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ACCURATE COMPUTATIONS WITH
TOTALLY NONNEGATIVE MATRICES∗

PLAMEN KOEV†

Abstract. We consider the problem of performing accurate computations with rectangular
(m×n) totally nonnegative matrices. The matrices under consideration have the property of having
a unique representation as products of nonnegative bidiagonal matrices. Given that representation,
one can compute the inverse, LDU decomposition, eigenvalues, and SVD of a totally nonnegative
matrix to high relative accuracy in O(max(m3, n3)) time—much more accurately than conventional
algorithms that ignore that structure. The contribution of this paper is to show that the high
relative accuracy is preserved by operations that preserve the total nonnegativity—taking a product,
re-signed inverse (when m = n), converse, Schur complement, or submatrix of a totally nonnegative
matrix, any of which costs at most O(max(m3, n3)). In other words, the class of totally nonnegative
matrices for which we can do numerical linear algebra very accurately in O(max(m3, n3)) time
(namely, those for which we have a product representation via nonnegative bidiagonals) is closed
under the operations listed above.
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1. Introduction. The matrices with all minors nonnegative are called totally
nonnegative and appear in a wide variety of applications [5, 10, 12, 14, 15, 18, 25].
They are often very ill conditioned, which means that conventional matrix algorithms
such as LAPACK [1] may deliver little or no accuracy when solving totally nonnegative
linear systems or computing inverses, eigenvalues, or SVDs.

Our goal is to derive algorithms for performing accurate and efficient computa-
tions with m× n totally nonnegative matrices. The types of computations we would
like to perform include computing the inverse, LDU decomposition, eigenvalues, and
SVD. By accurate we mean that each quantity must be computed to high relative
accuracy—it must have a correct sign and leading digits. By efficient we mean in at
most O(max(m3, n3)) time.

It turns out that the problem of performing accurate computations with totally
nonnegative matrices is very much a representation problem. If, instead of representing
a matrix by its entries, we represent it as a product of nonnegative bidiagonal matrices

(1.1) A = L(1)L(2) · · ·L(m−1)DU (n−1)U (n−2) · · ·U (1);

then given the entries of L(k), D, and U (k), we can compute A−1, the LDU decom-
position, the eigenvalues, and the SVD of A accurately and efficiently (see section 3).

The existence and uniqueness of the bidiagonal decomposition (1.1) is critical to
the design of our algorithms. Therefore we restrict the class of totally nonnegative
matrices under consideration to only those that are leading contiguous submatrices
of square nonsingular totally nonnegative matrices. If the matrix under consideration
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is square (m = n), the above restriction means that the matrix itself is nonsingular
totally nonnegative.

We will call the matrices in the above described class TN for short.
The representation (1.1) is intrinsic [19] and immediately reveals the TN structure

of an m×n TN matrix A. The m·n nontrivial nonnegative entries in the factors of (1.1)
parameterize the set of all m× n TN matrices and determine the quantities that we
would like to compute (the entries of A−1, the entries of the LDU decomposition, the
eigenvalues, and the SVD) accurately (section 3).

TN matrices can be obtained in a variety of ways as a result of matrix operations
that preserve the total nonnegativity. The following result is well known [19, 20, 25].

Proposition 1.1. If A = [aij ] is TN, then so are the product AB, where B is
also TN; the converse [am+1−i,n+1−j ]; the matrix R from a QR decomposition of A
such that rii > 0; the Schur complement of a11 in A; and any submatrix of A. If A is
also square, then the re-signed inverse [(−1)i+jaij ]

−1 is TN. If A also is square and
symmetric, then one step of QR iteration with no pivoting preserves the TN structure
in A, provided that R has a positive diagonal.

If A is a TN matrix obtained from other TN matrices by any sequence of these
operations, the question becomes: Can we perform accurate matrix computations
with A? In other words, if these other TN matrices are represented by their corre-
sponding bidiagonal decompositions (1.1), can we accurately and efficiently compute
the bidiagonal decomposition of A?

Our main contribution in this paper is to answer this question affirmatively. In
section 5 we present accurate and efficient algorithms that perform these computa-
tions. These algorithms prove the following theorem.

Theorem 1.2. Let every TN matrix be represented by its bidiagonal decompo-
sition (1.1). Then the set of TN matrices with which we can perform accurate and
efficient matrix computations, including computing the inverse, LDU decomposition,
eigenvalues (when m = n), and SVD, is closed under all transformations listed in
Proposition 1.1 that preserve the TN structure.

For example, we could take the product of the Hilbert matrix and the Pascal
matrix, compute a Schur complement, take a submatrix of its converse, and then
compute the SVD of the resulting matrix highly accurately, all in O(max(m3, n3))
time. In contrast, on examples similar to this one, the conventional algorithms may
fail to compute even the largest singular value accurately (see section 7).

As an application of Theorem 1.2, in section 6 we derive a new algorithm for
computing the bidiagonal decomposition of a TN generalized Vandermonde matrix
based on removing appropriate columns of an ordinary Vandermonde matrix. This is
a major improvement over previous such algorithms in [8, 34].

In the design of our algorithms we take the following approach.
First, we identify the source of large relative errors in conventional matrix al-

gorithms. Relative accuracy in these algorithms is lost due to subtractive cancella-
tion in the subtraction of approximate same-sign quantities. Conversely, the rela-
tive accuracy is preserved in multiplication, division, addition, and taking of square
roots.

Second, we perform any and all transformations listed in Proposition 1.1 as a
combination of the following elementary elimination transformations (EETs):

EET1: Subtracting a multiple of a row (column) from the next in order to create
a zero in such a way that the transformed matrix is still TN;

EET2: Adding a multiple of a row (column) to the previous one;
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EET3: Adding a multiple of a row (column) to the next one;
EET4: Scaling by a positive diagonal matrix.

Each of these EETs preserves the total nonnegativity [19].
Third, instead of applying an EET directly on a TN matrix A, we carry it out

implicitly by transforming the entries of its bidiagonal decomposition, and arrange the
computations in such a way that subtractions are not required. Thus the accuracy is
preserved.

This paper is organized as follows. In section 2 we review the bidiagonal decom-
positions of TN matrices. In section 3 we review algorithms for accurate computations
with TN matrices, given their bidiagonal decompositions. In section 4 we review al-
gorithms from [27] for performing EET1 and EET2 and present new algorithms for
performing EET3 and EET4. In section 5 we present algorithms for computing ac-
curate bidiagonal decompositions of derivative TN matrices, obtained as described in
Proposition 1.1. We present our new algorithm for computing the bidiagonal decom-
position of a generalized Vandermonde matrix in section 6. In section 7 we present
numerical results demonstrating the accuracy of our algorithms. We draw conclusions
and present open problems in section 8.

Note on notation. Throughout this paper we use MATLAB [32] notation for
vectors and submatrices.

2. Bidiagonal decompositions of TN matrices. The TN matrices possess
a very elegant structure, which is not revealed by their entries. Additionally, small
relative perturbations in the entries of a TN matrix A can cause enormous relative
perturbations in the small eigenvalues, singular values, and entries of A−1 [27, sec-
tion 1]. Thus the matrix entries are ill suited as parameters in numerical computations
with TN matrices.

Instead, following [27], we choose to represent a TN matrix as a product of non-
negative bidiagonal matrices. This representation arises naturally in the process of
Neville elimination, which we now review, following [19] (see also [35]).

In the process of Neville elimination a matrix is reduced to upper triangular form
using only adjacent rows. A zero is introduced in position (m, 1) by subtracting a
multiple bm1 = am1/am−1,1 of row m − 1 from row m. Subtracting the multiple
bm−1,1 = am−1,1/am−2,1 of row m− 2 from row m− 1 creates a zero in position (m−
1, 1), and so on. The total nonnegativity is preserved during Neville elimination [19],
and therefore all multipliers bij are nonnegative.

This yields the decomposition

A =

⎛
⎝m−1∏

k=1

m∏
j=m−k+1

Ej(bj,k+j−m)

⎞
⎠ · U,

where U is m× n upper triangular and

Ej(x) ≡

⎡
⎢⎢⎢⎢⎢⎢⎣

1
. . .

x 1
. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎦

is m×m and differs from the identity only in the (j, j − 1) entry.
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Applying the same process to AT , we obtain the decomposition

(2.1) A =

⎛
⎝m−1∏

k=1

m∏
j=m−k+1

Ej(bj,k+j−m)

⎞
⎠ ·D ·

(
k=n−1∏

1

j=n∏
n−k+1

ET
j (bk+j−n,j)

)
,

where D is a diagonal m× n matrix and ET
j are n× n. In the notation of (2.1) and

throughout this paper,
∏k=n−1

1 indicates that the product is taken for k from n− 1
down to 1. Although somewhat nonstandard, this notation allows us to preserve the
symmetry in (2.1).

The matrices

L(k) ≡
m∏

j=m−k+1

Ej(bj,k+j−m) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

bk,m−k+1 1
bk+1,m−k+2 1

. . .
. . .

bm,m−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

U (k) ≡
j=n∏

n−k+1

ET
j (bk+j−n,j) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . . bn−k+1,k

1 bn−k+2,k+1

1
. . .

. . . bn−1,n

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

are m×m lower- and n× n upper bidiagonal, respectively. The decomposition (2.1)
now becomes

A = L(1) · · ·L(n−1) ·D · U (n−1) · · ·U (1).

We denote the off-diagonal entries in L(k) and U (k) as

(2.2) l
(k)
i ≡ L

(k)
i+1,i = bi+1,k+i+1−m and u

(k)
i ≡ U

(k)
i,i+1 = bk+i+1−n,i+1.

We will use either l
(k)
i or bi+1,k+i+1−m to denote the nontrivial entries of L(k) (and

similarly with U (k)). In different contexts one notation may be more convenient than
the other, so we will keep (2.2) in mind when switching back and forth.

We now present the fundamental structure theorem for TN matrices.
Theorem 2.1 (Gasca and Peña [19]). An m × n matrix A is TN if and only if

it can be uniquely factored as

(2.3) A = L(1) · · ·L(m−1) ·D · U (n−1) · · ·U (1),

where D is an m×n diagonal matrix with diagonal entries di, i = 1, 2, . . . ,min(n,m);
L(k) are U (k) are m×m unit lower n×n unit upper bidiagonal matrices, respectively,
such that the following hold:
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1. di > 0 for i = 1, 2, . . . ,min(m,n);

2. l
(k)
i = 0, i < m− k; u

(k)
i = 0, i < n− k; and l

(k)
i = u

(k)
i = 0, i > m+ n− k;

3. l
(k)
i ≥ 0, m− k ≤ i ≤ m + n− k, and u

(k)
i ≥ 0, n− k ≤ i ≤ m + n− k;

4. l
(k)
i = 0 implies l

(k−1)
i+1 = 0; u

(k)
i = 0 implies u

(k−1)
i+1 = 0.

We will refer to Theorem 2.1 to verify whether a particular decomposition of a
TN matrix A as a product of bidiagonal matrices is in fact its unique bidiagonal
decomposition.

Following [27], we denote the bidiagonal decomposition (2.3) of a TN matrix A
as BD(A). We store the nontrivial entries of BD(A) compactly in an m × n array,
which we also refer to as BD(A):

(BD(A))ij =

⎧⎪⎨
⎪⎩

l
(n−i+j)
i−1 , i > j,

u
(n−j+i)
j−1 , i < j,

di, i = j.

The (i, j)th entry in BD(A) equals the multiplier (bij) used to set the (i, j)th entry
in A to zero (when i �= j), or the ith entry on the diagonal of D (when i = j).

For example,⎡
⎣ 2 6

8 29
48 209

⎤
⎦ =

⎡
⎣ 1

1
6 1

⎤
⎦
⎡
⎣ 1

4 1
7 1

⎤
⎦
⎡
⎣ 2

5

⎤
⎦
[

1 3
1

]

is stored as

BD

⎛
⎝
⎡
⎣ 2 6

8 29
48 209

⎤
⎦
⎞
⎠ =

⎧⎨
⎩

2 3
4 5
6 7

⎫⎬
⎭ .

This notation is convenient since we can formally transpose BD(A) to obtain
BD(AT ) = (BD(A))T [27, section 4].

In the language of the m × n array B = BD(A), conditions 1–4 in Theorem 2.1
are equivalent to the following:

1. bii > 0, i = 1, 2, . . . ,min(m,n);
2. bij = 0, unless 1 ≤ i ≤ m and 1 ≤ j ≤ n;
3. bij ≥ 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n;
4. bij = 0 implies bi+1,j = 0 if i < j, and bi,j+1 = 0 if i > j.

If the TN matrix A is also totally positive (i.e., if all its minors are positive), then
the entries bij , i = 1, 2, . . . ,m, j = 1, 2, . . . , n, are products and quotients of minors
of A [27, section 3], [16]:

bij =
detA(i− j + 1 : i, 1 : j)

detA(i− j + 1 : i− 1, 1 : j − 1)
· detA(i− j : i− 2, 1 : j − 1)

detA(i− j : i− 1, 1 : j)
, i > j,

bii =
detA(1 : i, 1 : i)

detA(1 : i− 1, 1 : i− 1)
;(2.4)

bji =
detA(1 : j, i− j + 1 : i)

detA(1 : j − 1, i− j + 1 : i− 1)
· detA(1 : j − 1, i− j : i− 2)

detA(1 : j, i− j : i− 1)
, i > j.

One can use the formulas (2.4) to compute explicit formulas for the bidiagonal
decompositions of Vandermonde [10, 23, 33], [27, section 3], Cauchy [4], [27, section
3], Cauchy–Vandermonde [29, 30, 31], generalized Vandermonde [8], and Bernstein–
Vandermonde [28] matrices.
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Neville elimination is just one of eight analogous, but slightly different methods to
eliminate a TN matrix A using only adjacent rows and columns [19, section 4]. Each
method yields a decomposition of A as a product of nonnegative bidiagonal matrices
with analogous but different nonzero patterns. In section 5.1 we show how to obtain
an accurate BD(A) (and then perform accurate computations with A) starting with
any decomposition of A as a product of nonnegative bidiagonal matrices. Therefore
the particular choice of elimination pattern in Neville elimination and the resulting
nonzero pattern in the factors of the decomposition (2.3) do not result in any loss of
generality.

3. Performing accurate matrix computations given BD(A). The entries
of BD(A) determine accurately the entries of the inverse, the entries of the LDU de-
composition, and the values of any minor, eigenvalue, or singular value. Furthermore,
given BD(A), many matrix computations with A can be performed accurately and
efficiently. We review these results below.

3.1. Computing the inverse. If A is a square n×n TN matrix, we can compute
its inverse accurately by inverting (2.1):

(3.1) A−1 =

⎛
⎝n−1∏

i=1

n∏
j=n−i+1

ET
j (−bi+j−n,j)

⎞
⎠ ·D−1 ·

(
i=n−1∏

1

j=n∏
n−i+1

Ej(−bj,i+j−n)

)
.

Using (3.1) and the Cauchy–Binet identity [13, Vol. 1, p. 9], we conclude that each
entry of A−1 is a linear function in each entry bij of BD(A) with either nonnegative or
nonpositive coefficients. Therefore small relative perturbations in the bij cause small
relative perturbations in any entry of A−1. In other words, BD(A) determines every
entry of A−1 accurately.

We can form A−1 by multiplying out (3.1) in O(n3) time. Each entry of A−1

will be computed accurately, since the multiplication (3.1) involves no subtractive
cancellation. (All matrices in (3.1), their partial products, and A−1 have checkerboard
sign patterns.)

3.2. Solving Ax = b. We can use (3.1) to compute the solution to Ax = b in
O(n2) time by multiplying out the expression

(3.2) x = A−1b =

⎛
⎝n−1∏

i=1

n∏
j=n−i+1

ET
j (−bi+j−n,j)

⎞
⎠D−1

(
i=n−1∏

1

j=n∏
n−i+1

Ej(−bj,i+j−n)

)
b

right-to-left. The computed solution x̂ has a small componentwise relative backward
error [4]; i.e., a matrix Â exists such that Âx̂ = b and |A − Â| ≤ O(ε)|A|, where the
inequality is meant componentwise.

If b has alternating sign pattern (i.e., sign bi = (−1)i or sign bi = (−1)i−1),
then (3.2) involves no subtractive cancellation, and each component of x is computed
accurately [23].

This approach for solving Ax = b is the basis of the so-called Björck–Pereyra-
type methods for solving structured TN linear systems. Derived originally for Van-
dermonde linear systems [3], these methods received deserved attention because of
their remarkable accuracy1 [22]. Generalizations were later developed for Cauchy [4],

1In the scope of Newton interpolation with positive and increasing nodes (i.e., the conditions
under which the corresponding Vandermonde matrix is TN), the accuracy observation dates back to
1963 and was made by Kahan and Farkas [24].
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Cauchy–Vandermonde [29, 30, 31], generalized Vandermonde [8], and Bernstein–Van-
dermonde [28] matrices. Each of these methods is either explicitly or implicitly based
on a decomposition of the corresponding A−1 as a product of simple bidiagonal ma-
trices analogous to (3.1).

3.3. Computing a minor. The value of any minor of a TN matrix A is de-
termined accurately by BD(A) [6, section 9]. It can be computed accurately and
efficiently given BD(A)—see section 5.8.

3.4. Computing the LDU decomposition. Let A be a square TN nonsingu-
lar n× n matrix. Define

(3.3) L ≡ L(1) · · ·L(n−1) and U ≡ U (n−1) · · ·U (1).

Now (2.3) implies that A = LDU is the LDU decomposition of A. The Cauchy–
Binet identity and (3.3) imply that BD(A) determines each entry of L, D, and U
accurately. Multiplying out (3.3) involves no subtractions and yields every entry of L
and U accurately. The decompositions BD(L) and BD(U) are given by (3.3).

3.5. Computing the eigenvalues and the SVD. In [27, section 7] we proved
that BD(A) accurately determines the eigenvalues and the SVD of a TN matrix A.
In the same paper we presented algorithms for computing the eigenvalues and the
SVD of A accurately and efficiently, given BD(A). These algorithms implicitly reduce
both the eigenvalue and SVD problems to the bidiagonal SVD problem using only
EETs. The resulting bidiagonal SVD problem is then solved accurately using known
means [7, 11].

4. Performing EETs accurately. Let the TN matrix C be obtained from
the m × n TN matrix A by applying an EET to A. In this section we show how,
given BD(A), the decomposition BD(C) can be computed without performing any
subtractions.

In [27, section 4.1] we showed that EET1 is equivalent to simply setting an entry
of BD(A) to zero; EET2 involved some “bulge chasing” in BD(A) [27, section 4.2]
and cost at most 6(m + 2) operations.

Next, we show how to perform EET3 and EET4 accurately.

4.1. Adding a multiple of a row to the next one. Let A be TN and C be
obtained from A by adding a multiple of row i− 1 of A to row i:

C = Ei(x)A, x > 0.

In this section we show how to accurately compute BD(C), given x and BD(A).
The following lemma shows how to compute the bidiagonal decomposition of the

product of two bidiagonal matrices. It is the main building block of Algorithm 4.2
later in this section.

Lemma 4.1. Let B and C be n×n unit lower bidiagonal matrices with offdiagonal
entries bi ≥ 0 and ci ≥ 0, i = 1, 2, . . . , n− 1, respectively, such that bi = 0 whenever
ci−1 = 0. Then there exist bidiagonal matrices B′ and C ′ with off-diagonal entries
b′i ≥ 0 and c′i ≥ 0, i = 1, 2, . . . , n− 1, respectively, such that B′C ′ = BC and b′1 = 0.
Furthermore one can compute b′i and c′i without performing any subtractions in not
more than 4n arithmetic operations.
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Proof. We compare the entries on both sides of B′C ′ = BC,

(4.1)

⎡
⎢⎢⎢⎢⎢⎣

1
0 1

b′2 1
. . .

. . .

b′n−1 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

1
c′1 1

c′2 1
. . .

. . .

c′n−1 1

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1
b1 1

b2 1
. . .

. . .

bn−1 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

1
c1 1

c2 1
. . .

. . .

cn−1 1

⎤
⎥⎥⎥⎥⎥⎦ ,

to obtain c′1 = b1 + c1,

b′i =
bici−1

c′i−1

,(4.2)

c′i = bi + ci − b′i,

for i = 2, 3, . . . ,min{j|bj = 0}, and b′i = bi, c
′
i = ci otherwise. The subtraction

in (4.2) can be eliminated by introducing auxiliary variables di ≡ bi − b′i. Then
d1 = b1 − b′1 = b1 and

di = bi − b′i

= bi −
bici−1

c′i−1

=
bi

c′i−1

(c′i−1 − ci−1)

=
bi

c′i−1

(bi−1 − b′i−1)

=
bidi−1

c′i−1

.(4.3)

The subtraction-free (and therefore accurate) version of (4.2) is

b′i =
bici−1

c′i−1

,

di =
bidi−1

c′i−1

,

c′i = ci + di.

This computation clearly costs not more than 4n arithmetic operations. Since c′i = 0
implies b′i+1 = 0, the product B′C ′ is BD(BC).

We implement the procedure from Lemma 4.1 in Algorithm 4.1 below. We over-
write di by di+1, and the arrays b and c by b′ and c′, respectively. The quantity
e = bi+1/c

′
i is computed only once and used to update both bi+1 and di+1, thus

saving one division.
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Algorithm 4.1. The following subtraction-free algorithm implements the proce-
dure from Lemma 4.1. It returns the index i where the recurrence (4.4) is terminated.

function [b, c, i] = dqd2(b, c)
t = c1
c1 = b1 + c1
d = b1
b1 = 0
i = 1
while (i < length(b)) and (bi+1 > 0)

e = bi+1/ci
d = ed
bi+1 = et
t = ci+1

ci+1 = ci+1 + d
i = i + 1

end

Note: The only way the product BC differs from BD(BC) is in that b1 �= 0.
The purpose of Algorithm 4.1 is to make b1 zero without changing the product BC.
No other zeros are introduced in B or C, and no nonzeros are introduced in B. At
most one nonzero may be introduced in C. Algorithm 4.1 returns the index i where
this may have happened (ci = 0 on input, ci > 0 on output). Although such an
introduction of a nonzero in C causes no problems in the scope of Lemma 4.1, it
may require additional work and bulge chasing in Algorithm 4.2 below, which uses
Algorithm 4.1 as an intermediate step.

Theorem 4.2. Let A be an m × n TN matrix. Given x > 0 and BD(A), the
decomposition BD(Ei(x)A) can be computed without performing any subtractions in
at most 4m arithmetic operations.

Proof. Let BD(A) be given as in (2.3),

A = L(1)L(2) · · ·L(m−1)DU (n−1)U (n−2) · · ·U (1),

and let L ≡ L(1)L(2) · · ·L(m−1). The TN matrix Ei(x)L is TN unit lower triangular.
The idea is to compute the decomposition BD(Ei(x) · L):

Ei(x)L = L(1)L(2) · · · L(m−1).

Then BD(Ei(x)A) is

Ei(x)A = L(1)L(2) · · · L(m−1)DU (n−1)U (n−2) · · ·U (1).

We use Lemma 4.1 and Algorithm 4.1 to “chase the bulge” Ei(x):

Ei(x)L = Ei(x)L(1)L(2) · · ·L(m−1)

= L(1)Ei1(x1)L
(2) · · ·L(m−1)

= L(1)L(2)Ei2(x2) · · ·L(m−1)

= . . .

= L(1)L(2) · · · L(m−1).

We start with k = 1 and repeat the following process. We apply Algorithm 4.1 to
the trailing principal submatrices of Ei(x) and L(k) consisting of rows and columns
i though n. The only nonzero in Ei(x) disappears, and we obtain a new matrix
L̄(k) = Ei(x)L(k).
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If one of these three condition holds:
1. k = m− 1, or
2. no nonzeros were introduced in L̄(k) that were not in L(k), or

3. a nonzero l̄
(k)
j was introduced in L̄(k), but l

(k+1)
j−1 �= 0,

then we set L(k) ≡ L̄(k); the “bulge chasing” is thus over, and we are done.

Otherwise (a nonzero l̄
(k)
j was introduced in L̄(k), and l

(k+1)
j−1 = 0, k < m− 1), we

have L̄(k) = L(k) · Ej(l̄
(k)
j ), where L(k) has the same nonzero pattern as L(k). We set

i = j, x = l
(k)
j , increase k by one, and repeat the same process.

The computation of BD(Ei(x)A) is subtraction-free. At most 2n − 3 entries
in BD(A) are changed at not more than two arithmetic operations per entry (see
Algorithm 4.1). The total cost therefore does not exceed 4n.

The following algorithm implements the procedure from Theorem 4.2.
Algorithm 4.2. Let A be an m× n TN matrix and B = BD(A). The following

subtraction-free algorithm computes BD(Ei(x)A) in at most 4n time. For simplicity
we assume that bjl = 0 for j /∈ {1, 2, . . . ,m} or l /∈ {1, 2, . . . , n}.

function B = TNAddToNext(B, x, i)
[m,n] = size(B)
z = 0
bi0 = x
while (z < min(i− 1, n)) and (bi−1,z = 0)

for j = 1 : m− i + 1
[cj , dj ] = bj+i+1,z+j−1:z+j

end

[c, d, q] = dqd2(c, d)
for j = 1 : m− i + 1

bj+i+1,z+j−1:z+j = [cj , dj ]
end

i = i + q − 1
z = z + q

end

4.2. Multiplication by a diagonal matrix. The product of a diagonal matrix
F = diag(f1, . . . , fm), fi > 0, i = 1, 2, . . . ,m, and an m × n TN matrix A is TN. We
now show how to compute BD(FA), given F and BD(A).

We propagate F through the factors L(k) in BD(A) using

⎡
⎢⎢⎢⎣

f1

f2

. . .

fm

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

1
c1 1

. . .
. . .

cm−1 1

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

1
b1 1

. . .
. . .

bm−1 1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

f1

f2

. . .

fm

⎤
⎥⎥⎥⎦ ,

where bi = cifi+1/fi, i = 1, 2, . . . ,m− 1.
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Algorithm 4.3. Given B = BD(A) and the vector (f1, f2, . . . , fm), the follow-
ing algorithm computes BD(diag(f1, f2, . . . , fm) · A) using only multiplications and
divisions in at most 2mn time.

function B = TNDiagonalScale(f,B)
[m,n] = size(B)
b11 = b11f1

for i = 2 : m
if i ≤ n

bii = biifi
end

bi,1:min(i−1,n) = bi,1:min(i−1,n) · fi/fi−1

end

5. The bidiagonal decomposition of derivative TN matrices. Let A be
a TN matrix obtained from other TN matrices using one of the operations listed in
Proposition 1.1 that preserve the total nonnegativity.

In this section we present accurate and efficient subtraction-free algorithms for
computing BD(A), given the corresponding bidiagonal decompositions of the input
TN matrices.

MATLAB implementation of all algorithms for performing accurate computations
with TN matrices presented in this paper and [27] are available online from [26].

5.1. A product of EETs. Let the TN matrix A be given as

A = F (1)F (2) · · ·F (k),

where F (i) represents an EET; namely, it equals either Ej(x), ET
j (x), or a positive di-

agonal matrix. Then BD(A) can be accurately accumulated using Algorithms 4.2, 4.3,
as well as Proposition 4.1 and Algorithm 4.1 from [27].

We will use this approach throughout this section. Say we want to compute
BD(A), where the TN matrix A is obtained from other TN matrices using operations
that preserve the total nonnegativity. We will represent A as a product of EETs,
which we will then accumulate.

Since any nonnegative bidiagonal matrix is a product of EETs, any representa-
tion A as a product of nonnegative bidiagonal matrices is a good starting point for
performing accurate computations with A. Given any such representation, we can
accumulate BD(A) without loss of accuracy.

5.2. The product of TN matrices. Let F and C be m × n and n × p TN
matrices such that m ≤ n or n ≥ p. Their product FC is a TN matrix. If B = BD(C),
then from (2.1) we have

C =

⎛
⎝n−1∏

i=1

n∏
j=n−i+1

Ej(bj,i+j−n)

⎞
⎠ ·D ·

⎛
⎝i=p−1∏

1

j=p∏
p−i+1

ET
j (bi+j−p,j)

⎞
⎠ .

Therefore, forming the product FC is equivalent to applying a number of EETs to F .
Algorithm 5.1 (product). Let F and C be m × n and n × p TN matrices,

respectively, where m ≤ n or n ≥ p. Given A = BD(F ) and B = BD(C), the
following subtraction-free algorithm computes BD(FC) in O(mnp) time:
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function A = TNProduct(A,B)
[m,n] = size(A)
p = size(B, 2)
for i = 1 : n− 1

for j = n− i + 1 : min(n, n + p− i)
A = TNAddToPrevious(A, bj,i+j−n, 1, j)

end

end

A = A(:, 1 : min(n, p))
A = TNDiagonalScale(diag(B), AT )T

for i = p− 1 : −1 : 1
for j = p : −1 : p− i + 1

A = TNAddToNext(AT , bi+j−p,j , j)
T

end

end

The function TNAddToPrevious(A, x, 1, i) “adds” a multiple x of column i to
column i− 1 and costs at most 6(m + 2) [27, Algorithm 4.1].

5.3. The re-signed inverse. Let A be an n × n TN matrix, and let J be a
diagonal matrix of alternating 1’s and −1’s (Jii = (−1)i−1, i = 1, 2, . . . , n). The
re-signed inverse of A,

A∗ ≡
[
(−1)i+jaij

]−1
= (JAJ)−1 = JA−1J,

is also TN [14]. Using J2 = I, (Ei(x))−1 = Ei(−x), JEi(−x)J = Ei(x), and (2.1),

A∗ = J ·

⎛
⎝n−1∏

i=1

n∏
j=n−i+1

ET
j (−bi+j−n,j)

⎞
⎠ ·D−1 ·

(
i=n−1∏

1

j=n∏
n−i+1

Ej(−bj,i+j−n)

)
· J

=

⎛
⎝n−1∏

i=1

n∏
j=n−i+1

JET
j (−bi+j−n,j)J

⎞
⎠ · JD−1J ·

(
i=n−1∏

1

j=n∏
n−i+1

JEj(−bj,i+j−n)J

)

=

⎛
⎝n−1∏

i=1

n∏
j=n−i+1

ET
j (bi+j−n,j)

⎞
⎠ ·D−1 ·

(
i=n−1∏

1

j=n∏
n−i+1

Ej(bj,i+j−n)

)
.

Algorithm 5.2 (re-signed inverse). Let A be a square n× n TN matrix. Given
B = BD(A), the following subtraction-free algorithm computes C = BD(A∗) in O(n3)
time:

function C = TNRSInverse(B)
n = size(B, 1)
C = I
for i = 1 : n− 1

for j = n− i + 1 : n
C = TNAddToNext(C, bj,i+j−n, j)

end

end

C = TNDiagonalScale((1/b11, . . . , 1/bnn), C)
for i = n− 1 : −1 : 1

for j = n : −1 : n− i + 1
C = TNAddToPrevious(CT , bi+j−n,j , 1, j)

T

end

end
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5.4. The converse. If the m × n matrix A = [aij ]
m,n
i,j=1 is TN, then so is its

converse [19]

A# ≡ [am+1−i,n+1−j ]
m,n
i,j=1.

Let B = BD(A), and let Yk ≡ [δk+1−i,j ]
k
i,j=1 be the reverse identity of size k. Using

Y 2
k = I and E#

i (x) = YkEi(x)Yk = ET
k+2−i(x), we obtain

A# = YmAYn

= Ym

⎛
⎝m−1∏

i=1

m∏
j=m−i+1

Ej(bj,i+j−m)

⎞
⎠D

(
i=n−1∏

1

j=n∏
n−i+1

ET
j (bi+j−n,j)

)
Yn

=

⎛
⎝m−1∏

i=1

m∏
j=m−i+1

YmEj(bj,i+j−m)Ym

⎞
⎠YmDYn

(
i=n−1∏

1

j=n∏
n−i+1

YnE
T
j (bi+j−n,j)Yn

)

=

⎛
⎝m−1∏

i=1

m∏
j=m−i+1

ET
m+2−j(bj,i+j−m)

⎞
⎠D#

(
i=n−1∏

1

j=n∏
n−i+1

En+2−j(bi+j−n,j)

)
,

(5.1)

where D# = YmDYn is an m×n diagonal matrix, D#
ii = bk+1−i,k+1−i, k = min(m,n),

i = 1, 2, . . . , k. We compute BD(A#) as the bidiagonal decomposition of the product
of all EETs in (5.1).

Algorithm 5.3 (converse). Given B = BD(A) of an m × n TN matrix A, the
following subtraction-free algorithm computes BD(A#) in O(mn2) time:

function C = TNConverse(B)
[m,n] = size(B)
C = eye(m,n)
for i = 1 : m− 1

for j = m− i + 1 : m
C = TNAddToNext(AT , bj,i+j−m,m + 2 − j)T

end

end

e = diag(B)
C = TNDiagonalScale(e(min(m,n) : −1 : 1), CT )T

for i = n− 1 : −1 : 1
for j = n : −1 : n− i + 1

A = TNAddToPrevious(A, bi+j−n,j , 1, n + 2 − j)
end

end

5.5. QR decomposition. Let A be TN, and let A = QR be its QR decompo-
sition such that R has a positive diagonal. Then R is TN and can be obtained by
applying Givens rotations to A. Each Givens rotation preserves the TN structure of
A and equals the product of three EETs [27, section 4.3].

Algorithm 5.4 (QR decomposition). Let A be an m × n TN matrix, and let
A = QR be a QR decomposition of A such that rii > 0, i = 1, 2, . . . ,min(m,n). Given
B = BD(A), the following subtraction-free algorithm computes BD(R) in O(mn2)
time:
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function B = TNQR(B)
[m,n] = size(B)
for i = 1 : n

for j = m : −1 : i + 1
x = bji
bji = 0
c =

√
1 + x2

B = (TNAddToPrevious(BT , x/c, c, j))T

end

end

5.6. QR iteration. Gladwell showed in [20] that if A is TN and symmetric,
then one step of QR iteration without pivoting (provided R has a positive diagonal)
preserves the TN structure. We will now show how to compute the result of this
iteration accurately using algorithms we already have.

Let A be TN and symmetric, and let A = LDU = QR be its LDU and QR
decompositions, respectively, with R having a positive diagonal.2 Let Q = LD1U1 be
the LDU decomposition of Q (Q and A share the L factor).

Let F = RQ be the result of one step of QR iteration performed on A. Then
F = RQ = RLD1U1. Since F is symmetric, it suffices to compute the lower bidiagonal
factors and the diagonal factor of BD(F ). Since U1 is unit upper triangular, it thus
suffices to compute BD(RLD1). Since the factors are TN, this task is easy. We first
use TNQR to obtain BD(R) and then TNProduct to obtain BD(RLD1). We obtain D1

by comparing the diagonals of the upper triangular matrices DU = D1U1R.

5.7. The Schur complement. Let A be an m × n TN matrix, and let A′ be
obtained from A after one step of Gaussian elimination. We have A′ = KA, where

K=

⎡
⎢⎢⎢⎢⎢⎣

1
−a21

a11
1

−a32

a11
1

...
. . .

−am1

a11
1

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1
1

. . .

1
am1

am−1,1
1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

1
1

. . .
am−1,1

am−2,1
1

1

⎤
⎥⎥⎥⎥⎥⎦· · ·

⎡
⎢⎢⎢⎢⎢⎣

1
1
a31

a21
1

. . .

1

⎤
⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎣

1
−a21

a11
1

−a31

a21
1

. . .
. . .

− am1

am−1,1
1

⎤
⎥⎥⎥⎥⎥⎦

=
i=m∏

3

Ei(bi1) ×
m∏
i=2

Ei(−bi1)

2Technically, since A is symmetric, U = LT , but this is unimportant here.
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is a product of EETs. Forming the product(
m∏
i=2

Ei(−bi1)

)
·A

is equivalent to using adjacent rows to zero out the first column of A. It is therefore
equivalent to simply setting bi1 = 0, i = 2, 3, . . . ,m [27, section 4.1].

The multiplications by Ei(bi1), i = m, . . . , 3, are performed using Algorithm 4.2.
Algorithm 5.5 (Schur complement). Let A be an m×n TN matrix, and let A′

be obtained from A after one step of Gaussian elimination. Given B = BD(A), the
following subtraction-free algorithm computes BD(A′) and costs O(mn):

function B = TNSchurComplement(B)
m = size(B, 1)
c = B(:, 1)
B(2 : m, 1) = 0
for i = 3 : m

B = TNAddToNext(B, ci, i)
end

5.8. A submatrix. Any submatrix C of a TN matrix A is TN. In this section
we show how to compute BD(C), given BD(A). It suffices to describe how to compute
BD(C) when C is obtained by removing row i from A. We assume that C is TN.

Consider first the case i = 1, i.e., C is obtained by removing the first row of A:

A =

⎡
⎢⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

⎤
⎥⎥⎥⎦ , C =

⎡
⎢⎣

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

⎤
⎥⎦ .

Let

BD(A) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
. . .

...
bm1 bm2 . . . bmn

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, BD(C) =

⎧⎪⎨
⎪⎩

f21 f22 . . . f2n

...
...

. . .
...

fm1 fm2 . . . fmn

⎫⎪⎬
⎪⎭ .

Let A′ be obtained from A by using adjacent columns to zero out the first row of A
above the main diagonal:

(5.2) A′ = A · ET
n (−b1n) · ET

n−1(−b1,n−1) · · ·ET
2 (−b12).

Then

A′ =

⎡
⎢⎢⎢⎣

a′11 0 . . . 0
a′21 a′22 . . . a′2n
...

...
. . .

...
a′m1 a′m2 . . . a′mn

⎤
⎥⎥⎥⎦ and BD(A′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b11 0 . . . 0
b21 b22 . . . b2n
...

...
. . .

...
bm1 bm2 . . . bmn

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

Let C ′ be obtained by removing the first row of A′. From (5.2) we have

C ′ = C · ET
n (−b1n) · ET

n−1(−b1,n−1) · · ·ET
2 (−b12),
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which implies

(5.3) C = C ′ · ET
2 (b12) · ET

3 (b13) · · ·ET
n (b1n).

Therefore, it suffices to obtain BD(C ′). (Then we will use Algorithm 4.2 to obtain
BD(C) using (5.3).)

Let

C ′ =

⎡
⎢⎣

a′21 a′22 . . . a′2n
...

...
. . .

...
a′m1 a′m2 . . . a′mn

⎤
⎥⎦ and BD(C ′) =

⎧⎪⎨
⎪⎩

f ′
21 f ′

22 . . . f ′
2n

...
...

. . .
...

f ′
m1 f ′

m2 . . . f ′
mn

⎫⎪⎬
⎪⎭ .

Consider the process of Neville elimination applied to A′ and C ′ to eliminate the
entries a′jk, j �= k, k+1, and reduce A′ and C ′ to lower and upper bidiagonal matrices

Ā and C̄, respectively. The same multipliers will be used in this elimination:

f ′
jk = bjk for j �= k, k + 1.

The matrix

(5.4) C̄ =

⎡
⎢⎢⎢⎣

f ′
21

f ′
32

f ′
43

. . .

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

1 f ′
22

1 f ′
33

1
. . .

⎤
⎥⎥⎥⎦

is obtained by removing the first row of

(5.5) Ā =

⎡
⎢⎢⎢⎣

1
b21 1

b32 1
. . .

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

b11
b22

b33
. . .

⎤
⎥⎥⎥⎦ .

By comparing entries in (5.4) and (5.5), we obtain

f ′
i+1,i = bi+1,ibii and f ′

i+1,i+1 =
bi+1,i+1

bi+1,ibii
.

We have obtained the entire BD(C ′).
Now consider the general case—we remove the ith row of A to obtain C. In the

process of Neville elimination, the same multipliers will be used to eliminate the first
row of C that were used to eliminate the first row of A.

We emulate the Neville elimination of the first column of C by eliminating the
first column of A in a slightly different order. We use adjacent rows to eliminate the
entries of the first column of A with the exception of ai+1,1. We use row i − 1 to
eliminate ai+1,1—the exact same row that would be used to eliminate ai+1,1 in C
using adjacent rows.

This Gaussian-type elimination of rows i and i + 1 in A can be handled in the
same way as in section 5.7. We represent the elimination of rows i and i + 1 as a
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sequence of three EETs:⎡
⎣ 1

− ai

ai−1
1

− ai+1

ai−1
1

⎤
⎦ =

⎡
⎣ 1

−bi1 1
−bi+1,1bi1 1

⎤
⎦

=

⎡
⎣ 1

1
bi+1,1 1

⎤
⎦
⎡
⎣ 1

−bi1 1
−bi+1,1 1

⎤
⎦

= Ei+1(bi+1,1)Ei(−bi1)Ei+1(−bi+1,1).

We then proceed by induction. We eliminate the second row and the second
column of A and so on until we have eliminated the first i rows and the first i columns
of A. Now we are in familiar territory—we need to remove the first row of the trailing
submatrix A(i : m, i : n).

Algorithm 5.6 (submatrix). Let A be an m × n TN matrix, and let C be
obtained by removing the ith row of A. Given BD(A), the following subtraction-free
algorithm computes BD(C) in O(n2) time:

function B = TNSubmatrix(B, i)
[m,n] = size(B)
if i < m

for j = 1 : min(i− 1, n)
B(j+1 : m, j+1 : n) = TNAddToNext(B(j+1 : m, j+1 : n), bi+1,j , i−j+1)
bi+1,j = bi+1,jbij

end

for j = min(n,m) + (m > n) : −1 : i + 1
bj,j−1 = bj,j−1bj−1,j−1

if j ≤ n
bjj = bjj/bj,j−1

end

end

for j = i + 1 : n
B(i + 1 : m, i : n) = TNAddToNext(B(i + 1 : m, i : n)T , bij , j − i + 1)T

end

end

Remove the ith row of B

6. Generalized Vandermonde matrices. In this section we describe how to
easily, accurately, and efficiently compute the bidiagonal decomposition of a TN gen-
eralized Vandermonde matrix

G ≡
[
x
j−1+λn−j+1

i

]n
i,j=1

with λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, λi ∈ Z, i = 1, 2, . . . , n. The matrix G is well known
to be TN when 0 < x1 < x2 < · · · < xn [14, p. 76]. The nodes xi and the partition
λ = (λ1, λ2, . . . , λn) of |λ| = λ1 +λ2 + · · ·+λn are typical parameters used to describe
generalized Vandermonde matrices. When λ = (0, . . . , 0), G reduces to the ordinary
Vandermonde matrix V ≡

[
xj−1
i

]n
i,j=1

.

There have been a couple of attempts at deriving accurate algorithms for this
class of matrices, and both have shortcomings.

In 1977 Van de Vel [34] proposed a subtraction-free algorithm for the LDU decom-
position of G. While accuracy was clearly guaranteed, efficiency was not. Recently,
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motivated by this result and some theoretical arguments [6, section 9.1(2)], Dem-
mel and the current author presented an accurate algorithm for computing BD(G)
[8, 9]. While this algorithm is accurate and efficient (its complexity is bounded by
O(n2|λ|2+ρλ3+ρ

1 ), where ρ is tiny [8, (3.9)]), it requires extended precision arithmetic
when computing the Schur function in the intermediate steps [9]. This is a drawback.

With the results of this paper we are finally able to put this issue to rest by
presenting a new very simple algorithm for computing BD(G), which is accurate and
efficient—it costs only O(n2λ1) (and is thus much more efficient than the algorithm
in [8]) and does not require the use of extended precision arithmetic. Once we have
BD(G), we can clearly perform virtually all linear algebra with G at a modest O(n3)
additional cost.

Our idea is very simple: Start with the rectangular (ordinary) TN Vandermonde
matrix

F =
[
xj−1
i

]n,n−1+λ1

i=1,j=1
.

The decomposition BD(F ) is readily available in O(n(n+λ1)) time using the formulas
in [27, section 3, (3.6)]. We can then use Algorithm 5.6 to remove the appropriate λ1

columns of F (at the cost of O(n2) per column) to obtain BD(G). The total cost is
nicely bounded by O(n2λ1).

7. Numerical experiments. The algorithms presented in this paper can be
used to perform a variety of accurate computations with TN matrices. We performed
many tests to confirm their correctness and accuracy. In this section we present
two numerical examples which incorporate several techniques for computing with TN
matrices and demonstrate the accuracy and significance of our new algorithms.

For our experiments we selected two well-known notoriously ill-conditioned TN
matrices—Hilbert and Pascal:

H =

[
1

i + j − 1

]m,n

i,j=1

and P =

[(
i + j

i

)]n,p
i,j=1

.

We selected m = 20, n = 30, and p = 20, yielding fairly ill-conditioned rectangular
H and P : κ(H) = 3.3 · 1025 and κ(P ) = 1.2 · 1020. Both experiments involved the
product T = HP , which was also severely ill-conditioned: κ(T ) = 6 · 1045.

In our first experiment, we computed the singular values of T = HP using the
MATLAB implementations of our accurate algorithms3

(7.1) TNSingularValues(TNProduct(TNCauchyBD(1:m,0:n-1),ones(n,p)))

and also via the conventional MATLAB call

(7.2) svd(H*P).

For verification, we formed H and P , computed their product T , and computed
T ’s singular values in 70-digit decimal floating point arithmetic using the MATLAB
function vpa. Since κ(T ) = 6 · 1045, vpa returned the singular values of T with at
least 16 correct decimal digits in each. The results of vpa agreed to at least 14 digits
with the ones computed using (7.1), confirming the accuracy of our algorithms.

3TNSingularValues is Algorithm 6.1 from [27], TNProduct is Algorithm 5.1 (see section 5);
TNCauchyBD computes the bidiagonal decomposition of H accurately using the formulas from [27,
section 3]; the entries of BD(P ) are all ones, i.e., BD(P ) equals ones(n,p).
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Fig. 7.1. The singular values of the product T of the 20× 30 Hilbert matrix H and the 30× 20
Pascal matrix P (left plot) and the 10th Schur complement of T (right plot); “×” = new, accurate
algorithms, “+” = conventional. The dashed line represents the roundoff threshold, ‖T‖ · ε.

In contrast, the conventional singular value algorithms (7.2) in double precision [2]
binary floating point arithmetic computed only the largest ones (σi > σ1ε = ‖T‖ε,
where ε ≈ 10−16 is the machine precision) with any relative accuracy at all.

The results of this experiment are plotted in Figure 7.1, left.
In our second experiment, we computed the singular values of the 10th Schur

complement of T using the same three methods—our new algorithms (in particular,
TNSchurComplement, Algorithm 5.5) and a conventional MATLAB call, and finally
verified the results in extended precision arithmetic. As expected, our new algorithms
computed all singular values of the 10th Schur complement of T accurately, while the
conventional MATLAB call failed to compute even a single singular value accurately
(Figure 7.1, right).

Although this experiment is somewhat artificially contrived, it shows that very
simple TN-preserving operations can result in a situation where the conventional
matrix algorithms fail to deliver any accuracy at all.

8. Conclusions and open problems. Using the intrinsic representation of TN
matrices as a products of bidiagonal matrices allows for accurate computations with
these matrices. The cost is similar to that of the conventional algorithms, but the
computations are performed to high relative accuracy, as opposed to the high absolute
accuracy of the conventional algorithms.

The singular (square) totally nonnegative matrices may not have a bidiagonal
decomposition, or it may not be unique. Designing new algorithms (or adapting the
ones in this paper) to perform accurate computations with these matrices is still an
open problem.

The problem of finding algorithms for computing accurate eigenvectors of TN
matrices is also open. In particular, such algorithms should guarantee the intrin-
sic properties of the eigenvector matrix—the jth computed eigenvector should have
j − 1 changes of sign in its entries, and the eigenvector matrix should have an LU
decomposition such that L and U−1 are TN [14, 17].

The caveat in our algorithms is that every TN matrix must be represented by
its bidiagonal decomposition. While every TN matrix intrinsically possesses such a
decomposition, and for many classes of structured matrices this decomposition is very
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easy to obtain accurately (see section 2), there are important TN matrices for which
we know of no accurate and efficient way to compute their bidiagonal decompositions.
Two such examples are the following:

• the TN generalized Vandermonde matrix
[
x
yj

i

]n
i,j=1

, where 0 < x1 < · · · < xn,

0 < y1 < y2 < · · · < yn, and at least one yi is not an integer;
• the TN matrices appearing in the study of the hypergeometric function of a

matrix argument [21].
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