Ex. 1 Ex. 2 Ex. 3 Ex. 4

Number of 1 3 2 2

turning points

Time to �nd

turning points (sec) 43.0 101 67.7 69.0

(uses 2-D St�urm)

Number of 2 6 4 4

edge points

Time to �nd

edge points (sec) 0.1 0.1 0.09 0.09

(uses 1-D St�urm)

Time to run

topology recursion 0.03 0.18 0.13 0.14

(uses 1-D St�urm)

Figure 8: Timing for curve topology

5.4 Performance of kernel operations

Figure 7 presents a timing measurement from a representative 3-D St�urm computation.

The program was run on a 400MHz Pentium computer. The time to set up the system

includes the time to determine the Macaulay denominator and the portion of the

Macaulay numerator which is not dependent on the evaluation point. This needs to

be done only one time per system of equations. To count the number of roots in a

box, 8 corner points are tested. Splitting the box in half requires 4 more evaluations;

in quarters, 10 more; in eighths, 19 more.

Figure 8 presents timing results from the curve topology algorithm applied to four

typical examples. The computer used for these timings is based on a 200MHz Mips

R4400 processor. The cases listed are representative curves that arise in the medial

axis computation. Each of the curves is has total degree four.

6 Handling Degeneracies

We hold that the degeneracies that arise in the medial axis problem are of only a

few types, and may be detected and dealt with explicitly during the course of the

algorithm. This is to be contrasted with, for example, the problem of CSG boundary

evaluation (see [Kri97] for a treatment) in which one may be faced with a great variety
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of degenerate situations, some of which have no simple resolution. Only two forms of

degeneracy pose a problem to the searching algorithm: the degenerate junction and

the degenerate seam. A sheet cannot be equidistant from three boundary elements.

If it were, two of the elements must have coincident \ats"|points, lines, or planes|

and these two elements' Voronoi regions will be separated by at least one intervening

vertex or edge.

In this section we describe the two ways in which degeneracy is manifested in the

medial axis problem, and propose means for dealing with these situations.

6.1 The degenerate junction

A junction is said to be degenerate when it is equidistant from �ve or more boundary

elements. Our algorithm detects degenerate junction points by a three-stage process.

1. Discover, during the searching step, that the interval or box containing the

starting point overlaps with that of a candidate end point, even after the intervals

or boxes have been reduced to a reasonably small size.

2. Check whether the four bisector surfaces involved actually meet at some point,

using a Dixon resultant [Dix10].

3. If so, either further re�ne the root to the precision recommended by Canny's

gap theorem [Can88], or check for a root of the system

ff21 + f
2

2 + f
2

3 + f
2

4 ; f1; f2g

inside the overlap of the boxes.

The �rst two steps may be regarded as �lters for avoiding step 3 where possible.

The algorithm for searching away from a degenerate junction is given in full gen-

erality in section 4.3.

6.2 The degenerate seam

A seam is degenerate when it is governed by four or more boundary elements. Our

algorithm does not need to do extra work to discover degenerate seams. Such a

seam is analyzed using three of its governors, while a fourth governor is necessarily

discovered during the search for the ending junction. While attempting to isolate a

zero-dimensional solution to this system, the algorithm encounters a St�urm volume

function that is identically zero, meaning that the solutions set is in�nite. When this

occurs, the extra governor is simply added to the list of seam governors.

7 Implementation and Performance

In this section, we describe implementation of our algorithm and highlight its perfor-

mance on two polyhedra.
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7.1 Implementation

The kernel operations have been fully implemented in C++. Routines for root isolation

in one, two, and three dimensions take advantage of the e�ciency techniques described

in sections 5.2 and 5.3. The curve topology algorithm is also fully implemented. Our

implementation is based on the data structures for exact arithmetic in Lidia [Gro97]

and also takes advantages of routines from LAPACK [Dem89]. The current version of

the geometric kernel consists of about 20,000 lines of C++ code.

The high-level, non-time-critical part of the system is in prototype stage, and is

partially implemented in about 3,000 lines of Mathematica code. The Mathematica

code has not been interfaced with the C++ implementation. Currently our system

has been used to compute medial axes of small polyhedra composed of up to about 20

faces.

7.2 Results

Figures 9 and 10 show a simple non-convex polyhedron (two tetrahedra attached at a

face) and its medial axis. The medial surfaces are parts of planes and cones, and the

seams are segments of lines and ellipses.

A more complex example is given in �gures 12 through 15. This polyhedron is an

octagonal box with two opposing slots. The two non-convex edges are separated by a

very small gap. Visualizing the entire medial axis is di�cult. We show a schematic

diagram, �gure 13, that gives some idea of its geometric complexity. We have substi-

tuted straight line segments for the seams. Figure 14 magni�es the schematic in the

interesting central region where the non-convex edges approach each other. Finally,

the hyperbolic paraboloid that is the bisector of these two edges is shown in �gure 15.

The seams in the last �gure are hyperbolas; the medial axis also contains linear and

elliptical seams. In fact, the elliptical seams in both examples are treated as quartics,

since they lie in planes with irrational coe�cients.

8 Conclusions and Future Work

In this paper, we have presented an accurate algorithm to compute the medial axis of 3-

D polyhedron using exact arithmetic. We have also highlighted a number of techniques

to improve its e�ciency, and demonstrated its performance on a few polyhedra. We

are currently working on a C++ implementation of the higher level routines so as to

develop a complete and automatic medial axis implementation. In our future work,

we plan to investigate use of perturbation techniques to handle degeneracies, and to

apply the system to complex polyhedra composed of hundreds of boundary features.
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Ex. 1 (5 faces) 15 13 4
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