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Reporting effect size index estimates with their confidence intervals (CIs) can be an excellent way to
simultaneously communicate the strength and precision of the observed evidence. We recently proposed a
robust effect size index (RESI) that is advantageous over common indices because it’s widely applicable
to different types of data. Here, we use statistical theory and simulations to develop and evaluate RESI
estimators and confidence/credible intervals that rely on different covariance estimators. Our results show
(1) counter to intuition, the randomness of covariates reduces coverage for Chi-squared and F CIs; (2) when
the variance of the estimators is estimated, the non-central Chi-squared and F CIs using the parametric and
robust RESI estimators fail to cover the true effect size at the nominal level. Using the robust estimator along
with the proposed nonparametric bootstrap or Bayesian (credible) intervals provides valid inference for
the RESI, even when model assumptions may be violated. This work forms a unified effect size reporting
procedure, such that effect sizes with confidence/credible intervals can be easily reported in an analysis of
variance (ANOVA) table format.

Keywords: effect size, robust effect size index, confidence interval, credible interval, analysis of effect size,
non-centrality parameter, bootstrap, bayesian bootstrap, non-central Chi-squared distribution, non-central
F distribution.

Effect size indices, as generally defined by Kelley & Preacher (2012), are a quantitative
reflection of the magnitude of some phenomenon that is used for the purpose of addressing
a question of interest. They are unaffected by the sample size and play an important role in
power analyses, sample size planning and meta-analyses (Cohen, 1988; Chinn, 2000; Morris &
DeShon, 2002). Given the recent criticism of the misuse and misinterpretation of null hypothesis
significance testing by the American Statistical Association (ASA) (Wasserstein & Lazar, 2016;
Wasserstein et al., 2019; Kafadar, 2021), there is an increasing interest in seeking alternatives
for communicating study findings. Reporting effect size estimates with confidence intervals (CIs)
can be an excellent way to simultaneously communicate the strength of evidence (sample size
independent) as well as the confidence one should have in the evidence (sample size dependent).
The American Psychological Association (APA) has also been calling for reporting of effect sizes
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and their CIs for almost three decades (American Psychological Association, 1994; Wilkinson
and the Task Force on Statistical Inference, 1999, American Psychological Association, 2001,
2010), but they are still not routinely reported by psychological studies. Fritz et al. (2012) reviewed
articles published in 2009 and 2010 in the Journal of Experimental Psychology: General, and
noted that less than half of the articles they reviewed reported effect sizes and no article reported
a confidence interval for an effect size. More recently, Amaral & Line (2021) found low reporting
rate of effect sizes in 119,558 clinical or biomedical studies published between 2019 and 2020
and advocated greater emphasis on reporting them. The barriers stopping researchers from easily
reporting effect sizes along with their CIs not only lie in their unfamiliarity with different effect
size indices but also in the lack of guidance of how to correctly estimate the CI for a specific effect
size index.

We recently proposed a robust effect size index (RESI) (Vandekar et al., 2020), which is a
standardized parameter describing the deviation of the true parameter value froma reference value.
It has several advantages over previously proposed indices (Hedges & Olkin, 1985; Cohen, 1988;
Rosenthal, 1994;Zhang&Schoeps, 1997;Long&Freese, 2006) because (1) it iswidely applicable
to many types of data since it is constructed from M-estimators, which are generally defined;
(2) it is robust to possible model misspecification as it can use a heteroskedasticity consistent
covariance estimator; (3) it can accommodate the existence of nuisance covariates/parameters.
We also proposed a simple consistent estimator for the RESI that is a function of the Chi-squared
test statistic (Vandekar et al., 2020). TheRESI is defined on the basis of theWald test statistic—it is
related to the non-centrality parameter (NCP) of the test statistic under the alternative hypothesis,
therefore, it has the generality that it can be estimated in different types of data. Researchers can
use the RESI to report their observed effect sizes regardless of the model. Furthermore, studies on
the same scientific topic, but using different types of data can easily communicate their observed
effect sizes without translating between different effect size indices.While the RESI can currently
be used to report the strength of a finding through the RESI estimate, we did not establish a CI
estimation procedure for the RESI, which quantifies the amount of certainty of the estimate.

The goal of this paper is to establish an accurate interval estimation procedure for the RESI
and establish a framework for the analysis of effect sizes based on the RESI. Because the RESI
is related to the NCP of the Chi-squared statistic, an intuitive approach is to use existing methods
based on non-central distributions to construct intervals for theNCPof a noncentral Chi-squared or
F distribution (Kent &Hainsworth, 1995; Steiger & Fouladi, 1997). Here, we use statistical theory
and simulations to show that the Chi-squared CI provides low coverage for the NCP when the
variancemust be estimated. In fact, the coverage gets lower with increasing sample and effect size.
Similarly, the FCI has decreasing coveragewith increasing sample sizewhen the robust covariance
estimate is used.We use theory to show that this occurs because the variance of the estimators is not
asymptotically equivalent to each other. As a solution, we propose bootstrap interval construction
procedures and evaluate their coverage performance through simulations in various scenarios. We
show the nonparametric bootstrap CI with the robust estimator of the RESI is generally accurate
and applicable, even when model assumptions are violated. In addition, we propose a credible
interval derived by using Bayesian bootstraps for the robust estimator as an alternative interval
that has the Bayesian instead of Frequentist interpretation (Rubin, 1981). The Bayesian bootstrap
simulates the posterior distribution of the true effect size using a non-informative Dirichlet prior
distribution on the sampling weight of each observation and a non-informative flat improper
prior on the RESI. The credible interval performs comparably to the nonparametric CI, except in
very small sample sizes. By using RESI, the effect sizes and confidence/credible intervals can be
easily reported in a coefficient table or analysis of variance (ANOVA) table format. We use this
framework to study the effect of early psychosis and schizophrenia on relational memory. Our
RESI R package is available on CRAN (https://cran.r-project.org/web/packages/RESI/index.
html).

https://cran.r-project.org/web/packages/RESI/index.html
https://cran.r-project.org/web/packages/RESI/index.html
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1. Statistical Theory

1.1. Estimators for the Robust Effect Size Index (RESI)

In this section, we define the RESI and describe three estimators for the parameter. Let
W = (W1, . . . ,Wn) denote the full dataset, where Wi is independent of Wj for all i �= j .
Assume θ = (α, β) ∈ � ⊂ R

m are model parameters, where α ∈ R
m0 is a vector of nuisance

parameters, β ∈ R
m1 is a vector of target parameters, and m = m0 +m1. We assume �(θ;W ) =

n−1 ∑n
i=1 ψ(θ;W ) ∈ R is an estimating equation, where ψ is a known function and � can be

maximized to obtain the M-estimator θ̂

θ̂ = argmax
θ∗∈�

�(θ∗;W ).

If� is a log-likelihood function, then θ̂ corresponds to the maximum likelihood estimator. Denote
the target value of the parameter θ = argmaxθ∗ E[�(θ∗;W )].

We define the components of the asymptotic covariance of
√
n(θ̂ − θ):

J jk(θ) = − limn→∞ E

[
∂2�(θ∗,W )

∂θ∗
j ∂θ∗

k

∣
∣
∣
θ

]

K jk(θ) = limn→∞ nE

[
∂�(θ∗,W )

∂θ∗
j

∂�(θ∗,W )
∂θ∗

k

∣
∣
∣
θ

]

Under mild conditions (Van der Vaart, 2000; Vandekar et al., 2020), the variance of
√
n(θ̂ − θ) is

	θ = J(θ)−1K(θ)J(θ)−1 (1)

If� is a correctly specified likelihood function, then J(θ) = K(θ), and the asymptotic covariance
matrix of

√
n(θ̂ − θ) is J(θ)−1.

We defined the RESI from the test statistic for H0 : β = β0, where β0 is a vector-valued
reference point. The RESI depends upon the reference value, β0, so may seem not to conform
to the general definition of effect size given by Kelley & Preacher (2012) at first, as it explicitly
depends on the reference value. However, this is implicitly true of existing effect size indices
as well. For example, Cohen’s d is defined as the standardized difference in the sample means
between the two comparison groups, the reference point is implicitly taken to be zero. In the vast
majority of cases for the RESI, the reference value, β0, will be zero.

We previously suggested that the typical Wald-style statistic for the test of the null hypothesis
follows a Chi-squared distribution with m1 degrees of freedom and non-centrality parameter
n(β − β0)

T	−1
β (θ)(β − β0),

T 2 = n(β̂ − β0)
T	−1

β (θ)(β̂ − β0) ∼ χ2
m1

{n(β − β0)
T	−1

β (θ)(β − β0)}, (2)

where the β̂ is the estimated value of β and	β(θ) is the asymptotic covariance matrix of
√
n(β̂ −

β).
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The RESI was defined as the square root of the component of the NCP that is due to the
deviation of β from the reference value,

Sβ =
√

(β − β0)T	−1
β (θ)(β − β0).

The estimator for the RESI is defined as (Vandekar et al., 2020)

Ŝβ =
{

max

[

0,
T 2 − m1

n

]} 1
2

(3)

where T 2 is as defined in (2). This estimator was derived by setting the observed statistic T 2 equal
to the expected value of the non-central Chi-squared distribution and solving for Sβ

Ŝ2β = T 2 − m1

n
.

Because Sβ must be nonnegative, the estimator (3) has lower mean square error (Neff & Straw-
derman, 1976; Kubokawa et al., 1993; Vandekar et al., 2020).

There are several ways of constructing the statistic T 2 and Ŝβ through the estimation of	β(θ̂)

(White, 1980; MacKinnon & White, 1985; Long & Ervin, 2000). First, the matrices J and K are
estimated by

Ĵ jk(θ̂) = −n−1
n∑

i=1

∂2ψ(θ∗,W )

∂θ∗
j ∂θ∗

k

∣
∣
∣
θ̂

(4)

K̂(θ̂) = n−1
n∑

i=1

∂ψ(θ∗,W )

∂θ∗
j

∂ψ(θ∗,W )

∂θ∗
k

∣
∣
∣
θ̂

	̂(θ̂ ) = Ĵ(θ̂)−1K̂(θ̂)Ĵ(θ̂)−1. (5)

Then we can estimate the RESI using three versions of test statistics:

1. Oracle Test Statistics: when the true covariance of
√
n(β̂ − β) is known,

T 2
(o) = n(β̂ − β0)

T	−1
β (θ)(β̂ − β0),

where 	β(θ) is obtained from the block diagonal of (1) corresponding to β. This is
called an “oracle” statistic because it depends on the true covariance matrix, which is
not known in practice.

2. Parametric Test Statistics: when we believe the working model is correctly specified,

T 2
(p) = n(β̂ − β0)

T Ĵβ(θ̂)(β̂ − β0),

where Ĵβ(θ̂) is obtained from the block diagonal component of (4) corresponding to β.
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3. Robust Test Statistics: when the working model is not assumed to be correct,

T 2
(r) = n(β̂ − β0)

T 	̂−1
β (θ̂)(β̂ − β0),

where 	̂β(θ̂) is obtained from the block diagonal component of (5) corresponding to β.

With the oracle, parametric, or robust test statistics, we can derive the corresponding oracle,
parametric or robust estimator for the RESI using (3). These different versions of the estimator
for Sβ have different sampling distributions depending on which test statistic is used.

1.2. CIs Based on Non-central Distributions Underestimate the Variance

To compare the sampling distributions of the oracle, parametric, and robust test statistics
under the alternative, in this section, we compare the variance of the test statistics under linear
regression analytically. When the covariance of

√
n(β̂ − β) is known, the test statistic follows

the non-central Chi-squared distribution (2), where its variance depends on the true effect size.
However, in practice, the covariance needs to be estimated. In this section, we will show that the
large sample distribution of the test statistic deviates from the theoretical non-central Chi-squared
distribution when an estimator for the covariance is used. As a result, the CIs constructed using
Chi-squared distribution (Kent & Hainsworth, 1995) will fail to provide nominal coverage. This
is in contrast to the null case, where the asymptotic distribution of the Chi-square statistic is valid
whether or not 	β(θ) is known or estimated. To illustrate this problem here, we compare the
asymptotic equivalence of the variance of the oracle, parametric, and robust estimators in a linear
model. Two functions f (n), g(n) are said to be asymptotically equivalent if limn→∞ f (n)

g(n)
= 1.

We need asymptotic equivalence here, because a standard asymptotic approach cannot be used;
under the alternative, the mean and variance of the test statistics depend on the sample size.

Throughout this section, we assume Y = Xβ +ε, where X is full rank and εi are independent
with mean 0 and variance σ 2

i . Note that σ 2
i may not be equal. The ordinary least squares (OLS)

estimator of β is β̂OLS = (XT X)−1XT Y .
Oracle Estimator: Assuming known covariance, the test statistic (2) is approximately central
Chi-squared by the central limit theorem under the null. Under the alternative, a similar argument
suggests its approximation to a non-central Chi-squared distribution.

T 2
(o) ∼ χ2

m1
(nS2β).

The expectation and variance of the oracle test statistics are:

ET 2
(o) = m1 + nS2β

Var(T 2
(o)) = 2(m1 + 2nS2β). (6)

Thus, the estimator (3) is consistent and the variance of T(o) is linear in the sample size.
Parametric Estimator: Assuming homoskedasticity (i.e., σ 2

i = σ 2, ∀i) and normality of Y
makes finding the distribution of the test statistic tractable. The covariance matrix of β̂OLS can
be estimated as (XT X)−1σ̂ 2, where σ̂ 2 = (n − m)−1Y T (I − H)Y and H is the hat matrix
H = X (XT X)−1XT . In this situation, the parametric version of test statistic for H0 : β = β0 is

T 2
(p) = n(β̂OLS − β0)

T 	̂−1
β (β̂OLS − β0)

= σ̂−2(β̂OLS − β0)
T XT X (β̂OLS − β0) (7)
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Additional variability is introduced into the test statistic when plugging in the estimated
covariance of β̂OLS and, consequently, the parametric test statistic does not follow the non-central
Chi-squared distribution (2). For linear regression models, it can be shown that the test statistic
divided by its own degrees of freedom m1 follows the non-central F distribution (see Appendix)

T 2
(p)/m1 ∼ F(m1, n − m; nS2β). (8)

By plugging the parametric test statistic (7) into (3), we can derive a parametric version of the
estimator for the RESI. The expectation and variance of the parametric test statistic are derived
from the moments of the F distribution,

ET 2
(p) = (n − m)(m1 + nS2β)

n − m − 2

Var
(
T 2

(p)

)
= 2

(m1 + nS2β)2 + (m1 + 2nS2β)(n − m − 2)

(n − m − 2)2(n − m − 4)
(n − m)2

ET 2
(p) and Var

(
T 2

(p)

)
are asymptotically equivalent to

ET 2
(p) � m1 + nS2β

Var
(
T 2

(p)

)
� 2(m1 + 2nS2β) + 2

(
2m1S

2
β + nS4β

)

= Var
(
T 2

(o)

)
+ 2

(
2m1S

2
β + nS4β

)
. (9)

This parametric test statistic, which is the simplest unknown variance case, has a variance that
is not asymptotically equal to the variance of the oracle test statistic, which follows the non-
central Chi-squared distribution. The consequence of this fact is that a CI using the Chi-squared
distribution will have lower than nominal coverage for the NCP and effect sizes that are a function
of the NCP. In fact, the CI will become increasingly inaccurate as the effect size or sample size
get larger. We demonstrate this with simulations in Sect. 4.
Robust Estimator: When there is a suspected unknown heteroskedasticity, a robust version of
covariance estimator of β̂OLS can be applied instead,

	̂βOLS = (XT X)−1XT ĜX (XT X)−1

where Ĝi j = e2i
(1−hi )2

if i = j and Ĝi j = 0 if i �= j , ei = Yi − Xi β̂ is the i th residual, and hi is

the i-th element on the diagonal of the hat matrix H , i.e., hi = xi (XT X)−1xTi (Long & Ervin,
2000). Many versions of this robust “sandwich" covariance estimator have been proposed, this
version is discussed by Long & Ervin (2000) as a jackknife approximation.

The robust version of the test statistic in this case is

T 2
(r) = n(β̂OLS − β0)

T 	̂−1
β (β̂OLS − β0)

= (β̂OLS − β0)
T (XT X)(XT ĜX)−1(XT X)(β̂OLS − β0). (10)

Then the robust version of the estimator for RESI can be constructed by plugging (10) into (3).
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Similar to the situation of parametric test statistic, the covariance of parameter estimator β̂OLS
is estimated. The estimator is still consistent

ET 2
(r) = tr

((
n−1	̂β

)−1
n−1	β

)

+ n(Eβ̂OLS − β0)
T 	̂−1

β (Eβ̂OLS − β0)

� tr
(
	−1

β 	β

)
+ n(β − β0)

T	−1
β (β − β0)

= tr
(
Im1

) + nS2

= m1 + nS2 = ET 2
(o),

but using the robust covariance estimator increases variance of the robust test statistic above the
non-central Chi-squared and the F distributions. We found an analytical form for the variance of
T 2

(r) to be intractable, so estimated it using simulations.
Figure 1 shows the simulated variance of each test statistic as a linear function of n. When the

effect size is large (e.g., S = 1) and with a fixed covariate, the variance of oracle and parametric
statistics equals the variance of non-central Chi-squared and F distributions, respectively. This is
expected since these are the correct distributions of these two statistics, respectively (Sect. 1.2).
Because the test statistic using the robust covariance has larger variance than the oracle and
parametric statistics, the robust test statistic is not approximately non-central Chi-squared or non-
central F distributed. This implies that the CIs constructed using either of these two distributions
will not have accurate coverage for the robust RESI estimator and that the coverage will get worse
with increasing effect size or sample size. When the covariate is random (Fig. 1), the variance
of all three statistics further grows, and both of the oracle and parametric statistics deviate from
the non-central Chi-squared and F distributions. This implies that when the design matrix is
random (such as in observational studies), neither of these two distributions will produce CIs with
nominal coverage for any of these estimators. While we only studied linear models in this section,
we expect that the robust test statistic will not follow the Chi-squared or F distribution under the
alternative in general.

2. Methods

2.1. Intervals for RESI

Here, we discuss several potential procedures to construct intervals using non-central Chi-
squared and F distributions and bootstrapping.

2.1.1. Theoretical Methods: Using Non-central Distributions As discussed in the previous
section, the test statistic may follow a non-central Chi-squared or F distribution with a non-
centrality parameter (NCP) not equal to 0. Since the squared RESI was defined as the NCP
divided by sample size n, there is a one-to-one relationship between the NCP and RESI. If a
CI for the NCP can be constructed, the CI for RESI can be derived from the CI for NCP. The
confidence interval construction for NCP has been discussed for non-central Chi-squared and F
distributions (Kent & Hainsworth, 1995; Steiger & Fouladi, 1997).

Suppose the test statistics from the sample T 2
obs is observed and its degrees of freedom is

m1. Let F(T 2
obs;m1, λ) denote the cumulative distribution function (CDF) of the non-central Chi-

squared distribution the test statistic T 2
(o) follows. Then F(T 2

obs;m1, λ) is a monotonic and strictly
decreasing function of the NCP, λ.
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.

Figure 1.
A comparison of simulated variance of the three test statistics from a simple linear regressionmodel with a binary covariate
and assumptions of homoskedasticity and symmetric errors. The grey lines are the variance of theoretical non-central
F or Chi-squared distribution using formulas (6) and (9). The black lines are the simulated variance of test statistics
with random or fixed covariate. With fixed covariate, the variance of oracle and parametric statistics equals theoretical
variance of the non-central Chi-squared or F distribution, respectively. With random covariates, the true variance of the
test statistic deviates from the theoretical value. S denotes the RESI; Chisq and F denote the non-central Chi-squared and F
distributions, respectively; Oracle, Param and Robust denote the oracle, parametric and robust test statistics, respectively.

The lower bound (�) and upper bound (u) of central (1− α) × 100% CI for λ can be chosen
as the values that satisfy the equalities (Kent & Hainsworth, 1995)

F(T 2
obs;m1, λ = �) = 1 − α/2

F(T 2
obs;m1, λ = u) = α/2

For the non-central F distribution, the procedure to construct a CI for its NCP is similar,
except there are 2 degree of freedom parameters. The lower (�) and upper (u) bounds for the NCP
of the F distribution can be determined from the observed statistic, T 2

obs, by choosing � and u to
satisfy

F(T 2
obs;m1, n − m, λ = �) = 1 − α/2

F(T 2
obs;m1, n − m, λ = u) = α/2,

with degrees of freedom being m1 and (n − m). These are commonly used intervals included in
R package MBESS, but the functions in MBESS may return missing values when the test statistic
or the sample size is too small. We also provide code to compute these intervals in the RESI
R package (https://cran.r-project.org/web/packages/RESI/index.html).Our code is adapted from
the code in MBESS, Kent & Hainsworth (1995), and Steiger & Fouladi (1997).

2.1.2. Resampling Methods: Using Bootstraps As we discussed in the previous section, the
distribution of the test statistic may deviate from the theoretical non-central Chi-squared or F
distribution if the covariance must be estimated and/or the design matrix is random instead of
fixed. In this situation, the CIs built through non-central distributionsmay have lower than nominal

https://cran.r-project.org/web/packages/RESI/index.html
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coverage of the true effect size. Bootstrapping is a good alternative that can be used to approximate
the actual distribution of the test statistic and can be used to construct the intervals for test statistic
and the estimated effect size (Preacher & Kelley, 2011). In the body of this paper, we consider
the standard nonparametric bootstrap and Bayesian bootstraps (Efron, 1979; Rubin, 1981; Hall,
1992).
Nonparametric bootstrap:

We consider the standard nonparametric bootstrap by sampling the data with replacement
R times and estimating the corresponding RESI for each resampled data. The lower and upper
α/2×100% percentiles of the R estimated RESIs are the bootstrapped lower and upper bounds of
the (1−α)×100%bootstrapCI for the estimatedRESI. Thenonparametric bootstrap approximates
the sampling distribution of the RESI estimator.
Bayesian bootstrap:

We also consider a Bayesian bootstrap (Rubin, 1981) as an alternative to the nonparametric
bootstrap. The Bayesian bootstrap samples weights for each observation/subject in the data from
Dirichlet distribution for R times and estimates the corresponding RESI using a weighted regres-
sion model for each replicate of the Bayesian bootstraps. The (1− α) × 100% Bayesian credible
interval can be derived using the lower and upper α/2 × 100% percentiles of the R estimated
RESIs from the Bayesian bootstrap replicates.

The Bayesian bootstrap is advantageous when the dataset is not suitable for nonparametric
bootstraps. For example, when we have an analysis dataset containing a binary predictor variable
which has low variability (say, 98% of the observations are ones). In this case, the values in
the binary variable in a bootstrapped dataset may be completely identical and the nonparametric
method will fail due to rank deficiency, whereas Bayesian bootstrap is still functional given such
analysis data. In addition, the resulting credible intervals provide Bayesian interpretation.

Let W denote the dataset and the g = (g1, g2, . . . , gn) denote the sampling weights of the
datapoints which follow Dirichlet distribution Dirichlet(1, . . . , 1), then the posterior distribution
of the sampling weights is

P(g | W ) = P(W | g) × P(g)

P(W )
.

Then the posterior distribution of the RESI parameter is

P(S | W ) =
∫

g
P(S | W, g)P(g | W )dg

=
∫

g

P(W | S, g)P(S)P(g)

P(W )
dg (11)

where the second line follows by assuming a non-informative improper prior on the effect size S
(i.e., P(S) ∝ 1) and the non-informative Dirichlet prior on the sampling weights (Rubin, 1981).
Therefore, by conducting the Bayesian bootstrap procedure described above, we simulate the
posterior distribution of the RESI in (11).

In addition to nonparametric and Bayesian bootstraps, we also considered several variants of
thewild bootstrap (Wu, 1986).However, thesewild bootstraps donot showexceeding performance
compared to nonparametric andBayesian bootstraps, and they carrymore assumptions. Therefore,
we focus on the nonparametric and Bayesian bootstraps in this paper. Details about the wild
bootstraps considered in this paper and their simulation results can be found in the Supplementary
Material.
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3. Illustration of Data Analysis Using RESI

In this section, we use two datasets from studies of relational memory among schizophrenia
and early psychosis patients (Armstrong et al., 2012; Avery et al., 2021) to illustrate how to report
RESI estimates and CIs in an ANOVA-table format as an addition to the conventional model
results, using the function resi in the RESI R package. Relational memory is the ability to
bind information into complex memories and is impaired in chronic schizophrenia and in the
early stages of psychosis (Armstrong et al., 2012; Armstrong et al., 2018; Avery et al., 2021). In
both studies a relational memory paradigm was used to compare the ability of psychosis patients
and healthy individuals to identify novel stimulus pairings (Armstrong et al., 2012; Armstrong et
al., 2018; Avery et al., 2021). The first study compared relational memory accuracy in 60 patients
with schizophrenia or schizoaffective disorder to 38 healthy control subjects (Armstrong et al.
2012). The second study assessed participants’ relational memory accuracy in 66 early psychosis
patients and 64 healthy control subjects (Avery et al., 2021).

In study reporting, we recommend including RESI and its CI in addition to classic statistical
values. The magnitudes of effect on RESI can be described using the thresholds determined by
Cohen (1988) (Vandekar et al., 2020), but these are suggestions as interpretations of magnitudes
will be field specific. The RESI differs from the p-value because it serves to indicate the estimated
strength of the effect independent of the sample size. The RESI CI serves to identify the plausible
range of values for the effect size. The p-value represents how unlikely a result at least as extreme
as the observed one is, given the null hypothesis is true. The analyses below serve to illustrate
how to report effect sizes along with classical statistical values.

In our analyses, in order to demonstrate the communicability of the RESI across different
models, we use both logistic regression models and multiple linear models to quantify the differ-
ences in relational memory performance in schizophrenia and early psychosis after controlling
for age and gender, respectively (See Appendix for R code). Then, the RESI and corresponding
CIs are estimated to indicate the effect size of each factor after controlling others. The results are
summarized in an ANOVA table format (see Tables 1 and 2). The RESI estimates and its CIs are
based on the model fit object using the resi function in R with the robust covariance estimator,
and the 1,000 nonparametric bootstrap samples.

In the first study of patients with schizophrenia, we fit a logistic regression model to study
the effect of diagnosis on relational memory compared to healthy controls (Table 1). There is a
medium to large association between schizophrenia and relational memory after controlling for
age and gender (RESI = 0.44, 95% CI = [0.25, 0.63]), and there is sufficient statistical evidence
to reject the null hypothesis (χ2 = 18.92, d. f. = 1, p < 0.001).

The estimated RESIs and their CIs from logistic and linear models are very close to each
other (Table 1). If onemodel hadmuch greater sensitivity to a given effect, it would be represented
by a larger effect size estimate comparing across the models. Using the RESI makes it easier to
compare across logistic and linear models.

In the second study of early psychosis (EP) patients, we fit a logistic regression model to
study the effect of psychosis on relational memory compared to healthy controls (Table 2). Results
show a medium to large effect of early psychosis on the relational memory after controlling for
age and gender (RESI = 0.49, 95% CI = [0.31, 0.72]). There is sufficient statistical evidence to
reject the null hypothesis (χ2 = 31.43, d. f. = 1, p < 0.001). As above, the logistic and linear
models provide similar conclusions (Table 2).

The RESI also makes it easy to compare findings across these two studies that have different
sample sizes. The effect sizes are both large and similar in magnitude across the two studies
indicating a similar relational memory deficit in EP and SZ. While the test statistics and p-values
are sample size dependent, the RESI can be compared across the four models that come from two
different samples and two model types.
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Table 1.
A comparison of effect sizes in the schizophrenia (SZ) data from logistic and linear models. The observed RESIs and
their CIs for SZ after controlling for age and gender are very close from the two different models, which demonstrates the
robustness of RESI across different models. The p-values are calculated from the Chi-squared distribution.

Logistic model: schizophrenia (SZ) vs. healthy controls

Factor Estimate Robust s.e. Chi-squared d.f. p-value RESI 95% CI
Group (SZ) –0.77 0.18 18.92 1 <0.001 0.44 (0.25, 0.63)
Age –0.03 0.01 14.18 1 <0.001 0.37 (0.17, 0.59)
Gender (female) –0.15 0.14 1.19 1 0.27 0.05 (0, 0.30)
Overall 50.55 3 <0.001 0.71 (0.53, 1.02)
Residual 94
Linear model: schizophrenia (SZ) vs. healthy controls
Group (SZ) –0.17 0.04 20.99 1 <0.001 0.46 (0.24, 0.69)
Age –0.01 0.00 15.35 1 <0.001 0.39 (0.18, 0.65)
Gender (female) –0.03 0.03 1.00 1 0.32 0 (0, 0.29)
Overall 72.76 3 <0.001 0.86 (0.60, 1.38)
Residual 94

Table 2.
A comparison of effect sizes in the early psychosis (EP) data from logistic and linear models. The observed RESIs and
their CIs for EP after controlling for age and gender are very close from the two different models, which demonstrates the
robustness of RESI across different models. The p-values are calculated from the Chi-squared distribution.

Logistic model: early psychosis (EP) vs. healthy controls

Factor Estimate Robust s.e. Chi-squared d.f. p-value RESI 95% CI
Group (EP) –1.26 0.22 31.43 1 <0.001 0.49 (0.31, 0.72)
Age 0.04 0.04 0.79 1 0.37 0 (0, 0.28)
Gender (female) 0.33 0.27 1.50 1 0.22 0.06 (0, 0.26)
Overall 45.17 3 <0.001 0.58 (0.43, 0.82)
Residual 126
Linear model: early psychosis (EP) vs. healthy controls
Group (EP) –0.18 0.03 32.54 1 <0.001 0.50 (0.32, 0.71)
Age 0.01 0.01 0.93 1 0.33 0 (0, 0.29)
Gender (female) 0.04 0.03 1.73 1 0.19 0.08 (0, 0.29)
Overall 45.59 3 <0.001 0.58 (0.44, 0.82)
Residual 126

4. Simulation Study

4.1. Setup

In the previous sections, we proposed three estimators and several ways of constructing (con-
fidence/credible) intervals for the RESI. In this section, we use 1,000 simulations to evaluate the
performance of the proposed interval construction procedures with respect to each estimator under
different scenarios. We evaluate the influence of heteroskedasticity, data skewness and fixed/ran-
dom covariate(s) on the performance of estimators and intervals in some particular situations that
we believe represent reasonable conditions researchers care about in practice. All intervals are
constructed at the 95% confidence/credible level.
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We simulate a simple linear regression model Y = β0 + β1x + ε, where x ∈ {0, 1}. We vary
the sample size n ∈ {50, 100, 250, 500} across 4 different true effect sizes, S ∈ {0, 0.33, 0.66, 1}.
In the scenario of symmetric errors, the errors are independently sampled from N (0, σ 2

0 = 1)
under homoskedasticity; under heteroskedasticity, the errors are independently sampled from
N (0, σ 2

0 = 0.25) if xi = 0 and from N (0, σ 2
1 = 2.25) if xi = 1. In the scenario of skewed

errors, ε +√
0.1 ∼ Gamma(α = 0.1, β = √

0.1) under homoskedasticity and ε +√
0.1(x + 0.5)

∼ Gamma(α = 0.1, β = √
0.1/(x + 0.5)) under heteroskedasticity. These errors are very

heavily right-skewed, with Pearson’s moment coefficient of skewness equal to mean−mode√
Variance

=
(

α
β

− α−1
β

)
/
√

α/β2 = 2/
√
0.1 ≈ 6.32. For a symmetric distribution, this skewness coefficient

is 0. The errors are shifted so that they are mean zero.
To illustrate the difference in the performance of the intervals between an experimental and

observational design where the covariate(s) X is treated as fixed or random, the values of the
covariate were generated in two ways: (1) when the covariate is fixed, π = 0.3 and ceiling(nπ )
of the n individuals have their covariate with value 1 and the remaining have value 0; (2) when
the covariate is random, X ∼ Bern(0.3) is sampled from a Bernoulli distribution with parameter
π = 0.3. For each bootstrap intervals, 1,000 bootstraps are used.

4.2. Results

We ran simulations to assess the bias of the estimators and the coverage of the confidence/-
credible intervals. We considered eight possible cases where there are homo- or heteroskedastic
errors, symmetric or skewed errors, and fixed or random covariates in each simulation.

In small samples (n = 50) the estimators are positively biased for S = 0, but negatively
biased for all other values of S (Fig. 2). For all other sample sizes, Ŝ has small bias. As expected,
under heteroskedasticity, the parametric estimator is heavily biased (Vandekar et al., 2020). When
the error distribution is heavily skewed and S > 0, the robust estimator is biased, but the bias
goes to zero in large samples (Fig. 3). The randomness of the covariate does not have an effect on
the consistency of any of these 3 estimators.

As to the coverage of each CI approach, the pattern of differences between the oracle, para-
metric, and robust estimators is most obvious when the effect size is larger (e.g., S = 1). In
this case of homoskedasticity, symmetric errors and fixed covariate (the upper plot in Fig. 4), the
Chi-squared CI has nominal coverage when we have known covariance (i.e., the oracle estima-
tor), the F CI has nominal coverage when we use naive covariance estimator (i.e., the parametric
estimator) as expected, and the nonparametric bootstrap CI has nominal coverage for all (asymp-
totically). The Bayesian interval has comparable performance as the nonparametric bootstrap CI,
but performs slightly worse when the sample size is very small. As expected, larger effect sizes
have worse coverage for the Chi-squared and F CIs when the variance is estimated (parametric
and robust statistics; Fig. 4) because the variance depends on the true effect size and sample size,
and the asymptotic distributions don’t hold. This is as expected from the results in Fig. 1 that the
asymptotic variance of all three test statistics are not equal. The variance of the robust estimator is
asymptotically larger than the variance of the parametric estimator, which in turn is asymptotically
larger variance than the oracle estimator. The relation between the variance of the parametric and
oracle estimators is given in equation (9).

When there is a random covariate, the Chi-squared and F CIs both fail to provide nominal
coverage for the oracle and parametric estimators, respectively. This is because the extra variance
introduced by random covariate into the test statistics and the asymptotic distribution do not hold
any more (also shown in Fig. 1).

Under heteroskedasticity, all intervals fail to provide nominal coverage using the parametric
estimator because this estimator is biased as shown in Fig. 2. Both Chi-squared and F CIs fail to



KAIDI KANG ET AL. 265

.

Figure 2.
Acomparison of bias for three estimators of theRESI under the simulation settings described in Sect. 4.Under homoskedas-
ticity the estimators have small bias (top). Under heteroskedasticity, the parametric estimator for effect size is heavily
biased. S denotes the RESI, Oracle estimator assumes known variance, parametric assumes homoskedasticity, Robust is
the sandwich covariance estimator (Sect. 1.2).
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Figure 3.
Acomparison of bias for three estimators of theRESI under the simulation settings described in Sect. 4.Under homoskedas-
ticity and heavily skewed residuals, the estimators have bias (top), but the bias goes to 0 in large samples. Under het-
eroskedasticity and heavily skewed residuals, the parametric estimator for effect size is heavily biased, the bias of the
robust estimator approaches 0 in large samples. S denotes the RESI, Oracle estimator assumes known variance, parametric
assumes homoskedasticity, Robust is the sandwich covariance estimator. (Sect. 1.2).
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Figure 4.
A comparison of the coverage of different CIs for the three estimators of RESI under homoskedasticity, with symmetric
residuals and random/fixed covariates. With fixed covariates, the Chi-squared CI has nominal coverage for the oracle
estimator and F CI has nominal coverage for the parametric estimator, whereas they both fail when the covariates are
random. The nonparametric bootstrap CI has nominal coverage for all estimators, with random or fixed covariates. The
Bayesian interval has similar performance with the nonparametric bootstrap CI for the robust estimator. S denotes the
RESI;Oracle estimator assumesknownvariance; parametric assumeshomoskedasticity;Robust is the sandwich covariance
estimator (Sect. 1.2); Chisq denotes Chi-squared CI; F denotes F CI; Boot denotes nonparametric bootstrap CI; Bayes
Boot denotes the Bayesian interval.
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Figure 5.
A comparison of the coverage of different intervals for the three estimators of RESI under heteroskedasticity, with
symmetric residuals and random covariates. All three CIs fail to provide nominal coverage for the parametric estimator.
The Chi-squared and F CIs fail to provide nominal coverage for the robust estimator. The nonparametric bootstrap CI and
Bayesian interval has nominal coverage for both the oracle and robust estimators. S denotes the RESI; Oracle estimator
assumes known variance; parametric assumes homoskedasticity; Robust is the sandwich covariance estimator (Sect. 1.2);
Chisq denotes Chi-squared CI; F denotes FCI; Boot denotes nonparametric bootstrap CI; Bayes Boot denotes the Bayesian
Interval.

provide nominal coverage for the robust estimator. The nonparametric bootstrap CI and Bayesian
interval have nominal coverage for both of the oracle and robust estimators (Fig. 5).

The skewness of the residuals has a big impact on the intervals’ performance. Under
homoskedasticity, the Chi-squared and F CIs provide nominal coverage for the oracle estimator,
but they both fail to provide nominal coverage for the parametric and robust estimators (Fig. 6).
In large samples, the coverage of the nonparametric bootstrap CI and the Bayesian interval for all
three estimators approach the nominal level. Under heteroskedasticity, all intervals fail to provide
nominal coverage for all estimators except F CI for the oracle estimator. The coverage of the non-
parametric bootstrap CI and the Bayesian interval for the oracle and robust estimators approaches
the nominal level in large samples.

5. Discussion

In this paper, we derived confidence and credible intervals for the robust effect size index
(RESI) and used them to to easily report effect sizes and their CIs in an ANOVA table format. We
proposed 3 different estimators for theRESI and a variety ofways to construct intervals. The oracle
estimator assumes the covariance matrix is known, so is not possible to compute in applications.
Through simulations, we showed that all 3 estimators are consistent under homoskedasticity and
the robust estimator is consistent under heteroskedasticity. We used statistical theory and simula-
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Figure 6.
A comparison of the coverage of different CIs for the three estimators of RESI with skewed residuals and random
covariates. The coverages of the nonparametric bootstrap CI and Bayesian interval approach to the nominal level in large
sample for the oracle and robust estimators in both homo- and hetero-skedasticity. S denotes the RESI; Oracle estimator
assumes known variance; parametric assumes homoskedasticity; Robust is the sandwich covariance estimator (Sect. 1.2);
Chisq denotes Chi-squared CI; F denotes FCI; Boot denotes nonparametric bootstrap CI; Bayes Boot denotes the Bayesian
Interval.
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tions to demonstrate that the non-central Chi-squared CI has low coverage when the covariance
in the Wald test statistic needs to be estimated. In addition, the randomness of covariate(s) also
reduces the coverage of Chi-squared and F CIs, which is an important implication for observa-
tional studies where the covariates are random instead of fixed/controlled by the experimenters.
According to the simulation results, using the robust estimator along with the (nonparametric)
bootstrap CI is generally most accurate and applicable to conduct consistent estimation and valid
inference using the RESI. The credible interval has comparable performance to the nonparametric
bootstrap CI for the robust estimator. It also has a Bayesian interpretation and can be used as an
alternative to the nonparametric bootstrap CI.

The RESI estimator and CI reduce the barriers to effect size analysis by introducing a unified
reporting procedure that is widely applicable across different models. The effect sizes with con-
fidence or credible intervals can easily be reported in summary tables alongside p-values. This
approach may help to address the limitations of null hypothesis significance testing (Wasserstein
& Lazar, 2016; Wasserstein et al., 2019) and provide guidance on whether a study finding is
under-powered. We hope the ease of using RESI will broaden the use of effect sizes and their CIs
in study reporting.

We also provided functions to estimate RESI and its CI in our RESI R package (https://cran.
r-project.org/web/packages/RESI/index.html). It outputs the estimated RESI along with intervals
in a summary table,withwhich researchers can conveniently report their observed results. Coupled
with the generality of the RESI, researchers studying the same scientific questions but using
different types of data can easily communicate their observed effect sizes and confidence/credible
intervals instead of having to translate between different effect size indices.

Our research focused on the performance of the confidence/credible intervals in a linear
regression model setting because these are widely used models. Although it adequately illustrated
the problems we wanted to discuss, theory and evaluation for other models (e.g., longitudinal and
survival analysis) requires further research.
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Appendix

R Code

In this section,we illustrate how to analyze and report RESI estimates and their CIs in the relational
memory datasets using the functions from the RESI R package, and the complete code for our
data analyses are also included. The two datasets are described in section 3 and have already

https://cran.r-project.org/web/packages/RESI/index.html
https://cran.r-project.org/web/packages/RESI/index.html
http://creativecommons.org/licenses/by/4.0/
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been loaded into R. Each of these two datasets contains 4 variables “accuracy” (the outcome),
“group”, “age” and “gender”. We first fit a glm object by specifying the variable accuracy as
the outcome, it can be a logistic regression model if we specify family = “binomial” or
a linear model if family = “gaussian” (default). Note, for both models, the assumptions
are violated because, for the logistic regression the data are not Bernoulli distributed (they are
proportions) and for the Gaussian model, the errors are not normal. Then the RESI estimates and
CIs can be calculated with resi(object = glm.fit), where glm.fit is the glm object
we just created.
The complete codes for our analyses are:

# -------------------------------------------------- #
# Effect size analysis in the relational memory data #
# ---------------------------------------------------#
# Install the package RESI from CRAN
install.packages("RESI")

# Load in package(s)
library(RESI)
## The two datasets have already been loaded , called "SZ" and "EP"
## Each of them contains 3 variables called "accuracy", "age" and "gender"

## Set seed number (the ‘resi()‘ function uses bootstraps to build CIs by
default) set.seed (1213)

# Schizophrenia (SZ) patients vs Healthy control (HC) subjects
## fit a logistic model using ‘glm()‘
SZ_log_mod <- glm(accuracy ~ group + age + gender , data = SZ , family =
"binomial")
## estimate RESI based on the logistic model
resi(object = SZ_log_mod)
## fit a multiple linear model
SZ_lin_mod <- glm(accuracy ~ group + age + gender , data = SZ , family =
"gaussian")
## estimate RESI based on the linear model
resi(object = SZ_lin_mod)

# Early psychosis (EP) patients vs healthy control (HC) subjects
## fit a logistic model using ‘glm()‘
EP_log_mod <- glm(accuracy ~ group + age + gender , data = EP , family =
"binomial")
## estimate RESI based on the logistic model
resi(object = EP_log_mod)
## fit a mutiple linear model
EP_lin_mod <- glm(accuracy ~ group + age + gender , data = EP , family =
"gaussian")
## estimate RESI based on the linear model
resi(object = EP_lin_mod)

By default,resi uses the robust (sandwich) estimator (robust.var = TRUE, default) to esti-
mate the RESI, if robust.var = FALSE, it uses (4) to calculate the parametric test statistics
(7) and corresponding parametric version of RESI estimates.resi uses 1,000 bootstraps (nboot
= 1000) to construct the corresponding intervals. The default interval construction method is
nonparametric bootstrapping (boot.method = “nonparam”), Bayesian bootstrapping can
be implemented instead by setting boot.method = “bayes”. alpha is the significance
level at which the intervals are estimated, by default, alpha = 0.05;
If we are interested in estimating the overall effect size of a subset of factors (e.g., age
and gender in our example), we can specify a reduced model to compare with (e.g.,
model.reduced = glm(accuracy ∼ group,data = data,family = “binomial′′)).
By default, model.reduced = NULL. The function will then output a table containing the
overall effect size of age and gender after controlling for the group. Here is an example:

> mod1 = glm(accuracy ~ group + age + gender , data = SZ , family = "gaussian")
> mod0 = glm(accuracy ~ group , data = SZ, family = "gaussian")
> resi(object = mod1 , model.reduced = mod0)

Chi -squared df p-val RESI LL UL
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Tested 16.99 2 0 0.399 0.207 0.72
Residual NA 94 NA NA NA NA

where the RESI on the “tested” row is the RESI estimate for age and gender together after
controlling for group.

Mathematical Details

To show (8): the distribution is a non-central F distribution.
Under the homoskedasticity and Normality assumption, we have Y ∼ N (Xβ, σ 2I).

T 2
(p)/m1 = nσ̂−2(β̂OLS − β0)

T XT X (β̂OLS − β0)/m1

= σ−2n(β̂OLS − β0)
T XT X (β̂OLS − β0)/m1

σ−2σ̂ 2

= σ−2n(β̂OLS − β0)
T XT X (β̂OLS − β0)

σ−2Y T (I − H)Y/(n − m)

1. In the numerator, under mild conditions, the quadratic form σ−2n(β̂OLS − β0)
T XT X

(β̂OLS − β0) ∼ χ2(m1; λ1), where λ1 is the non-centrality parameter:

λ1 = σ−2n(Eβ̂OLS − β0)
T XT X (Eβ̂OLS − β0)

= σ−2n(β − β0)
T XT X (β − β0)

= nS2β

This quadratic form in the numerator is essentially the regression sum of squares (SSR)
in linear regression models.

2. In the denominator, the quadratic from σ−2Y T (I − H)Y ∼ χ2(n − m; λ2), where λ2
is the non-centrality parameter. It can be shown that λ2 is 0:

λ2 = σ−2
[
(Xβ)T (I − H)Xβ

]

= σ−2
[
βT XT Xβ − βT XT H Xβ

]

= σ−2
[
βT XT Xβ − βT XT X (XT X)−1XT Xβ

]

= σ−2
[
βT XT Xβ − βT XT Xβ

]

= 0

Therefore, in the denominator, σ−2Y T (I − H)Y follows a central Chi-squared distri-
bution χ2

n−m . This quadratic form is essentially the error sum of squares (SSE) in linear
regression models.

3. Under homoskedasticity and Normality, the SSR and SSE are independent. Therefore,
we can prove that the distribution of T 2

(p)/m1 is the non-central F distribution F(m1, n−
m; nS2β)
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