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Abstract

Using a Deep Neuronal Network model (DNN) trained on the large ANI-1 data set of

small organic molecules, we propose a transferable density-free many-body dispersion

model (DNN-MBD). The DNN strategy bypasses the explicit Hirshfeld partitioning

of the Kohn-Sham electron density required by MBD models to obtain the atom-

in-molecules volumes used by the Tkatchenko-Scheffler polarizability rescaling. The

resulting DNN-MBD model is trained with minimal basis iterative Stockholder atomic

volumes and, coupled to Density Functional Theory (DFT), exhibits comparable (if

not greater) accuracy to other approaches based on different partitioning schemes.

Implemented in the Tinker-HP package, the DNN-MBD model decreases the overall

computational cost compared to MBD models where the explicit density partitioning

is performed. Its coupling with the recently introduced Stochastic formulation of the

MBD equations (J. Chem. Theory Comput., 2022, 18, 3, 1633–1645) enables large
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routine dispersion-corrected DFT calculations at preserved accuracy. Furthermore,

the DNN electron density-free features extend MBD’s applicability beyond electronic

structure theory within methodologies such as force fields and neural networks.

Since its original formulation in 1965, Kohn-Sham Density Functional Theory1 (KS-DFT)

has become the most popular family of electronic structure methods. KS-DFT represents

in fact the cheapest way for introducing electronic correlation as its computational cost is

similar to that of the Hartree-Fock method. KS-DFT is based on the idea of evaluating the

kinetic energy from a Slater determinant thus assuming the electrons to be non-interacting.

This apparently crude assumption actually leads to big improvements in describing chemical

bonding compared to, for example, the use of the Thomas-Fermi kinetic energy formula-

tion. The difference between the Slater determinant kinetic energy representation and the

true one, together with the difference between the true total electronic interaction and the

exchange energies represents, in KS-DFT, the key contribution to the exchange-correlation

functional which remains, however, unknown.

In practice, the plethora of existing KS-DFT variants differentiate themselves in the way the

exchange-correlation functional is approximated. Typically it is assumed to be a functional

of the local electron density and eventually of its gradient and Laplacian. As a consequence,
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only local contributions to electronic correlation are included and this explains the general

inadequacy of DFT methods to describe dispersion interactions which, on the other hand,

have roots in long-range electronic correlation.

To retain the pleasant computational performances of KS-DFT methods, several disper-

sion corrections have been proposed.2 Among these, the popular and successful approach of

Grimme includes dispersion via empirical pairwise C6 terms.3–5 This is particularly appeal-

ing in virtue of its nearly zero additional computational cost.

A further approach is to replace the empirical pairwise terms with ones obtained from quan-

tities coupled to the molecular electron density. For example, in Becke and Johnson’s model,

pairwise C6 coefficients are written in terms of atomic polarizabilities and the averaged

exchange-hole dipoles corresponding to each of the two atoms in the pair.6,7 In the alter-

native approach proposed by Tkatchenko and Scheffler (TS),8 pairwise C6 coefficients are

instead expressed in terms of accurate free atom reference data as well as atoms-in-molecule

(AIM) polarizabilities obtained from the rescaling of the corresponding AIM volumes com-

puted via the Hirshfeld partitioning of the molecular electron density.9

One limitation of the above mentioned pairwise approaches is the impossibility of capturing

non-additive many-body dispersion (MBD) effects, which inclusion has recently been shown

important in modelling extended systems, supramolecular complexes and proteins in solu-

tions, among others.10–13

The non-additive long-range character of dispersion interactions has been modeled via a set

of coupled fluctuating dipoles14,15 (CFD) or alternatively by quantum Drude oscillators.16–19

In recent years, Tkatchenko, DiStasio Jr., Ambrosetti et al. have proposed a range-separated

many-body dispersion model based on the CFD where the self-consistent screening of a set

of atomic polarizabilities is performed (MBD@rsSCS).20,21 The MBD@rsSCS model is ap-

pealing not only for introducing non-additive many-body dispersion effects but also since

it relies, de facto, on a single range-separation parameter which is tuned according to the

choice of the exchange-correlation functional employed.
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The MBD@rsSCS keeps in fact the spirit of the TS approach where AIM polarizabilities and

van der Waals radii are obtained via the Hirshfeld partitioning of the density.

The Hirshfeld method leads to AIM densities which minimize the Kullback-Lieber divergence

corresponding to the information loss upon molecule formation where this solid mathemati-

cal condition is used as a basis for the development of new information-theoretic partitioning

methods.22

As discussed in references23,24 Hirshfeld partitioning makes its resulting AIM densities as

close as possible to the ones of the isolated atoms, consequently AIM’s properties turn out

to be as similar as possible to those of the free atoms. This is particularly evident in the

magnitude of Hirshfeld atomic charges, being too small in magnitude for reproducing the

molecular electrostatic potential (ESP) or in modeling AIM polarizabilities in ionic and co-

valent crystals where the Hirshfeld partitioning leads to unrealistically large polarizabilities

of cations which can even be found larger than those of the anions.25

The above mentioned shortcomings were ameliorated by the Iterative Hirshfeld (HI) scheme26

where the reference atomic density employed in the partitioning is constructed as a linear

combination of the two densities relative to the atomic oxidation states closest to the frac-

tional number of electrons assigned by the partitioning at a given iteration.

The ESP computed from HI atomic charges have proven to agree remarkably well with ab

initio computed reference.27 In addition, the use of HI derived AIM polarizabilities leads to

more realistic dispersion coefficients25 especially in ionic systems and adsorption phenomena

on surfaces of ionic solids where the HI scheme used within the TS dispersion model improves

interaction energies.28 HI partitioning has also been employed in the MBD@rsSCS model

replacing the original Hirshfeld scheme29 and its use in in connection to the fractionally ionic

AIM polarizabilities leads, in the just mentioned challenging systems, to reduced errors.30

Despite the improvements carried by the HI partitioning, the scheme remains affected by

a shortcoming arising from the density interpolation for negatively charged atoms as this

procedure is, for some species, ill-defined. This arises from the fact that free anions such
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as N− and O2– (or in general any doubly negative ion) are not bound and their reference

electron densities, computed at a complete basis set (CBS), result in a detached electron.

The iterative Stockholder atom (ISA) scheme, on the other hand, is not affected by this

problem as the partitioning does not require reference atomic densities computed from iso-

lated atoms at different ionic states as they are rather obtained from a spherical averaging

of the molecular density using nuclei as expansion points.31,32 The minimal basis iterative

Stockholder atom (MBISA), a variant of the ISA method, have proven successful in the

atomic polarizability rescaling approach employed by the TS scheme as well as in reproduc-

ing ab initio ESP from atomic point charges33 and for this reasons its use in connection to

the MBD@rsSCS model is particularly appealing.

AIM properties are local quantities which depend on the near chemical environment and

thus carry a certain degree of transferability. In particular, the TS polarizability rescaling

scheme (employed in the MBD@rsSCS) makes use of AIM volumes which are well suited to

be computed via deep neural network (DNN) where the environment vector associated to an

atom’s surrounding is defined within a local cutoff. The potential of deep learning in cap-

turing local atomic properties has been proved by Isayev and co-workers whose multi-output

DNN model successfully predicts AIM properties ranging from multipoles to volumes.34

In this Letter we present a hybrid DNN-aided MBD@rsSCS model (DNN-MBD) where

the AIM volumes ratio employed in the TS polarizability rescaling are generated by a deep

neural network trained on the ANI-1 data set (approximately 4.6 million structures) con-

taining MBISA AIM volumes.35

For the common S66x8 benchmark set,36 the DNN-MBD model coupled to the common

PBE/PBE0 density functionals, exhibits excellent interaction energies while completely by-

passing the electron density partitioning with a consequent computational cost reduction.

This electron density-free DNN-MBD approach employed in connection to our recently pro-

posed linear scaling stochastic MBD@rsSCS formulation,37 allows for modelling non-additive
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long-range dispersion interactions of up-to-millions atom systems at a very low computational

cost without compromising the accuracy.

We note that kernel-ridge regression approaches to model AIM polarizabilities have been

proposed in modelling dispersion interactions.38,39 This approach, however, is characterized

by a O(N2) and O(N3) scaling of the required memory and computational cost involved in

the model’s training respectively, N being the size of the data set. These non-linear scaling

prevents the applicability of kernel-ridge approaches on very large and diverse data sets,

necessary for the generation of general-purpose MBD models. Additionally, the poor scaling

with the number of processes limits its use on large systems. Here instead we generalize

the approach to model MBD interactions to a much broader class of systems thanks to the

employed model’s flexibility and broad data set, without affecting the model’s accuracy and

linear scalability.

We will, in the following, proceed by briefly recalling the key concepts of the standard

MBD@rsSCS model before introducing the DNN-MBD hybrid model and its performances.

As a starting point in this discussion, we examine the TS polarizability rescaling in Eq.(1),

where αi and Vi represent the TS static polarizability and AIM volume respectively of the

i-th atom while the zero superscript denotes free atom reference quantities.

αi =

(
Vi
V 0
i

)
α0
i (1)

The AIM volume Vi is obtained by solving the integral in Eq.(2) where ρ(r) is the Kohn-

Sham molecular electron density which, via the partitioning-specific weight function wi(r),
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is decomposed into its AIM densities {ρi(r)}.

Vi =

∫
r3ρi(r)d

3r

ρi(r) = wi(r)ρ(r)

(2)

Once the set of static AIM polarizabilities in Eq.(1) is obtained, a correspondent set of

frequency-dependent ones is generated via Eq.(3), where this time ω0
j and C0

6,j are the free

atom characteristic excitation frequency and first dispersion coefficient.

αj(iν) =
αj

1− (iν/ω0
j )

2

ω0
j =

4

3

C0
6,j(
α0
j

)2 (3)

These frequency-dependent polarizabilities are, in the MBD@rsSCS model, gathered as di-

agonal elements of the frequency-dependent superpolarizability matrix A(iν) being one of

the entries in the Dyson-like equation below which solution provides the screened super-

polarizability matrix Ā(iν).

Ā(iν) = A(iν)−A(iν)TSR(iν)Ā(iν) (4)

The TSR represents a damped dipole-dipole interaction operator applied to the Coulombic

interaction of two frequency-dependent spherical Gaussian charge distributions where its ex-

plicit expression, together with the one for A(iν), can be found in reference.37 We note here

that the Fermi damping function employed in the definition of TSR makes use of AIM van

der Waals radii which can also be obtained by a volume rescaling similarly to what discussed

for polarizabilities.8

The solution of Eq.(4) for a set of frequencies, and a consequent partial contraction of the con-

verged {Ā(iν)}, gives a set of screened frequency-dependent atomic polarizabilities {ᾱj(iν)}

which are used to approximate the Casimir-Polder integral providing screened characteristic
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excitation frequencies {ω̄j}.

C̄6,j =
3

π

∫ ∞
0

ᾱj(iν)ᾱj(iν)dν

ω̄j =
4

3

C̄6,j[
ᾱj(0)

]2 (5)

The set of screened excitation frequencies as well as the screened static atomic polarizabilities

define the MBD potential matrix shown in Eq.(6) for a general ij block. TLR represents the

range-separated damped dipole-dipole interaction matrix which explicit expression is also

found in reference.37

Vij = δijω̄
2
i + (1− δij)ω̄iω̄j

√
ᾱi(0)ᾱj(0)TLR

ij (6)

The trace of
√
V defines the interaction energy Eint of the CFDs in the system37 while its

zero-point value E0 is given by the sum of all screened excitation frequencies. Finally the

difference between Eint and E0 gives the target MBD@rsSCS energy, Eq.(7), which is coupled

to the KS-DFT one to include non-additive dispersion contributions.

EMBD = Eint − E0 =
1

2
Tr[
√
V]− 3

2

N∑
i=1

ω̄i (7)

In the original MBD@rsSCS model just briefly reviewed, EMBD is coupled to the molecular

electron density via AIM volume partitioning introduced in Eq.(2).

In this Letter instead we show that the explicit electron density partitioning can be avoided

by learning AIM volumes via a DNN model without affecting the original MBD@rsSCS

model’s accuracy.

Bereau et al. and more recently, Mulhi et al. used ML on atomic volumes inside vdW model

to capture many body effects.38,39 Both have developed a Gaussian approximation potential

(GAP) force field on TS polarizability rescaling. While GAP has shown to outperform

neural networks in predicting energies with small-sized data set, e.g few thousands of data,
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its poor computational scaling O(N3) prevents its use on very large training sets and thus to

build a general purpose MBD model40 Finally, these models are either restricted to pairwise

interactions or do not scale linearly with respect to the number of atoms as our Stochastic

reformulation of the MBD equations was introduced only recently.37

Isayev et al.34 recently extended their 5 million chemical conformations, the ANI-1 data set,

with atomic volumes computed at the ωB97x/def2-TZVPP level with MBISA partitioning.

In virtue of its size and diversity, this data set is here employed in building our DNN to be

coupled to the MBD@rsSCS model. Here we restrict ourselves to structure composed of only

C, H, N and O, thus reducing the actual data set size to 4.6 million conformations.

In the MBISA weight function wi(r), each of the reference pro-atomic densities ρ0i (r) is

expanded into mi Slater functions, mi being the number of shells of atom i placed at Ri.

wi(r) =
ρ0i (r)∑N
j=1 ρ

0
j(r)

ρ0i (r) =

mi∑
σ=1

Ni,σ

k3i,σ8π
exp

(
−‖r−Ri‖

ki,σ

) (8)

In the scheme, the population Ni,σ and width ki,σ of each shell are free-variables which are

optimized so that the loss of information upon molecule formation is minimized.33

To handle such large data set, a deep neural network is the natural choice.41 In particular,

we use as machine learning model a feed-forward DNN with the ANI-like symmetry func-

tions (SFs).42 The ANI’s SFs are a subfamily of Behler-Parinello’s ones43 which traduce an

atomic local environment i into an atomic environment vector (AEV) Gi = {GR
i , G

A
i } where

GR
i and GA

i represent its radial and angular contributions respectively. Although SFs devel-

opment is an intensive field of research and more accurate models have been developed since

(ωACSF,44 SOAP45 among others), we stick to the ANI’s original SFs as they were shown to

successfully predict complex local properties such as, in the case of AIMNET, multipoles and

volumes.34 Moreover, ANI’s SFs have the great advantage of being computationally efficient

as they rely on 2-body terms thus making the overall DNN model linear scaling with the
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system’s size.

The DNN part of the combined DNN-MBD model relies on Scikit-learn,46 PyTorch47 and

TorchAni.48 They are all included in the Tinker-HP neural network module, which imple-

mentation will be detailed in a forthcoming dedicated paper (T. Jaffrelot Inizan et al., 2022).

We kept the original ANI’s SFs parameters as we did not see major differences after tuning

them. We empirically tested multiple neural network architectures (further details are found

in the Supporting Information (SI) Figure 3) and the best performance was obtained with

5 hidden layers . The atomic element’s neural network architectures are H 160:128:96:48:1;

C 144:112:96:48:1; N 128:112:96:48:1; O 128:112:96:48:1. We observed that by adding 1

extra layer to the original ANI-1x model architecture slightly increases the performance of

the model while making it more flexible. Indeed, in the original ANI-1x model, the last

layer is composed of 96 neurons, and adding an extra 48 neurons layer may prevent loss of

information. We used the Exponential Linear Units (ELU) activation function49 while the

model’s parameters were initialized with the so-called “He” initialization and updated with

Hutter’s AdamW algorithm during the training procedure.50 Within the AdamW algorithm,

the factor was set to 0.5 and the patience to 100. The initial learning rate was set to 10−3

and the early stopping learning rate was set to 10−6. The ANI-1 dataset was shuffled and

split into training and validation set containing 80% and 20% respectively of the full dataset.

The networks were trained for 6000 epochs with a batch size of 2560.

The ANI-1 data set, upon which our DNN model is trained, consists of AIM volumes com-

puted at the ωB97x/def2-TZVPP level. The model is trained on volume ratios rather than

pure AIM volumes as the narrower distribution of the former allows for a DNN’s better

performance without the need for re-scaling. Indeed, the atomic volumes ratio for C, H,

O, N (see Figure 1 of the SI) is between 0.1 and 1.6. Free atom volumes are computed

at the same level as AIM ones. The correlation plots between the DNN model and the ab

initio validation set reference is depicted in Figure 1. The root-mean-square-error (RMSE)

and mean-absolute-error (MAE) are respectively 0.012 and 0.008 which is much less than the
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smallest value of the data set showing the good accuracy of our model. The final DNN model

and the dataset used for the training can be download directly via the Zenodo repository

located at the following address.51

Figure 1: Atomic volume correlation plot comparing the DNN prediction to DFT reference
calculations for 1/100 of the validation set. The color bar scale reflects the density of points
and correlate with the atomic volumes ratio distribution (Figure 2 of the SI).

The DNN model providing AIM volumes’ ratios is embedded in the Tinker-HP package

where our linear-scaling and embarrassingly parallel stochastic MBD@rsSCS is also imple-

mented.37

The outcoming DNN-MBD model is coupled to the common semi-local PBE52 functional as

well as its hybrid PBE0 version53 since this choices allow for comparisons with results ready

available in literature. The optimal range-separation β parameters for both the PBE+DNN-

MBD and PBE0+DNN-MBD methods are obtained by minimizing the mean absolute rel-

11



ative error (MARE) on the widely employed S66x8 benchmark set consisting of 66 dimers

placed at 8 different intermolecular distances for a total of 528 different structures where

CCSD(T) interaction energies computed at CBS are used as reference.

All DFT computations employed Jensen’s pcseg-3 basis set belonging to the family of seg-

mented polarization-consistent54 basis sets which, for DFT calculations, exhibits lower basis

set errors than other gaussian basis sets as well as higher computational efficiency at given

cardinal number as these basis sets were explicitly designed and optimized for DFT.55

Figure 2 shows the MARE as a function of the range separation parameter for PBE+DNN-

MBD and PBE0+DNN-MBD methods.

The optimal β parameters are found to be 0.75 and 0.77 for the PBE+DNN-MBD and

Figure 2: MARE (%) as a function of the range separation parameter for the PBE+DNN-
MBD and PBE0+DNN-MBD methods.

PBE0+DNN-MBD methods respectively. These values differ from the ones optimized for

the original PBE/PBE0+MBD@rsSCS models21 and this has to be addressed to the dif-

ferent partitioning scheme employed. As pointed out by Vestraelen et al.,33 AIM densities
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computed via the Hirshfeld or HI partitioning, exhibit asymmetries i.e. they are aspherical

with too much density in the bonding region. This density accumulation, relatively far away

from the atomic nucleus, leads to larger values of radial moments, thus leading to larger

AIM volumes compared to the ones obtained via the MBISA scheme (unaffected from this

asymmetry artifact) for which less screening of volume-scaled AIM quantities (smaller β) is

most likely to be needed.33

We observe, nevertheless, that both PBE0+DNN-MBD and PBE0+MBD@rsSCS methods

require a larger β parameter compared to their PBE corresponding models and this is con-

sistent with the PBE0’s improved description of short-range exchange-correlation effects due

to the fraction of exact exchange included in the functional, as discussed in reference.21

The performance of the optimized PBE/PBE0+DNN-MBD methods is compared to differ-

ent MBD models in terms of MAE and MARE for the S66x8 data set and the results are

summarized in Figure 3 where actual values are reported in Table 1.

For the benchmark set here employed, the DNN-MBD model exhibits lower (although by

a contained margin) errors both in its coupling to the PBE and PBE0 functionals com-

pared to the standard MBD@rsSCS approach based on Hirshfeld AIM volumes as well the

PBE+MBD@rsSCS/FI approach based on the fractionally ionic polarizabilities and HI AIM

volume partitioning. For both the chosen functionals, the outcoming DNN-MBD model pro-

vides a mean absolute error in the S66x8 interaction energies which is below 0.25 kcal/mol

compared to the reference CCSD(T) CBS golden standard.

To strengthen the analysis, we additionally computed the MAE and MARE for the S22 data

set57 by employing the range separation parameters previously optimized for the S66x8 set.

We can, in this way, employ the S22 set as a test set to validate our conclusions, Figure 3

(bottom) and Table 2.

Compared to the S66x8 set, the MAE and MARE values of our proposed PBE/PBE0+DNN-

MBD models are, for the S22 set, higher however this is not surprising as no β optimization

was performed this time. Let’s note that all methods present errors that are larger in the
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Figure 3: MARE (%) and MAE (kcal/mol) of PBE, PBE0, PBE+D356 and different MBD
models (MBD@rsSCS,21 MBD@rsSCS/FI30) including our DNN-MBD for the S66x8 (top)
and S22 (bottom) data sets.
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case of the S22 set compared to S66x8 (see Table 1 and Table 2). Indeed, there are reasons

for that and we can stress that the dimers employed in the S22 set are placed at equilibrium

while the S66x8 set includes out of equilibrium dimers. In our case, the DNN-MBD model

trained on S66x8, appears less biased towards equilibrium structures. Overall, as one can

see from Table 2, our DNN-MBD remains highly transferable and, with an error below 0.43

kcal/mol compared to the reference CCSD(T) CBS golden standard, outperforms previous

S22 results obtained with others methods.

Table 1: MAE (kcal/mol) and MARE(%) relative to the S66x8 data set for our DNN-based
models as well as for few other dispersion correction ones. For the MBD-based models,
the method-specific range separation parameter reported in parentheses refers to the one
optimised for the S66x6 set. MAE and MARE are computed taking revised CCSD(T) CBS
energies.

Model MAE[kcal/mol] MARE%

PBE 1.55 65
PBE0 1.48 65

PBE+D3 0.44 n.a.
PBE+MBD@rsSCS (β = 0.83) 0.32 10.6
PBE0+MBD@rsSCS (β = 0.85) 0.30 9.2

PBE+MBD@rsSCS/FI (β = 0.83) 0.28 9.0
PBE+DNN-MBD (β = 0.75) 0.25 9.0
PBE0+DNN-MBD (β = 0.77) 0.23 6.9

Table 2: MAE (kcal/mol) and MARE(%) relative to the S22 data set for our DNN-based
models as well as for few other dispersion correction ones. For the MBD-based models,
the method-specific range separation parameter reported in parentheses refers to the one
optimised for the S66x6 set. MAE and MARE are computed taking revised S22 energies
where, compared to the original paper, a larger basis set was employed.58

Model MAE[kcal/mol] MARE%

PBE 2.66 58
PBE0 2.44 55

PBE0+MBD@rsSCS (β = 0.85) 0.55 8.5
PBE+MBD@rsSCS (β = 0.83) 0.49 8.9

PBE+D3 0.48 n.a.
PBE0+DNN-MBD (β = 0.77) 0.43 5.6
PBE+DNN-MBD (β = 0.75) 0.41 6.6
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Having been trained on a large and diverse set of AIM volumes, the outcoming DNN-

MBD model inherits the strengths of the MBISA scheme discussed earlier in this Letter

while completely bypassing the explicit density partitioning with a consequent decrease of

the computational cost. We also note that the DNN model could be successfully trained with

different AIM partitioning schemes due to the locality of the target quantities (volumes).

The presented density-free DNN-SMBD model is included in the Tinker-HP package59 and

will be released with the next version of the software. There, it can benefit from the linear-

scaling embarrassingly parallel performances of our stochastic formulation (SMBD) of the

MBD key equations which remarkable computational performances have been recently dis-

cussed.37

We believe that the present DNN-SMBD model can be beneficial in applications of dispersion-

corrected DFT to large complex systems requiring an accurate yet extremely efficient inclu-

sion of MBD effects. The DNN model, by avoiding the direct solution of the KS equations

due to its electron density-free features, allows for the ready application of DNN-SMBD

approach in the development of accurate ab initio-based force fields60,61 and neural networks

methodologies.
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Caro, M. A. Machine learning force fields based on local parametrization of dispersion

interactions: Application to the phase diagram of C60. Phys. Rev. B 2021, 104, 054106.

(40) Zuo, Y.; Chen, C.; Li, X.; Deng, Z.; Chen, Y.; Behler, J.; Csányi, G.; Shapeev, A. V.;
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