
MATHEMATICS OF COMPUTATION
Volume 71, Number 237, Pages 217–236
S 0025-5718(01)01325-4
Article electronically published on May 14, 2001

ACCURATE COMPUTATION OF THE SMALLEST EIGENVALUE
OF A DIAGONALLY DOMINANT M-MATRIX

ATTAHIRU SULE ALFA, JUNGONG XUE, AND QIANG YE

Abstract. If each off-diagonal entry and the sum of each row of a diagonally
dominant M -matrix are known to certain relative accuracy, then its smallest
eigenvalue and the entries of its inverse are known to the same order relative
accuracy independent of any condition numbers. In this paper, we devise
algorithms that compute these quantities with relative errors in the magnitude
of the machine precision. Rounding error analysis and numerical examples are
presented to demonstrate the numerical behaviour of the algorithms.

1. Introduction

Diagonally dominant M -matrices form one of the most important classes of
matrices in applications and have been studied extensively in the literature; see
[5, Chapter 6]. Among problems of interest are solving a linear system Ax = b
and finding the smallest eigenvalue of A (corresponding to the Perron root of the
inverse); see [2, 12, 21, 22]. There are many well established numerical methods
for solving such problems and they lead to a backward stable solution, which has
an error depending on the condition of the problem. For instance, applying the
QR algorithm to find the smallest eigenvalue λ of A, the computed one λ̂ is the
eigenvalue of a perturbed matrix A+E with ‖E‖2 ∼ ε‖A‖2 (where ε is the machine
roundoff unit). Then, assuming λ is a simple eigenvalue, we obtain |λ̂ − λ| ∼
‖E‖2/y∗x ∼ ε‖A‖2/y∗x and thus the relative error is given by

|λ̂− λ|
λ

∼ ε‖A‖2
λ

1
y∗x

where x and y are respectively unit right and left eigenvectors corresponding to λ.
Hence there are two situations where the computed eigenvalue λ̂ has a low relative
accuracy (i.e., large relative error). If y∗x is small (i.e., λ is ill-conditioned), the
error will be large. On the other hand, even if λ is well-conditioned but λ is small
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relative to ‖A‖2, then the error will also be large. This latter case is true even
for symmetric matrices. Unfortunately, in many application problems, the smallest
eigenvalue is the one of interest (see [3, 2, 12, 22]) and the computed eigenvalue by
the standard algorithms may have low or even no accuracy.

The numerical difficulties mentioned above are well known and originate in the
limitation of the normwise perturbation E. Namely, if the matrix A is only de-
termined to within a normwise perturbation E, then its eigenvalues can only be
determined to a low accuracy in the situations described above. Starting in a work
by Demmel and Kahan [7] on computing the singular values of a bidiagonal ma-
trix, there have been significant works in the last decade to identify special classes
of problems for which the computed quantities are well determined by the matri-
ces, usually under entrywise perturbations, and to devise algorithms for computing
them to high relative accuracy. We refer to [9] and [16] for a summary of most of
such classes of matrices and the literature. Some of those that are known to be
determined to the machine precision are the singular values of bidiagonal matrices
[7], the Perron root of a nonnegative matrix [10] and the steady state distribution
of a Markov chain [18]. For the kind of problems that we are interested in here,
a perturbation analysis and an algorithm have been developed in [4] for the eigen-
values of symmetric scaled diagonal dominant matrices and in [26] for the smallest
eigenvalue of an M -matrix. Unfortunately, their perturbation bounds and the rel-
ative errors of the computed eigenvalues still depend on certain condition numbers
that are essentially related to the diagonal dominance.

For the class of diagonally dominant M -matrices, however, we have shown in a
recent work [3] that the smallest eigenvalue and the entries of inverse are deter-
mined to high relative accuracy by the off-diagonal entries and the row sums of
the matrices, irrelevant of any condition number and the magnitude of the eigen-
value. Namely, if small relative errors are introduced to each off-diagonal entry of
a diagonally dominant M -matrix A and to the sum of each row of A which in turn
determines the corresponding diagonal entry, then the smallest eigenvalue and each
entry of the inverse have relative errors of the same magnitude. We note that in
many applications (such as discretized PDE, Markov chains [2], [12], [21, Chapter
3] and electric circuits [22]), the off-diagonal entries and the row sums of the ma-
trix play the role of physical parameters, while the diagonal entries are treated as
functions of them and are redundant (the importance of properly parametrizing a
matrix has also been shown for some other classes of matrices; see [8]). In those
cases, it is more appropriate to consider the off-diagonal entries and the row sums
as the matrix data. Indeed, in this work, a diagonally dominant M -matrix will
be represented by its off-diagonal entries and the sums of its rows rather than the
usual representations by all entries.

Thus, the new perturbation theory suggests that it is possible to compute the
smallest eigenvalue and the inverse entries to high relative accuracy. It is the
purpose of the present paper to develop such algorithms. We shall show how the
Gaussian elimination can be implemented to solve Ax = b (with b ≥ 0) so that
each entry of x will have high relative accuracy. The idea used is an extension
of the GTH-algorithm [14] for stochastic matrices and thus we call it a GTH-like
algorithm. For computing the smallest eigenvalue of A, we use a shifted inverse
iteration algorithm similar to the one developed in [26] and we shall carry out
the iteration in such a way that the computed approximate eigenvalue converges
monotonically and quadratically until its relative error is in the magnitude of the
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machine precision. We shall also present a rigorous roundoff error analysis for the
iterative algorithm using a combination of forward and backward error analysis
techniques.

We remark that computing the smallest eigenvalue to high accuracy is of great
interest in several applications mentioned above. One particular application we are
interested in arises in computing quantity δ = 1 − η, where η is the decay rate
for queue length in GI/M/1 queuing systems. In that problem, δ is a solution to
z − Ψ(z) = 0 with Ψ(z) being the smallest eigenvalue of a parameter dependent
diagonally dominant M -matrix A(z). The standard method to solve this equation
in engineering is by the bisection method, which requires computing z−Ψ(z) for z.
Near the convergence stage (when z−Ψ(z)� 1), however, the standard eigenvalue
algorithm may not even compute the sign of z−Ψ(z) correctly. Our algorithm will
guarantee the accuracy of z−Ψ(z) to the machine precision, and certainly its sign.
Hence in this way, the accuracy of δ can be obtained as high as the data warrants.

The rest of this paper is organized as follows. We first give in Section 2 some
definitions and preliminary results, including an entrywise perturbation theory.
Section 3 presents a GTH-like algorithm and error analysis for solving Ax = b.
Details of our algorithm for computing the smallest eigenvalue and the error analysis
are presented in Section 4. Finally, some numerical examples are given in Section
5.

2. Preliminaries and notation

For m × n matrices B = (bij) and C = (cij), we denote by |B| the matrix of
entries |bij | and by B ≥ C if bij ≥ cij for all i and j. Given an n-vector a = (ai),
we define

min a = min
i
ai and maxa = max

i
ai

and

Da =


a1

a2

. . .
an

 .

For a pair of vectors a = (ai) and b = (bi) with bi > 0 for all i, we let

max
(a
b

)
= max

i

(
ai
bi

)
and min

(a
b

)
= min

i

(
ai
bi

)
.

Throughout this article, we let e denote the column vector of all ones, i.e.,

e = (1, 1, · · · , 1)T .

A matrix A is called an M -matrix if it can be expressed in the form A = sI −
B, B ≥ 0 with s ≥ ρ(B), the Perron root of B, [5]. A matrix A = (aij) is said to
be diagonally dominant if |aii| ≥

∑
j 6=i |aij | for all i. It is a scaled (or generalized)

diagonally dominant if there exists u > 0 such that ADu is diagonally dominant.
Note that any M -matrix A is scaled diagonally dominant; i.e., there exist u > 0

such that Au = v ≥ 0. In many cases, the vector u may not be explicitly known.
However, if u and v are known, the M -matrix A can be defined by its off-diagonal
entries and u, v as in the following.
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Definition 2.1. Let P = (pij) be an n× n nonnegative matrix with zero diagonal
entries, and let u = (ui) be a positive n-vector and v = (vi) be a nonnegative
n-vector. We use (P, u, v) to represent the unique matrix A of the form A = D−P
that satisfies Au = v, where D is a diagonal matrix. We write A = (P, u, v).

In the representation A = (P, u, v), the off-diagonal entries of A is given by −P
and its diagonal entries by

aii =
vi +

∑
j 6=i pijuj

ui
.

Clearly, A is an M -matrix. On the other hand, any M -matrix can be represented
in this way with suitable u, v. If u = e, A is a diagonally dominant M -matrix and
v is the vector of its row sums (i.e., diagonally dominant part).

By treating (P, u, v) as the parameters representing A, it turns out that several
quantities such as the entries ofA−1 and the smallest eigenvalue ofA are determined
to high relative accuracy. The following lemma is such a result for the special case
u = e (see Theorem 2.1 of [3]).

Lemma 2.2. Let A = (P, e, v), Ã = (P̃ , e, ṽ) and let λ and λ̃ be the smallest
eigenvalues of A and Ã respectively. If

|P − P̃ | ≤ εP, and |v − ṽ| ≤ εv,

then

(1 − ε)n
(1 + ε)n−1

A−1 ≤ Ã−1 ≤ (1 + ε)n

(1 − ε)n−1
A−1(2.1)

and

(1− ε)n−1

(1 + ε)n
λ ≤ λ̃ ≤ (1 + ε)n−1

(1− ε)n λ.(2.2)

The proof can be found in [3] and is omitted here.

Remark 2.3. We note that there are cases where the error bound (2.2) can be
strengthened to |λ− λ̃|/λ ≤ 2ε. Indeed it is our conjecture that this stronger bound
holds generally.

We now generalize this result to a general M -matrix A = (P, u, v). We will use
it repeatedly in the error analysis later.

Lemma 2.4. Let A = (P, u, v), Ã = (P̃ , ũ, ṽ) and let λ and λ̃ be the smallest
eigenvalues of A and Ã respectively. If

|P − P̃ | ≤ εP, |u− ũ| ≤ εu, |v − ṽ| ≤ εv,

then ∣∣∣∣∣λ− λ̃λ
∣∣∣∣∣ ≤ 4nε+O(ε2),(2.3)

|Ã−1 −A−1| ≤ (4nε+O(ε2))A−1.(2.4)
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Proof. Let

B = ADu = DDu − PDu and B̃ = ÃD̃u = D̃D̃u − P̃ D̃u.

Obviously, B and B̃ are diagonally dominant M -matrices with Be = v and B̃e = ṽ.
We have

(1 − ε)2PDu ≤ P̃ D̃u ≤ (1 + ε)2PDu

and

(1− ε)Be ≤ B̃e ≤ (1 + ε)Be.

From Lemma 2.2, we have

|B̃−1 −B−1| ≤ ((4n− 1)ε+O(ε2))B−1,

from which it follows

|Ã−1 −A−1| ≤ (4nε+O(ε2))A−1.

This further implies

|Ã−1 −A−1| ≤ (4nε+O(ε2))Ã−1.

Using the perturbation result for spectral radius (Theorem 1 in [10]), we obtain∣∣∣∣ 1
λ̃
− 1
λ

∣∣∣∣ ≤ (4nε+O(ε2))
1

λ̃
,

i.e., ∣∣∣∣∣ λ̃− λλ
∣∣∣∣∣ ≤ 4nε+O(ε2).

Lemma 2.5. Let B be an M -matrix with the smallest eigenvalue λ. If

λ1e ≤ Be ≤ λ2e

and λ1 > 0, then

λ1 ≤ λ ≤ λ2.

Proof. B−1 is a nonnegative matrix with Perron eigenvalue 1/λ. Obviously

1
λ2
e ≤ B−1e ≤ 1

λ1
e.

From the definition of Perron root in [5, Chapter 1],

1
λ

= max
u≥0

min
B−1u

u
= min

v≥0
max

B−1v

v
;

thus
1
λ2
≤ 1
λ
≤ 1
λ1

which completes the proof.
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3. Solving linear systems

In this section, we consider solving a linear system Ax = b with b ≥ 0. Lemma
2.1 shows that if A = (P, u, v), then A−1 and hence the solution x to Ax = b ≥ 0 are
determined to the same accuracy entrywise as in the data (P, u, v). Thus, we can
expect algorithms that solve Ax = b to the machine precision entrywise. It turns
out that this can be achieved by modifying the standard Gaussian elimination.

We first note that if A is a diagonally dominant M -matrix, then all the sub-
matrices produced in the process of the Gaussian elimination are still diagonally
dominant M -matrices and can all be represented in the representation (P, u, v). It
turns out that we can carry out the Gaussian elimination in terms of the represen-
tation (P, u, v) rather than the entries of A and the advantage of this is that there
is no subtraction involved throughout the process. In this way, the final solution
obtained will have high relative accuracy. This idea is an extension of the GTH-
algorithm [14] for stochastic matrices and has a similar algorithm. We therefore
call this algorithm a GTH-like algorithm. Since such an extension has not been
considered before for M -matrices, we present the detailed derivation and analysis
in this section.

3.1. GTH-like algorithm. We now derive the algorithm for Ax = b with A =
(P, u, v) through LU factorization, forward substitution and backward substitution.
All computations are operated on P , u, v and b.

We first consider the LU factorization of A, carried out without pivoting. This
produces a series of matrices of decreasing order A = A(1), A(2), A(3), · · · , where
A(k) denotes the matrix to the southeast of the k-th pivot entry (and including
that pivot entry), just before the k-th Gaussian elimination is applied. It is easily
verified that A(k) inherits the property of being an M -matrix. We shall find out
its representation A(k) = (P (k), u(k), v(k)). In the following, we let p(k)

ij be the

(i− k+ 1, j− k+ 1)-th entry of P (k), and u(k)
i and v(k)

i be the (i− k+ 1)-th entries
of u(k) and v(k) respectively. To seek the relation between (P (k), u(k), v(k)) and
(P (k+1), u(k+1), v(k+1)), we partition A(k) as

A(k) =
(

αk −wT
−z B(k)

)
,

where B(k) is of order n− k. We have

A(k+1) = B(k) − zwT

αk
.(3.1)

For i, j > k and i 6= j, p
(k)
ij is the (i − k, j − k)-th entry of B(k), p(k)

jk and p
(k)
kj are

the (j − k)-th entries of z and w respectively. From the first row of the equation
A(k)u(k) = v(k), we can get

αk =
v

(k)
k +

∑n
j=k+1 p

(k)
kj u

(k)
j

u
(k)
k

.(3.2)

From (3.1), we can compute P (k+1) according to the relation

p
(k+1)
ij = p

(k)
ij +

p
(k)
ik p

(k)
kj

αk
, for i, j > k, i 6= j.(3.3)
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Now we show that A(k+1) is still a diagonally dominant M -matrix by finding u(k+1)

and v(k+1). Let u(k) and v(k) be the respective subvectors of u(k) and v(k) with the
first entries deleted. From(

αk −wT
−z B(k)

)(
u

(k)
k

u(k)

)
=

(
v

(k)
k

v(k)

)
,

we have

−wTu(k) = −αku(k)
k + v

(k)
k

and

B(k)u(k) = u
(k)
k z + v(k).

Thus

A(k+1)u(k) = B(k)u(k) − wTu(k)

αk
z = v(k) +

v
(k)
k

αk
z.

We can choose

u(k+1) = u(k) and v(k+1) = v(k) +
v

(k)
k

αk
z,

i.e.,

u
(k+1)
j = u

(k)
j and v

(k+1)
j = v

(k)
j +

v
(k)
k

αk
p

(k)
jk , j > k.(3.4)

After computing αn, we in fact have calculated the LU factors of A, which is stored
in terms of αk, p(k)

kj and p
(k)
jk for j > k. Finally we perform forward and backward

substitution to get the solution.
The following algorithm summarizes this new Gaussian elimination process.

Algorithm 1
Step 1: LU factorization:

For k = 1, 2, · · · , n− 1,
1. Calculate αk according to (3.2)
2. Calculate P (k+1) according to (3.3)
3. Calculate u(k+1) and v(k+1) according to (3.4)

Step 2: Solving Ly=b:
y1 = b1/α1

For k = 2, 3, · · ·n,
1. yk = bk +

∑k−1
j=1 p

(j)
k,jyj ,

2. yk = yk/αk
Step 3: Solving Ux=y:
xn = yn
For k = n− 1, n− 2, · · · , 1

1. xk = yk + (
∑n

j=k+1 p
(k)
kj xj)/αk

3.2. Error analysis. Clearly, there is no subtraction involved in Algorithm 1. In
this subsection we perform a priori rounding error analysis for the Algorithm 1
to demonstrate the computed solution x will have small relative error entrywise.
Our analysis is parallel to the error analysis for the GTH algorithm performed by
O’Cinneide [18].
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We assume the following model for the floating point arithmetic [6, p. 9]:

fl(x op y) = (x op y)(1 + δ), |δ| ≤ ε,
where op = +,−, ∗ or / and ε is the machine roundoff unit. For the ease of notation,
we shall use εs with subscripts to denote quantities bounded in magnitude by ε.

In the following, a “hat” is added to the value computed in floating-point arith-
metic.

Theorem 3.1. Suppose Algorithm 1 is carried out in a floating-point arithmetic
to solve the linear system Ax = b, where A = (P, u, v), b ≥ 0 and the data pij, ui,
vi, bi (i, j = 1, 2, · · · , n) are floating-point numbers. Then the computed solution x̂
satisfies

|x− x̂| ≤ (φ(n)ε +O(ε2))x,(3.5)

where

φ(n) =
2(n+ 2)(n+ 3)(2n+ 5)

3
.

Proof. Our proof is by induction on n. It is trivial to show bound (3.5) holds for
n = 1. Suppose the theorem is true for linear systems of size n − 1. We partition
A as

A =
(

α1 −wT
−z B(1)

)
,

where B(1) is of order n− 1. We have

A(2) = B(1) − zwT

α1
= (P (2), u(2), v(2)).

The diagonal entry α1 is computed as

α̂1 = fl

(
v1 + p12u2 + p13u3 + · · ·+ p1nun

u1

)
= α1(1 + η1), |η1| ≤ (n+ 1)ε+O(ε2).

The off-diagonal entries of P (2) are computed with relative errors characterized by

p̂
(2)
ij = fl

(
pij +

pi1p1j

α̂1

)
= pij(1 + ε3) +

pi1p1j

α̂1
(1 + ε1)(1 + ε2)(1 + ε3),

= p
(2)
ij (1 + η2), |η2| ≤ (n+ 4)ε+O(ε2).(3.6)

Similarly, for i = 2, 3, · · · , n
v̂

(2)
i = v

(2)
i (1 + η3), |η3| ≤ (n+ 4)ε+O(ε2).(3.7)

Now the computed A(2) is Â(2) = (P̂ (2), u(2), v̂(2)). Let q and q̂ be the respective
subvectors of x and x̂ from the second entry to the last one. It is easy to verify
that q is the solution to the linear system

A(2)q = a,

where the (i− 1)-th entry ai of a is

ai = bi +
b1pi1
α1

.
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Now we are in a position to explain q̂. After LU factors of A are computed, we
perform the forward substitution. Considering Step 2 in Algorithm 1, we have

ŷ1 = fl(b1/α̂1) = y1(1 + η4), |η4| ≤ (n+ 2)ε+O(ε2)

and for j = 2, 3, · · · , n,

ŷj = fl

(
bj + pj1ŷ1 + p̂

(2)
j2 ŷ2 + · · ·+ p̂

(j−1)
j,j−1 ŷj−1

α̂j

)

= fl

(
âj + p̂

(2)
j2 ŷ2 + · · ·+ p̂

(j−1)
j,j−1 ŷj−1

α̂j

)
,

where

âj = fl(bj + pj1ŷ1) = aj(1 + η5), |η5| ≤ (n+ 4)ε+O(ε2).

Let â = (âi); then q̂ can be viewed as the computed solution to the linear system

Â(2)p = â

via Algorithm 1. From the induction hypothesis,

|q̂ − p| ≤ (φ(n− 1)ε+O(ε2))p.

It follows from Lemma 2.3 that∣∣∣(Ã(2))−1 − (A(2))−1
∣∣∣ ≤ (4(n− 1)(n+ 4)ε+O(ε2))(A(2))−1,

and thus

|p− q| ≤ ((4n− 3)(n+ 4)ε+O(ε2))q.

Therefore

|q − q̂| ≤ (φ(n− 1)ε+ (4n− 3)(n+ 4)ε+O(ε2))q,

i.e., for 2 ≤ i ≤ n∣∣∣∣xi − x̂ixi

∣∣∣∣ ≤ φ(n− 1)ε+ (4n− 3)(n+ 4)ε+O(ε2).

The first entry of x can be computed as

x̂1 = fl

(
b1 +

p12x̂2 + p13x̂3 + · · ·+ p1nx̂n
α̂1

)
= x1(1 + η6),

where |η6| ≤ (φ(n− 1) + 4n2 + 15n− 10)ε+O(ε2). Noting that φ(n) ≥ φ(n− 1) +
4n2 + 15n− 10, we obtain inequality (3.5) and complete the proof.

Remark 3.2. We note that φ(n) ∼ O(n3) in this worst case bound seems to be pes-
simistic in some important aspects. A similar observation was made by O’Cinneide
[18, 19] for the analysis of the GTH-algorithm. Here we note that, based on our
floating point arithmetic model, the relative error in computing α̃k through an in-
ner product is of order O(n− k)ε, but in many implementations, the accumulation
of inner product can be carried out in registers with longer digits and thus will
have relative errors on the order of O(1)ε. Hence, φ(n) can be reduced to O(n2) in
such cases. Furthermore, the structure of matrix can also affect the bound. For
example, if A is a banded matrix with bandwidth k, then φ(n) can be reduced to
O(kn2). In our numerical test, φ(n) behaves like O(n).
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4. Computing the smallest eigenvalue

In this section, we consider how to compute the smallest eigenvalue of a di-
agonally dominant irreducible M -matrix A, which is given in the representation
A = (P, u, v).

4.1. The inverse iteration algorithm. The algorithm to be developed here is
based on the following inverse iteration shifted by a Rayleigh quotient like approx-
imation of the eigenvalue.

Shifted Inverse Iteration:

• For a given u(0) > 0, iteratively define

λs = min
(
Au(s)

u(s)

)
,

w(s+1) = (A− λsI)−1u(s),

u(s+1) =
w(s+1)

‖w(s+1)‖∞
.

This inverse iteration algorithm was presented by Xue in [26] for M -matrices.
It stems from the algorithm by Noda in [17] for computing the Perron root of
an irreducible nonnegative matrix. Elsner [10] has shown that Noda’s algorithm is
quadratically convergent. Thus the above eigenvalue is increasing and quadratically
convergent, i.e.,

λs ≤ λs+1 ≤ λ and λ− λs+1 ≤ β(λ − λs)2,

where β is a constant depending on u(0) and A. It is noted in [26] that λs+1 can
be computed from λs without subtractions following the relation

λs+1 = min
(
Aw(s+1)

w(s+1)

)
= min

(
u(s) + λsw

(s+1)

w(s+1)

)
= λs + min

(
u(s)

w(s+1)

)
.

The main task at each iterative step is to solve the linear system

(A− λsI)w(s+1) = u(s),(4.1)

where A − λsI is an M -matrix. Indeed, the accuracy in forming and solving this
system directly affects the final accuracy of the computed eigenvalue of the above
algorithm. It is suggested in [11] to use Ahac-Olesky algorithm [1] followed by one
step of iterative refinement to solve this linear system. Under some conditions, this
method can produce an entrywise backward stable solution (see [23]). However the
accuracy of the computed smallest eigenvalue still depends on its magnitude and
certain condition number (see [26]). Here, we consider forming and solving (4.1)
accurately through the GTH-like algorithm in section 3.

We note that the M -matrix A − λsI is (scaled) diagonally dominant since
(A − λsI)u(s) ≥ 0 by the definition λs = min

(
Au(s)

u(s)

)
> 0 (this property is also

observed and used by O’Cinneide [20]). Thus, the key idea is that A− λsI can be
represented without forming the diagonals as

A− λsI = (P, u(s), v(s)),
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where

v(s) = (A− λsI)u(s)

=
1

‖w(s)‖∞
(Aw(s) − λsw(s))

=
1

‖w(s)‖∞
(λs−1w

(s) + u(s−1) − λsw(s))

=
1

‖w(s)‖∞

(
u(s−1) −min

(
u(s−1)

w(s)

)
w(s)

)
≥ 0.

Hence, we shall form A − λsI by the representation (P, u(s), v(s)) and then solve
(4.1) with Algorithm 1. In this process, subtraction is encountered only in the
computation of v(s). On account of possible cancellation, we cannot expect w(s+1)

and u(s+1) are computed with small entrywise relative error. Fortunately, however,
this will not affect the accuracy of the computed eigenvalue, which will be shown
in the later error analysis.

Finally, for the stopping criterion, we adopt

max
(

u(s)

w(s+1)

)
−min

(
u(s)

w(s+1)

)
λs+1

≤ tol,

where tol is a small threshold. We will prove in the next subsection that the relative
error of the approximate eigenvalue, when the above stopping criterion is satisfied,
is no more than tol.

Our algorithm can be formulated as follows.

Algorithm 2

• Given A = (P, u, v) and tol;
• set u(0) = u, λ0 = min

(
v
u

)
, v(0) = v − λ0u.

• For s = 0, 1, 2, · · ·
1. Use the GTH-like algorithm to solve

(P, u(s), v(s))w(s+1) = u(s)

2.

λs+1 = λs + min
(

u(s)

w(s+1)

)
3.

u(s+1) =
w(s+1)

‖w(s+1)‖∞
4. Calculate v(s+1) according to

v
(s+1)
i = u

(s+1)
i

(
u

(s)
i

w
(s+1)
i

−min
(

u(s)

w(s+1)

))
5. Proceed until

max
(

u(s)

w(s+1)

)
−min

(
u(s)

w(s+1)

)
λs+1

≤ tol.
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Remark 4.1. This algorithm can be adapted to compute the smallest eigenvalue of
an arbitrary M -matrix A by first finding a representation, i.e., finding a positive
vector u such that Au > 0. After calculating v = Au, we apply Algorithm 2 to
compute the smallest eigenvalue of (P, u, v), where −P is the off-diagonal part of
A. As for u, it can be obtained by solving the linear system Au = e. With a small
residual, we can expect Aû, where û is the computed solution, to be positive.

4.2. Error analysis. In this section, we present a detailed error analysis for Al-
gorithm 2. Again, we add “hats” to the computed intermediate quantities.

First note that theoretically (in the exact arithmetic), from (A−λsI)u(s) = v(s),
we have the representation of A in the s-th iteration step as

A = (P, u(s), λsu
(s) + v(s)).

In the floating point arithmetic, let λ̂s, û(s) and v̂(s) be the computed quantities at
the s-th iteration. Then

As = (P, û(s), λ̂sû
(s) + v̂(s))

is an approximation to A. Because of possible cancellations in the computation of
v(s−1), û(s) can be a bad approximation of u(s), and for this reason it cannot be
expected that As approximate A with small entrywise relative error. What makes
our algorithm work is that, no matter whether such cancellation occurs or not,
the relative error between γs, the smallest eigenvalue of As, and λ, the smallest
eigenvalue of A, is always small. To show this, we first investigate the relative error
between γs and γs+1, which is caused by one step of iteration of Algorithm 2.

Lemma 4.2. Let û(s), λ̂s, v̂
(s) and û(s+1), λ̂s+1 v̂

(s+1) be the computed quantities
at the s-th and (s+ 1)-th iteration of Algorithm 2 respectively, and let γs and γs+1

be the smallest eigenvalues of

As = (P, û(s), λ̂sû
(s) + v̂(s)) and As+1 = (P, û(s+1), λ̂s+1û

(s+1) + v̂(s+1))

respectively. Then
|γs − γs+1|

γs+1
≤ ϕ(n)ε+O(ε2),

where ϕ(n) = 12n(φ(n) + 3).

Proof. At the s-th step of finite precision iteration, let u(s+1), λs+1 and v(s+1) be
the quantities that are computed in the exact arithmetic from û(s), λ̂s, v̂

(s) for the
(s+ 1)-th iteration step of Algorithm 2. Then, it can be checked that

As = (P, u(s+1), λs+1u
(s+1) + v(s+1)).(4.2)

To bound the relative error between γs and γs+1, it follows from Lemma 2.1 that it
is sufficient to bound the entrywise relative errors between u(s+1) and û(s+1), and
between q(s+1) and q̂(s+1), where

q(s+1) = λs+1u
(s+1) + v(s+1) and q̂(s+1) = λ̂s+1û

(s+1) + v̂(s+1).

Let w(s+1) be the solution to the linear system

(P, û(s), v̂(s))w(s+1) = û(s).

From Theorem 3.1, the computed solution ŵ(s+1) via Algorithm 1 satisfies

|ŵ(s+1) − w(s+1)| ≤ (φ(n)ε +O(ε2))w(s+1).(4.3)
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Noting that

u(s+1) =
w(s+1)

‖w(s+1)‖∞
and û(s+1) = fl

(
ŵ(s+1)

‖ŵ(s+1)‖∞

)
,

we obtain

|u(s+1) − û(s+1)| ≤ ((2φ(n) + 1)ε+O(ε2))u(s+1).(4.4)

The respective i-th entries of q(s+1) and q̂(s+1) are

q
(s+1)
i =

(
λ̂s + min

û(s)

w(s+1)

)
u

(s+1)
i +

(
û

(s)
i

w
(s+1)
i

−min
û(s)

w(s+1)

)
u

(s+1)
i

=

(
λ̂s +

û
(s)
i

w
(s+1)
i

)
u

(s+1)
i(4.5)

and

q̂
(s+1)
i = fl

(
λ̂s + min

û(s)

ŵ(s+1)

)
ûs+1
i + fl

(
û

(s+1)
i

(
û

(s)
i

ŵ
(s+1)
i

−min
û(s)

ŵ(s+1)

))

= (1 + ε2)
(
λ̂s + (1 + ε1) min

û(s)

ŵ(s+1)

)
û

(s+1)
i

+(1 + ε5)(1 + ε6)û(s+1)
i

(
(1 + ε3)

û
(s)
i

ŵ
(s+1)
i

− (1 + ε4) min
û(s)

ŵ(s+1)

)

= û
(s+1)
i

(
λ̂s +

û
(s)
i

ŵ
(s+1)
i

+ ε2λ̂s + η1
û

(s)
i

ŵ
(s+1)
i

+ η2 min
û(s)

ŵ(s+1)

)
,(4.6)

where

η1 = ε3 + ε5 + ε6 +O(ε2)

and

η2 = ε1 + ε2 − ε4 − ε5 − ε6 + O(ε2).

It is straightforward to show that∣∣∣∣∣η1
û

(s)
i

ŵ
(s+1)
i

+ η2 min
û(s)

ŵ(s+1)

∣∣∣∣∣ ≤ (8ε+O(ε2))
û

(s)
i

w
(s+1)
i

.

Plugging the bounds (4.3) and (4.5) into (4.6), we have

q̂
(s+1)
i = (1 + η3)q(s+1)

i , |η3| ≤ 3(φ(n) + 3)ε+O(ε2).

Thus

|q(s+1) − q̂(s+1)| ≤ (3(φ(n) + 3)ε+O(ε2))q(s+1).(4.7)

Associating (4.4) and (4.7) with Lemma 2.1 yields

0 <
γs+1 − γs

γs
≤ 12n(φ(n) + 3)ε+O(ε2).
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Remark 4.3. The bound is based on those established in Lemma 2.2 and Theorem
3.1 that may be pessimistic (see the remarks there). If our conjecture for Lemma
2.2 is true and Algorithm 1 is implemented with more accurate inner product
accumulations, we would have ϕ(n) ∼ O(n2). In our numerical tests, there is no
excessive growth in n observed.

By applying a similar proof to

A = (P, u(0), λ0u
(0) + v(0)) and A0 = (P, û(0), λ̂0û

(0) + v̂(0)),

it can also be shown that the relative error between λ and γ0 is bounded by
12n(φ(n) + 3)ε + O(ε2). Thus applying Lemma 4.1 for s steps of the iteration,
the relative error between γs and λ is bounded as∣∣∣∣γs − λλ

∣∣∣∣ ≤ 12(s+ 1)ϕ(n)ε +O(ε2).(4.8)

Combining this lemma with the stopping criterion, we can evaluate the accuracy
of the computed eigenvalue.

Theorem 4.4. Assume that Algorithm 2 terminates after s steps of iteration and
let λ̂s+1 be the computed approximate eigenvalue obtained. Then we have∣∣∣∣∣ λ̂s+1 − λ

λ

∣∣∣∣∣ ≤ tol + ψ(n, s)ε+O(ε2),(4.9)

where ψ(n, s) = 12(s+ 1)nϕ(n) + 2φ(n) + 36(s+ 1)n+ 4.

Proof. We first bound the relative error between λ̂s+1 and γs. In finite precision,
the stopping criterion is

fl

(
max û(s)

ŵ(s+1) −min û(s)

ŵ(s+1)

λ̂s+1

)
≤ tol

and this gives

(1 + ε3)(1 + ε4)
(

(1 + ε1) max û(s)

ŵ(s+1) − (1 + ε2) min û(s)

ŵ(s+1)

)
λ̂s+1

≤ tol

which can be written as

max
û(s)

ŵ(s+1)
≤ (1 + η4) min

û(s)

ŵ(s+1)
+ η5λ̂s+1(4.10)

where |η4| ≤ 2ε+O(ε2) and |η5| ≤ tol+O(ε). Letting w(s+1) be the solution to the
linear system

(P, û(s), v̂(s))w(s+1) = û(s), i.e., (As − λ̂sI)w(s+1) = û(s),

from Theorem 3.1 we have

|w(s+1) − ŵ(s+1)| ≤ (φ(n)ε +O(ε2))w(s+1).

Substituting this into (4.10) yields

max
û(s)

w(s+1)
≤ (1 + η6) min

û(s)

ŵ(s+1)
+ η7λ̂s+1,

where |η6| ≤ (φ(n) + 2)ε+O(ε2) and |η7| ≤ tol + φ(n)ε +O(ε2). Let

Bs = D−1
w(s+1)AsDw(s+1) .
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Then γs is the smallest eigenvalue of Bs and

(Bs − λ̂sI)e = D−1
w(s+1) û

(s).

Since

λ̂s+1 = fl

(
λ̂s + min

û(s)

ŵ(s+1)

)
= (1 + η8)

(
λ̂s + min

û(s)

ŵ(s+1)

)
,

where |η8| ≤ 2ε+O(ε2), we have

Bse ≤
(
λ̂s + max

û(s)

w(s+1)

)
e

≤
(
λ̂s + (1 + η6) min

û(s)

ŵ(s+1)
+ η7λ̂s+1

)
e

= (1 + η9)λ̂s+1e,

where |η9| ≤ |η6|+ |η7|+ |η8| ≤ tol + 2(φ(n) + 2)ε+O(ε2). Similarly we can prove
that

Bse ≥ (1 + η10)λ̂s+1e, |η10| ≤ (φ(n) + 2)ε+O(ε2).

It follows from Lemma 2.2 that

(1 + η10)λ̂s+1 ≤ γs ≤ (1 + η9)λ̂s+1,

and hence ∣∣∣∣∣ λ̂s+1 − γs
γs

∣∣∣∣∣ ≤ tol + 2(φ(n) + 2)ε+O(ε2).

Combining this with (4.8) completes the proof.

Next, we show that the quadratic convergence behaviour is still valid for λ̂s in
finite precision.

Theorem 4.5. Let û(s), λ̂s, v̂
(s) and û(s+1), λ̂s+1 v̂

(s+1) be the computed quantities
at the s-th and (s+ 1)-th iteration of Algorithm 2, respectively. Then∣∣∣∣∣ λ̂s+1 − λ

λ

∣∣∣∣∣ ≤ (βsλ)

(
λ̂s − λ
λ

)2

+ (φ(n) + sϕ(n))ε +O(ε2),(4.11)

where βs is a constant depending on As and û(s).

Proof. In the computation of v̂(s), we have v̂(s)
i = 0 if

û
(s)
i

ŵ
(s+1)
i

= min
(

û(s)

ŵ(s+1)

)
.

Noting that Asû(s) = λ̂sû
(s) + v̂(s) and at least one entry of v̂(s) is zero, we have

λ̂s = min
Asû

(s)

û(s)
.

Let λs+1 be the quantity that is computed in the exact arithmetic from û(s), λ̂s,
v̂(s) by the (s+ 1)-th iteration step of Algorithm 2. We have

λs+1 = λ̂s + min
(

û(s)

w(s+1)

)
and λ̂s+1 = fl

(
λ̂s + min

(
û(s)

ŵ(s+1)

))
.
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From Theorem 3.1, ∣∣∣∣∣ λ̂s+1 − λs+1

λs+1

∣∣∣∣∣ ≤ (φ(n) + 2)ε+O(ε2).(4.12)

Because Algorithm 2 is quadratically convergent in the exact arithmetic, we have

|γs − λs+1| ≤ βs(γs − λ̂s)2,(4.13)

where βs depends on As and û(s) (see [10]). Noting the fact that γs, λs+1 and λ̂s
are less than (1+O(ε))λ and substituting (4.8), (4.13) and (4.12) into the inequality

|λ̂s+1 − λ| ≤ |λ̂s+1 − λs+1|+ |λs+1 − γs|+ |γs − λ|,

we obtain the bound.

Remark 4.6. Theorem 4.3 essentially shows that the relative error of the computed
approximation λ̂s converges quadratically until it reaches the level of
(φ(n)+sϕ(n))ε. On the other hand, by Theorem 4.2, the occurrence of convergence
can be detected by the stopping criterion; i.e., when terminated, the relative error
is approximately max{tol, ψ(n, s)ε}. Note that this accuracy is independent of λ
or any condition number. Thus, to efficiently terminate the iterations, tol should
be chosen according to the accuracy desired but not smaller than (φ(n) + sϕ(n))ε.
In practice, however, one can expect the factor φ(n) + sϕ(n) in the bound to be
pessimistic and we found choosing tol = 100ε works well in all of our tests.

Remark 4.7. For a general M -matrix A, for which the diagonal dominance is not
explicitly given, we can first find a representation A = (P, u, v), as in the remark
at the end of Section 4.1, and then apply Algorithm 2. In this computed repre-
sentation, v = fl(Au) = (A + δA)u, with |δA| ≤ (nε + O(ε2))|A|. Then we have
computed the smallest eigenvalue of (P, u, v) and hence that of A+ δA with small
relative errors. Therefore, the smallest eigenvalue of A computed in this way has
a mixed stability in the sense that it produces an eigenvalue which approximates
the smallest eigenvalue of a slightly entrywise perturbed matrix with tiny relative
error.

5. Numerical examples

In this section, we present the results of numerical experiments. Our experiments
were done using Matlab with ε ≈ 2.2×10−16. We have extensively tested Algorithm
2 with tol = 100ε on various diagonally dominant M -matrices and compared the
results with those produced by the standard QR algorithm of Matlab. In all of
our tests, Algorithm 2 converges with the termination criterion satisfied. For those
diagonally dominant M -matrix whose smallest eigenvalues are well conditioned and
not tiny, both algorithms compute the smallest eigenvalue to high relative accuracy.
However, if the smallest eigenvalues are ill conditioned or tiny, the standard QR
algorithm has low relative accuracy or even no accuracy at all, while Algorithm 2
still produces high accuracy approximations. The following are two sets of such
examples.
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Table 1. Case 1: λ is ill-conditioned

δ λ yTx |λ−λ̂|
λ

|λ−λQR|
λ

1.0× 10−3 6.67× 10−2 1.1× 10−3 4.2× 10−16 4.7× 10−13

1.0× 10−6 1.29× 10−1 1.15× 10−6 4.3× 10−16 2.06× 10−11

1.0× 10−9 1.87× 10−1 1.2× 10−9 5.9× 10−16 4.7× 10−10

1.0× 10−12 2.41× 10−1 1.3× 10−12 0 4.9× 10−9

1.0× 10−18 3.39× 10−1 1.5× 10−18 0 3.5× 10−5

1.0× 10−24 4.25× 10−1 1.7× 10−24 1.8× 10−15 8.0× 10−2

1.0× 10−30 4.99× 10−1 2.0× 10−30 0 1.7× 10−1

Example 1. Consider the n× n M -matrix A = (P, e, v), where

P =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
δ 0 0 · · · 0

(5.1)

and

v = (0, 0, · · · , 0, 1− δ),(5.2)

i.e. A = I −P. Let x and y be the unit right and left eigenvectors corresponding to
λ, the smallest eigenvalue of A. It is shown in [11] that λ = 1−δ 1

n and yTx ≈ δ n−1
n .

If δ is tiny, then λ is ill-conditioned since yTx is very close to zero. If δ tends to 1,
yTx is not small and thus the smallest eigenvalue is well-conditioned, but it is tiny.

We test our algorithm and the QR algorithm on both cases of such M -matrices.
In the following, we let λ̂ and λQR denote the smallest eigenvalues computed by
Algorithm 2 and the QR algorithm respectively.

Case 1. n = 100 and δ ∼ 0. Table 1 presents the results. As it shows, Algorithm
2 computes the smallest eigenvalues almost to full precision no matter how small δ
is. On the other hand, the QR algorithm loses significant figures as δ decreases. If
δ ≤ 10−24, only one figure of the computed eigenvalue is correct.

For this example, we also plot convergence history of |λ̃s − λ|/λ against s in
Figure 1 (in solid line for δ = 10−3 and in dotted line for δ = 10−9). It clearly
shows the quadratic convergence property in finite precision as demonstrated by
Theorem 4.3.

Case 2. n = 20 and δ ∼ 1. We report the results in Table 2. Again, our algorithm
can compute λ to full precision no matter how tiny it is, while QR algorithm has
low accuracy as δ decreases.

The matrices in Example 1 are very sparse. Next we consider testing on dense
matrices.
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Table 2. Case 2: λ is tiny relative to ‖A‖

δ λ |λ−λ̂|
λ

|λ−λQR|
λ

(1− 10−3)20 10−3 2.2× 10−16 3.3× 10−13

(1− 10−6)20 10−6 4.2× 10−16 8.1× 10−10

(1− 10−9)20 10−9 2.1× 10−16 8.6× 10−7

(1 − 10−12)20 10−12 0 2.4× 10−4

(1 − 10−15)20 10−15 2.0× 10−16 3.1

0 2 4 6 8 10 12 14 16
10–16

10–14

10–12

10–10

10–8

10 –6

10 –4

10 –2

10 0

Figure 1. Example 1: Quadratic Convergence solid - δ = 10−3;

dotted - δ = 10−9

Example 2. Consider the n× n M -matrix A = (P, e, v) defined by

v = (δ, · · · , δ, 65δ/128, 191δ/128)T

and

P =
(
P1 w
uT 0

)
.

where P1 is of order n− 1 with all the off-diagonal entries equal to 1,

u = (0, · · · , 0, δ/128)T w = (0, · · · , 0, δ/2)T .

The smallest eigenvalue of this matrix is δ and the corresponding eigenvector is
(1, · · · , 1, 1/64)T .

We test our algorithm with various n and δ. Tables 3 and 4 reports the numerical
results for n = 100 and n = 1000.We observe that, for these dense matrices, increase
of n does not affect the accuracy of computed eigenvalue λ̃ either.
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Table 3. 100× 100 dense matrix

δ λ |λ−λ̂|
λ

|λ−λQR|
λ

10−3 10−3 2.2× 10−16 4.9× 10−12

10−6 10−6 4.2× 10−16 2.5× 10−8

10−9 10−9 6.2× 10−16 2.3× 10−6

10−12 10−12 0 5.5× 10−2

10−15 10−15 3.9× 10−16 1

Table 4. 1000× 1000 dense matrix

δ λ |λ−λ̂|
λ

|λ−λQR|
λ

10−3 10−3 2.2× 10−16 2.5× 10−10

10−6 10−6 8.5× 10−16 5.8× 10−8

10−9 10−9 8.3× 10−16 1.3× 10−4

10−12 10−12 2.0× 10−16 2.1× 10−2

10−15 10−15 5.9× 10−16 2.2× 10−1
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