
ARTICLE

Accurate deep neural network inference using
computational phase-change memory
Vinay Joshi 1,2, Manuel Le Gallo 1✉, Simon Haefeli1,3, Irem Boybat 1,4, S. R. Nandakumar 1,

Christophe Piveteau1,3, Martino Dazzi1,3, Bipin Rajendran2, Abu Sebastian 1✉ & Evangelos Eleftheriou1

In-memory computing using resistive memory devices is a promising non-von Neumann

approach for making energy-efficient deep learning inference hardware. However, due to

device variability and noise, the network needs to be trained in a specific way so that

transferring the digitally trained weights to the analog resistive memory devices will not result

in significant loss of accuracy. Here, we introduce a methodology to train ResNet-type

convolutional neural networks that results in no appreciable accuracy loss when transferring

weights to phase-change memory (PCM) devices. We also propose a compensation tech-

nique that exploits the batch normalization parameters to improve the accuracy retention

over time. We achieve a classification accuracy of 93.7% on CIFAR-10 and a top-1 accuracy

of 71.6% on ImageNet benchmarks after mapping the trained weights to PCM. Our hardware

results on CIFAR-10 with ResNet-32 demonstrate an accuracy above 93.5% retained over a

one-day period, where each of the 361,722 synaptic weights is programmed on just two PCM

devices organized in a differential configuration.

https://doi.org/10.1038/s41467-020-16108-9 OPEN

1 IBM Research - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland. 2King’s College London, Strand, LondonWC2R 2LS, UK. 3 ETH Zurich, Rämistrasse 101,

8092 Zurich, Switzerland. 4 Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne, Switzerland. ✉email: anu@zurich.ibm.com; ase@zurich.ibm.com

NATURE COMMUNICATIONS | (2020) 11:2473 | https://doi.org/10.1038/s41467-020-16108-9 | www.nature.com/naturecommunications 1

12
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-16108-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-16108-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-16108-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-16108-9&domain=pdf
http://orcid.org/0000-0001-6031-1669
http://orcid.org/0000-0001-6031-1669
http://orcid.org/0000-0001-6031-1669
http://orcid.org/0000-0001-6031-1669
http://orcid.org/0000-0001-6031-1669
http://orcid.org/0000-0003-1600-6151
http://orcid.org/0000-0003-1600-6151
http://orcid.org/0000-0003-1600-6151
http://orcid.org/0000-0003-1600-6151
http://orcid.org/0000-0003-1600-6151
http://orcid.org/0000-0002-4255-8622
http://orcid.org/0000-0002-4255-8622
http://orcid.org/0000-0002-4255-8622
http://orcid.org/0000-0002-4255-8622
http://orcid.org/0000-0002-4255-8622
http://orcid.org/0000-0002-7930-508X
http://orcid.org/0000-0002-7930-508X
http://orcid.org/0000-0002-7930-508X
http://orcid.org/0000-0002-7930-508X
http://orcid.org/0000-0002-7930-508X
http://orcid.org/0000-0001-5603-5243
http://orcid.org/0000-0001-5603-5243
http://orcid.org/0000-0001-5603-5243
http://orcid.org/0000-0001-5603-5243
http://orcid.org/0000-0001-5603-5243
mailto:anu@zurich.ibm.com
mailto:ase@zurich.ibm.com
www.nature.com/naturecommunications
www.nature.com/naturecommunications

D
eep neural networks (DNNs) have revolutionized the field
of artificial intelligence and have achieved unprecedented
success in cognitive tasks such as image and speech

recognition. Platforms for deploying the trained model of such
networks and performing inference in an energy-efficient manner
are highly attractive for edge computing applications. In parti-
cular, internet-of-things battery-powered devices and autono-
mous cars could especially benefit from fast, low-power, and
reliably accurate DNN inference engines. Significant progress in
this direction has been made with the introduction of specialized
hardware for inference operating at reduced digital precision
(4–8-bit), such as Google’s tensor processing unit1 and low-power
graphical processing units such as NVIDIA T42. While these
platforms are very flexible, they are based on architectures where
there is a physical separation between memory and processing
units. The models are typically stored in off-chip memory, leading
to constant shuttling of data between memory and processing
units, which limits the maximum achievable energy efficiency.

In order to reduce the data transfers to a minimum in inference
accelerators, a promising avenue is to employ in-memory com-
puting using non-volatile memory devices3–5. Both charge-based
storage devices, such as Flash memory6, and resistance-based
(memristive) storage devices, such as metal-oxide resistive random-
access memory7–10 and phase-change memory (PCM)11–14 are
being investigated for this. In this approach, the network weights
are encoded as the analog charge state or conductance state of these
devices organized in crossbar arrays, and the matrix-vector multi-
plications during inference can be performed in-situ in a single
time step by exploiting Kirchhoff’s circuit laws. The fact that these
devices are non-volatile (the weights will be retained when the
power supply is turned off) and have multi-level storage capability
(a single device can encode an analog range of values as opposed to
1 bit) is very attractive for inference applications. However, due to
the analog nature of the weights programmed in these devices, only
limited precision can be achieved in the matrix-vector multi-
plications and this could limit the achievable inference accuracy of
the accelerator.

One potential solution to this problem is to train the network
fully on hardware13–15, such that all hardware non-idealities
would be de facto included as constraints during training.
Another similar approach is to perform partial optimizations of
the hardware weights after transferring a trained model to the
chip9,16,17. The drawback of these approaches is that every neural
network would have to be trained on each individual chip before
deployment. Off-line variation-aware training schemes have also
been proposed, where hardware non-idealities such as device-to-
device variations18,19, defective devices19, or IR drop18 are first
characterized and then fed into the training algorithm running in
software. However, these approaches would require characteriz-
ing and training the neural network from scratch for every chip.
A more practical approach would be to have a single custom
generic training algorithm run entirely in software, which would
make the network immune to most of the hardware non-ideal-
ities, but at the same time would require only very little knowl-
edge about the specific hardware it will be deployed on. In this
way, the model would have to be trained only once and could be
deployed on a multitude of different chips. To this end, several
works have proposed to inject noise in the training algorithm to
the layer inputs20, synaptic weights21, and pre-activations22,23.
However, previous demonstrations have generally been limited to
rather simple and shallow networks, and experimental validations
of the effectiveness of the various approaches have been missing.
We are aware of one recent work that analyzed more complex
problems such as ImageNet classification23, however the hard-
ware model used was rather abstract and no experimental vali-
dation was presented.

In this work, we explore injecting noise to the synaptic weights
during the training of DNNs in software as a generic method to
improve the network resilience against analog in-memory com-
puting hardware non-idealities. We focus on the ResNet con-
volutional neural network (CNN) architecture, and introduce a
number of techniques that allow us to achieve a classification
accuracy of 93.7% on the CIFAR-10 dataset and a top-1 accuracy
of 71.6% on the ImageNet benchmark after mapping the trained
weights to PCM synapses. In contrast to previous approaches, the
noise injected during training is crudely estimated from a one-
time all-around hardware characterization, and captures the
combined effect of read and write noise without introducing
additional noise-related training hyperparameters. We validate
the training approach through hardware/software experiments,
where each of the 361,722 weights of ResNet-32 is programmed
on two PCM devices of a prototype chip, and the rest of the
network functionality is simulated in software. We achieve an
experimental accuracy of 93.75% after programming, which stays
above 92.6% over a period of 1 day. To improve the accuracy
retention further, we develop a method to periodically calibrate
the batch normalization parameters to correct the activation
distributions during inference. We demonstrate a significant
improvement in the accuracy retention with this method (up to
93.5% on hardware for CIFAR-10) compared with a simple global
scaling of the layers’ outputs, at the cost of additional digital
computations during calibration. Finally, we discuss our training
approach with respect to other methods and quantify the trade-
offs in terms of accuracy and ease of training.

Results
Problem statement. For our experiments, we consider two resi-
dual networks on two different datasets: ResNet-32 on the
CIFAR-10 dataset, and ResNet-34 on the ImageNet dataset24.
As shown in Fig. 1a, ResNet-32 consists of three different
ResNet blocks with ten 3 × 3 kernels each, and is used to classify
32 × 32-pixel RGB images that belong to one out of ten classes
(see Methods). The network contains 361,722 synaptic weights.
The ResNet-34 network used for the 1000-class ImageNet dataset
is shown in Supplementary Fig. 1. The main differences com-
pared to ResNet-32 are the number and size of the ResNet blocks,
and a larger number of input/output channels (see Methods).

The weights of all convolution layers along with the fully
connected layer of ResNet-32 can be mapped on memristive
crossbar arrays as explained in Fig. 1b25. Each synaptic weight
can be mapped on a differential pair of memristive devices that
are located on two different columns. For a given layer l, the

synaptic weight W l
ij of the (i, j)

th synaptic element is represented

by the effective synaptic conductance Gl
ij given by

Gl
ij ¼ Gl;þ

ij � Gl;�
ij ; ð1Þ

where Gl;þ
ij and Gl;�

ij are the conductance values of the two devices

forming the differential pair. Those device conductance values are
defined as the effective conductance perceived in the operation of
a non-ideal memristive crossbar array, and therefore include all
the circuit non-idealities from the crossbar and peripheral
circuitry.

The mapping between the synaptic weight W l
ij obtained after

software training and the corresponding synaptic conductance is
given by

Gl
ij ¼ W l

ij ´
Gmax

W l
max

þ δGl
ij ¼ Gl

T;ij þ δGl
ij; ð2Þ

where Gmax is the maximum reliably programmable device

conductance and W l
max is the maximum absolute synaptic weight

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16108-9

2 NATURE COMMUNICATIONS | (2020) 11:2473 | https://doi.org/10.1038/s41467-020-16108-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

value of layer l. δGl
ij represents the synaptic conductance error

from the ideal target conductance value Gl
T;ij ¼ W l

ij ´
Gmax

W l
max

. δGl
ij is

a time-varying random variable that describes the effects of non-
ideal device programming (inaccuracies associated with write)
and conductance fluctuations over time (inaccuracies associated
with read). Possible factors leading to such conductance errors
include inaccuracies in programming the synaptic conductance to

Gl
T;ij, 1/f noise from memristive devices and circuits, temporal

conductance drift, device-to-device variations, defective (stuck)
devices, and circuit non-idealities (e.g., IR drop).

Clearly, a direct mapping of the synaptic weights of a DNN
trained with 32-bit floating point (FP32) precision to the same
DNN with memristive synapses is expected to degrade the
network accuracy due to the added error in the weights arising

from δGl
ij. For existing memristive technologies, the magnitude of

δGl
ij may range from 1 to 10% of the magnitude of Gl

T;ij
11, which

in general is not tolerable by DNNs trained with FP32 without
any constrains. Imposing such errors as constraints during
training can be beneficial in improving the network accuracy. In
fact, quantization of the weights or activations26, and injecting
noise on the weights27, activations28, or gradients29 have been
widely used as DNN regularizers during training to reduce
overfitting on the training dataset30,31. These techniques can
improve the accuracy of DNN inference when it is performed
with the same model precision as during training. However,
achieving baseline accuracy while performing DNN inference on
a model which is inevitably different from the one obtained after
training, as is the case for any analog in-memory computing
hardware, is a more difficult problem and requires additional
investigations.

Although a large body of efficient techniques to train DNNs
with reduced digital precision has been reported32,33, it is unlikely
that such procedures can generally be applied as-is to analog in-

memory computing hardware due to the random nature of δGl
ij.

ResNet block 1

10 layers

ResNet block 2

10 layers

ResNet block 3

10 layers

3 × 3

16

16

3 × 3

16

16

3 × 3

3

16

3 × 3

16

16

3 × 3

16

16

3 × 3

28

28

1 × 1

16

28

1 × 1

28

56

32 × 32 × 3

CIFAR-10 image

Output channels 28K
e
rn

e
l
s
iz

e
 ×

 I
n
p
u
t
c
h
a
n
n
e
ls

3
 ×

 3
 ×

 1
6
 =

 1
4
4 W

l
21

Input activations for (l+1)th layer

Map W to G

al
1

I1 I2 I28

+ – + – + –

Crossbar of memristive devices

Gl,+
21

3 × 3

28

28

3 × 3

28

28

3 × 3

28

56

3 × 3

56

56

3 × 3

56

56

3 × 3

56

56

56 × 10
Global average

pooling Fully connected

Softmax

Kernel size

Input channels

Output channels

Digital circuitry for batch

normalization and ReLU

al
2

al
144

Gl,–
21

al+1
1 al+1

2 al+1
28

a

b

Batch normalization

parameters correction

Post training
Forward propagation

Backward propagation

 Input activations

Weight update

Memristive device

nonidealities → δWtr
l

W l = W l + δWtr
l^

W l

3 × 3

16

28

Software training with noise injection Inference using in-memory computing hardware

Convolution layer l

Kernel size 3 × 3

Input channels 16

Output channels 28

: This paper's contributions

Flatten

Fig. 1 Training and inference methodology. a ResNet-32 network architecture for CIFAR-10 image classification. The architecture of ResNet-32 used in

this study is a slightly modified version of the original implementation24 with fewer input and output channels in ResNet blocks 2 and 3. This allows each

layer to fit on a single crossbar array of size 512 × 512 in an eventual computational memory accelerator. b Training and inference of an example layer of

ResNet-32 according to the methodology proposed in this paper. Software training is performed by injecting a random noise term to the weights used

during the forward propagation, δWl
tr , which is representative of the combined read and write noise of the memristive devices used during inference (see

section Training procedure). When transferring the weights of a convolution layer to memristive crossbars for inference, they are flattened into a 2-D

matrix by collapsing each filter into a single vector programmed on a crossbar column, and stacking all filters on separate columns25. The weights are then

programmed as the differential conductance of two memristive devices. Input activations al are applied as voltages on the crossbar rows. The output

current from the column containing the G− devices is subtracted from the one from the column containing the G+ devices. The differential current output I

from the crossbar then routes to a digital circuitry that performs batch normalization and the corresponding rectified linear unit (ReLU) activation function,

in order to obtain the input activations for the next layer al+1. The final softmax activation function can be performed off-chip if required. An optional

correction of the batch normalization parameters can be periodically performed to improve the accuracy retention over time (see sections Hardware/

software inference experiment on CIFAR-10 and Adaptive batch normalization statistics update). The input image is padded with zero values at the border

to ensure that the convolution operation preserves the height and width of the image. Therefore, considering an input image of size n × n, the convolution

operation can be performed in n2 matrix-vector multiplication cycles.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16108-9 ARTICLE

NATURE COMMUNICATIONS | (2020) 11:2473 | https://doi.org/10.1038/s41467-020-16108-9 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications

Since quantization errors coming from rounding to reduced
fixed-point precision are not random, DNNs trained in this way
are not a priori expected to be suitable for deployment on analog
in-memory computing hardware. Techniques that inject random
Gaussian noise during training are a much more natural fit to
make the network robust to errors from analog in-memory
computing hardware. As early as in 1994, it was shown that
injecting noise on the synaptic weights during training enhances
the tolerance to weight perturbations of multi-layer perceptrons,
and the application of this technique to analog neural hardware
was discussed34. Recent works have also proposed to apply noise
to the layer inputs or pre-activations in order to improve the
network tolerance to hardware noise20,23. In this work, we follow
the original approach of Murray et al.34 of injecting Gaussian
noise to the synaptic weights during training. Next, we discuss
different techniques that we introduced together with synaptic
weight noise in order to improve the accuracy of inference on
ResNet and achieve close to software-equivalent accuracy after
transferring the weights to PCM hardware.

Training procedure. When performing inference with analog in-
memory computing hardware, the DNN experiences errors pri-
marily due to (i) inaccurate programming of the network weights
onto the devices (write noise) and (ii) temporal fluctuations of the
hardware weights (read noise). We can cast the effect of these

errors into a single error term δGl
ij that distorts each synaptic

weight when performing forward propagation during inference.
Hence, we propose to add random noise that corresponds to the

error induced by δGl
ij to the synaptic weights at each forward pass

during training (see Fig. 1b). The backward pass and weight
updates are performed with weights that did not experience this
noise. We found that adding noise to the weights only in the
forward propagation is sufficient to achieve close to baseline
accuracy for a noise magnitude comparable to that of our hard-
ware, and adding noise during the backward propagation did not

improve the results further. For simplicity, we assume that δGl
ij is

Gaussian distributed, which is usually the case for analog mem-
ristive hardware. Weights are linearly mapped to the entire
conductance range Gmax of the hardware, hence the standard

deviation σ lδWtr
of the Gaussian noise on weights to be applied

during training, for a layer l, can be obtained as

σ lδWtr

W l
max

� ηtr ¼
σδG
Gmax

; ð3Þ

where σδG is a representative standard deviation of the combined
read and write noise measured from hardware. During training,

the weight distribution of every layer and hence W l
max changes,

therefore σ lδWtr
is recomputed after every weight update so that ηtr

stays constant throughout training. We found this to be especially
important in achieving good training convergence with this
method.

Weight initialization can have a significant effect on DNN
training35. Two different weight initializations can lead to
completely different minima when optimizing the network
objective function. The network optimum when training with
additive noise could be closer to the FP32 training optimum than
to a completely random initialization. So it can be beneficial to
initialize weights from a pretrained baseline network and then
retrain this network by injecting noise. A similar observation was
reported for training ResNet with reduced digital precision33. For
achieving high classification accuracy in our experiments, we
found this strategy more helpful than random initialization.

The noise injected during training according to Eq. (3) is
closely related to the maximum weight of a layer, and can thus
grow uncontrollably with outlier weight values. Controlling the
weight distribution in a desirable range can improve the network
training convergence and make the mapping of weights to
hardware with limited conductance range easier. We therefore
clip the synaptic weights at layer l after every weight update in the
range ½�α ´ σW l ; α ´ σW l �, where σW l is the standard deviation of
weights in layer l and α is a tunable hyperparameter. In our
studies, α= 2.0 and α= 2.5 worked the best for ResNet-32 and
ResNet-34, respectively.

DNN convergence accuracy, in general, is sensitive to the
learning rate used during training. Since we initialize the network
parameters from a baseline network, using the same learning rate
scheduling as that of the baseline network does not guarantee
accurate convergence. To choose appropriate learning rate
scheduling for ResNet-32, we first forward propagate the training
set on the pretrained baseline network with injected synaptic
weight noise and note the resulting accuracy. We note the
learning rate evolution starting from this accuracy in the baseline
network training curve until convergence, and use the same
learning rate evolution while retraining the network by
injecting noise.

We performed simulations to characterize the inference
performance after training incorporating the injection of
Gaussian noise in conjunction with the techniques presented
above. We computed the classification accuracy for different
amounts of injected noise ηtr during training. We also show how
the accuracy is affected when the inference weights are perturbed

by a certain amount of relative noise ηinf �
σ l
δWinf

W l
max

, where σ lδW inf
is

the standard deviation of the noise injected to the weights of layer
l before performing inference on the test dataset.

The test accuracy of ResNet-32 on CIFAR-10 obtained for
different amounts of noise injected during training, without
inducing any perturbation during inference (ηinf ¼ 0), is plotted
in Fig. 2a. It can be seen that the training algorithm is able to
achieve a test accuracy close to the software baseline of 93.87%
with up to approximately ηtr ¼ 8%. The tolerance of the
networks trained with different amounts of ηtr to weight
perturbations during inference, ηinf , is shown in Fig. 2b. For a
given value of ηinf , in general, the highest test accuracy can be
obtained for the network that has been trained with a comparable
amount of synaptic weight noise, i.e. for ηtr � ηinf . The test
accuracy for ηtr ¼ ηinf is shown in Fig. 2c. It can be seen that for
up to ηinf ¼ 5%, an accuracy within 0.5% of the software baseline
is achievable. The impact of the weight initialization, clipping,
and learning rate scheduling on the accuracy is shown in
Supplementary Fig. 2. Not incorporating one of those three
techniques results in at least 1% drop in test accuracy for
ηtr ¼ ηinf ¼ 3:8%.

The top-1 accuracy of ResNet-34 on ImageNet for ηtr ¼ ηinf is
shown in Fig. 2d. Consistent with previous observations23,33, we
found that the network recovers high accuracy extremely quickly
when retraining with additive noise due to quick updates of the
batch normalization parameters (see Supplementary Note 1), and
obtained satisfactory convergence after only 8 epochs. The
accuracy on ImageNet is much more sensitive to the noise
injected during training than for CIFAR-10, and when noise is
injected on all layers, there is more than 0.5% accuracy drop from
the baseline even down to ~1.2% relative noise. In the literature,
many network compression techniques allow higher precision for
the first and last layers, which are more sensitive to noise33,36. We
applied the same simplification to our problem, which means that
we removed the noise during training on the first convolutional

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16108-9

4 NATURE COMMUNICATIONS | (2020) 11:2473 | https://doi.org/10.1038/s41467-020-16108-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

layer and the last dense layer, and performed inference with the
first and last layer without noise. The obtained accuracy after
training, by injecting the same training and inference noise as
previously, can be increased by more than 1% with this technique
(see Fig. 2d).

Weight transfer to PCM-based synapses. In order to validate the
effectiveness of the above training methodology, we performed
experiments on a prototype multi-level PCM chip comprising 1
million PCM devices fabricated in 90 nm CMOS baseline tech-
nology37. PCM is a memristive technology, which records data in
a nanometric volume of phase-change material sandwiched
between two electrodes38,39. The phase-change material is in the
low-resistive crystalline phase in an as-fabricated device. By
applying a current pulse of sufficient amplitude (typically referred
to as the RESET pulse) an amorphous region around the narrow
bottom electrode is created via a melt-quench process. The device
will be in a low conductance state if the high-resistive amorphous
region blocks the current path between the two electrodes. The
size of the amorphous region can be modulated in an almost
completely analog manner by the application of suitable electrical
pulses. Hence, a continuum of conductance values can be

programmed in a single PCM device over a range of more than
two orders of magnitude.

An optimized iterative programming algorithm was developed
to program the conductance values in the PCM devices with high
accuracy (see Methods). The experimental cumulative distribu-
tions of conductance values for 11 representative programmed
levels, measured approximately 25 s after programming, are
shown in Fig. 3a. The standard deviation of these distributions is
extracted and fitted with a polynomial function of the target
conductance (dashed lines in Fig. 3a) as shown in Fig. 3b. For all
levels, we achieve a standard deviation less than 1.2 μS, which is
more than two times lower than that reported in previous works
on nanoscale PCM arrays for a similar conductance range40,41.

We studied the impact of weight transfer to PCM synapses on
the inference accuracy of networks trained with FP32 weights, 4-
bit and ternary digital weights, and additive weight noise. The
weight transfer to PCM is simulated by mapping each trained

network weight to a synaptic conductance value Gl
ij, computed

from Eq. (2), using Gmax ¼ 25 μS and the conductance standard

deviation measured from hardware. The conductance error δGl
ij

in Eq. (2) is modeled as a Gaussian distributed random variable
with zero mean and standard deviation given by the fitted curve

0 2 4 6 8 10 12

89

90

91

92

93

94

0 2 4 6 8 10 12

93.4

93.6

93.8

94.0

94.2

0 2 4 6 8 10 12
90.5

91.0

91.5

92.0

92.5

93.0

93.5

94.0

1.0 1.5 2.0 2.5 3.0 3.5 4.0
70.0

70.5

71.0

71.5

72.0

72.5

73.0

73.5

b

C
IF

A
R

-1
0

te
s
t
a
c
c
u
ra

c
y

(%
)

Relative inference noise
inf

(%)

tr
= 2.6%

tr
= 3.77%

tr
= 5.65%

tr
= 7.53%

tr
= 11.3%

Baseline

inf
= 0

Baseline

C
IF

A
R

-1
0

te
s
t
a
c
c
u
ra

c
y

(%
)

Relative training noise
tr

(%)

a

c

Baseline

C
IF

A
R

-1
0

te
s
t
a
c
c
u
ra

c
y

(%
)

Relative noise
tr

=
inf

(%)

d

Baseline

Im
a
g
e
N

e
t
to

p
-1

a
c
c
u
ra

c
y

(%
)

Relative noise
tr

=
inf

(%)

Noise on all layers

No noise on first and last layers

Fig. 2 Impact of injecting weight noise during training and inference on network accuracy. a Test accuracy on CIFAR-10 obtained for different amounts

of relative injected weight noise during training ηtr without inducing any perturbation during inference (ηinf ¼ 0). When ηtr >8%, the training convergence

starts to become affected by the high noise and it is not possible anymore to reach the software baseline within the same number of epochs. The error bars

represent the standard deviation over 10 training runs. b Test accuracy on CIFAR-10 obtained for the networks trained with different amounts of relative

weight noise ηtr as a function of the weight noise injected during inference ηinf . In most cases, ηtr can be increased above ηinf up to a certain point and still

lead to comparable or slightly higher (within ≈0.1%) test accuracy than for ηtr ¼ ηinf . However, when ηtr becomes much higher than ηinf , the test accuracy

decreases due to the inability of the network to achieve baseline accuracy when ηtr >8%. Each data point represents the average over 10 training runs and

100 inference runs. c Test accuracy on CIFAR-10 as a function of ηtr ¼ ηinf . The error bars represent the standard deviation over 100 inference runs

averaged over 10 training runs. d Top-1 accuracy on ImageNet as a function of ηtr ¼ ηinf . The error bars represent the standard deviation over 10 inference

runs on a single training run.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16108-9 ARTICLE

NATURE COMMUNICATIONS | (2020) 11:2473 | https://doi.org/10.1038/s41467-020-16108-9 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications

of Fig. 3b for its corresponding target conductance jGl
T;ijj. This

procedure accurately reproduces the experimental conductance
values obtained when iteratively programming any conductance
level within the range of 0–25 μS. For all training schemes, only
one differential pair is used to encode a network weight, and we
do not perform any additional quantization of the weights before
mapping them to PCM conductance values.

The resulting test accuracy obtained after software training and
after weight transfer to PCM synapses for ResNet-32 on CIFAR-
10 is shown in Fig. 3c. It can be seen that the standard FP32
training without constraints performs the worst after transfer to
PCM synapses. Training with 4-bit digital weights (using the
method described in the ref. 33), which is roughly the effective
precision of our PCM devices40, improves the performance after
transfer with respect to FP32, but nevertheless the accuracy
decreases by more than 1% after transferring the 4-bit weights to
PCM. Training ternary digital weights42 leads to a lower
performance drop (<0.5%) when transferring weights to PCM,
although we were not able to reach the FP32 baseline with ternary
weights on this network. Therefore the accuracy after transfer is
worse than for the 4-bit weights. When performing training by
injecting Gaussian noise with ηtr ¼ 3:8%, corresponding to
σδG= 0.94 μS (median of the 11 values reported in Fig. 3b), the
best overall performance after transfer to PCM is obtained. The
resulting accuracy of 93.7% is less than 0.2% below the FP32
baseline. A rather broad range of values of ηtr lead to a similar
resulting accuracy (see Supplementary Fig. 3), demonstrating that

ηtr does not have to be very precisely determined for obtaining
satisfactory results on PCM. The accuracy obtained without
perturbing the weights after training by injecting noise is slightly
higher than the FP32 baseline, which could be attributed to
improved generalization resulting from the additive noise
training.

The top-1 accuracy for ResNet-34 on ImageNet after transfer
to PCM synapses for different training procedures is shown in
Fig. 3d. Training with additive noise increases the accuracy by
approximately 6% on PCM compared with FP32 and 4-bit33

training. The accuracy of 71.6% achieved with additive noise
training on PCM is significantly higher than that reported in
Fig. 2d with ηinf ¼ 3:8%, which could be attributed to a high
percentage of network weights mapped to low conductance values
with lower standard deviation than the median of 0.94 μS.

Hardware/software inference experiment on CIFAR-10. In
addition to the weight transfer simulations of the previous sec-
tion, we performed a hardware/software experiment in which all
weights of ResNet-32 were physically programmed on the PCM
chip. This allows us to address the effect of imperfect yield and
temporal conductance fluctuations on the accuracy experimen-
tally. Although we could achieve good test accuracy after weight
transfer to PCM synapses, an important challenge for any analog
in-memory computing hardware is to be able to retain this
accuracy over time. This is especially true for PCM due to the
high 1/f noise experienced in these devices as well as temporal

0 5 10 15 20 25 30

0

20

40

60

80

100

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

1.2

32-bit 4-bit Ternary Additive noise
90

91

92

93

94

95

32-bit 4-bit Additive noise
62

64

66

68

70

72

74

76

93.85 93.89

92.35

94.17

91.66

92.82

92.02

93.71
73.20 72.95

71.94

65.41 64.86

71.62

C
u
m

u
la

ti
v
e

fr
e
q
u
e
n
c
y

(%
)

Conductance (µS)

a b

Experiment

Polynomial fit

S
ta

n
d
a
rd

d
e
v
ia

ti
o
n

(µ
S

)

Target conductance (µS)

8 10 12 14 16

Conductance (µS)

c

C
IF

A
R

-1
0

te
s
t
a
c
c
u
ra

c
y

(%
)

Training schemes

d

Im
a
g
e
N

e
t
to

p
-1

a
c
c
u
ra

c
y

(%
)

Training schemes

After training

After transfer to PCM synapses

After training

After transfer to PCM synapses

Fig. 3 Impact of weight transfer to PCM synapses on inference accuracy. a Cumulative distributions of 11 representative iteratively programmed

conductance levels on 10,000 PCM devices per level. The vertical dashed lines denote the target conductance for each level. b Conductance standard

deviation of the 11 levels as a function of target conductance. The inset shows a representative conductance distribution of one level. c Test accuracy on

CIFAR-10 after software training and after weight transfer to PCM synapses for different training schemes. d Top-1 accuracy on ImageNet after software

training and after weight transfer to PCM synapses for different training schemes. The weights of all layers of ResNet-34 are transferred to PCM synapses,

including the first and the last. In c and d the error bars represent the standard deviation over 10 inference runs.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16108-9

6 NATURE COMMUNICATIONS | (2020) 11:2473 | https://doi.org/10.1038/s41467-020-16108-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

conductance drift. The conductance values in PCM drift over
time t according to the relation GðtÞ ¼ Gðt0Þðt=t0Þ

�ν , where G
(t0) is the conductance measured at time t0 after programming
and ν is the drift exponent, which depends on the device, phase-
change material, and phase configuration of the PCM (ν is higher
for the amorphous than the crystalline phase)43. In our PCM
devices, ν ≈ 0.06 on average. Therefore, it is essential to measure
experimentally how the test accuracy evolves over time during
inference with PCM.

All 361,722 synaptic weights of ResNet-32 trained with ηtr ¼
3:8% were programmed individually on two PCM devices of the

chip. Depending on the sign of Gl
T;ij, either Gl;þ

ij or Gl;�
ij was

iteratively programmed to jGl
T;ijj, and the other device was RESET

close to 0 μS with a single pulse of 450 μA amplitude and 50 ns
width. The iterative programming algorithm converged on 99.1%
of the devices programmed to nonzero conductance, and no
screening for defective devices on the chip was performed prior to
the experiments. The scatter plot of the PCM weights measured
approximately 25 s after programming versus the target weights

W l
ij is shown in Fig. 4a. After programming, the PCM analog

conductance values were periodically read from hardware over a
period of 1 day, scaled to the network weights, and reported to

the software that performed inference on the test dataset (see
Methods).

In addition to the experiment, we developed an advanced
behavioral model of the hardware in order to precisely capture
the conductance evolution over time during inference (see
Supplementary Note 2). The model is built based on an extensive
experimental characterization of the array-level statistics of
hardware noise and drift44. Conductance drift is modeled using
a Gaussian distributed drift exponent across devices, whose mean
and standard deviation both depend on the target conductance

state jGl
T;ijj. Conductance noise with the experimentally observed

1/f1.21 frequency dependence is also incorporated with a
magnitude that depends on the target conductance state and
time. The model is able to accurately reproduce both the array-
level statistics (see Fig. 4b) and individual device behavior (see
Fig. 4c) observed over the duration of the experiment. Accurate
modeling of all the complex dependencies of noise and drift as a
function of time and conductance state was found to be very
critical in being able to reproduce the experimental evolution of
the accuracy on ResNet.

The resulting accuracy on CIFAR-10 over time is shown in
Fig. 4d. The test accuracy measured 25 s after programming is
93.75%, which is very similar to the result obtained in Fig. 3c.

10
1

10
2

10
3

10
4

10
5

0

5

10

15

20

25

10
1

10
2

10
3

10
4

10
5

92.2

92.4

92.6

92.8

93.0

93.2

93.4

93.6

93.8

94.0

–0.6 –0.4 –0.2 0.0 0.2 0.4 0.6
–0.6

–0.4

–0.2

0.0

0.2

0.4

0.6

a

P
ro

g
ra

m
m

e
d

w
e
ig

h
t
in

P
C

M
c
h
ip

Target weight

10
0

10
1

10
2

10
3

10
4

10
5

C
o
u
n
ts

–20 –10 0 10 20

0

10 k

20 k

30 k

C
o

u
n

ts
Conductance error (%)

� =

4 %

G
T

= 3.6 µS

G
T

= 8.7 µS

G
T

= 14 µS

c

G
T

~ 2 µS G
T

~ 7 µS
G

T
~ 12 µS G

T
~ 22 µS

D
e
v
ic

e
c
o
n
d
u
c
ta

n
c
e

(µ
S

)

Time (s)

G
T

~ 17 µS

G
T

= 24 µS

0 5 10 15 20 25

10
0

10
2

10
4 Experiment

Model

1
0

0
,7

4
8

 s

Conductance (µS)

10
0

10
2

10
4

1
0

,1
7

2
 s

10
0

10
2

10
4

2
3

8
5

 s

10
0

10
2

10
4b

2
7

 s

Baseline

d

C
IF

A
R

-1
0

te
s
t
a
c
c
u
ra

c
y

(%
)

Time (s)

Experiment

Model

Experiment

Model

Fig. 4 Inference experiment with ResNet-32 on CIFAR-10. a Scatter plot of weights programmed in the PCM chip versus target weights obtained after

training. The inset shows the distribution of the relative error between programmed and target synaptic conductance, ðGl
ij � Gl

T;ijÞ=Gmax, and its standard

deviation σ. b Distributions of programmed devices whose target conductance fall within 0.25 μS from five representative GT values. The distributions are

shown at four different times spanning the experiment duration of one day. The filled bars are the measured hardware data, the black lines are the PCM

model. c Individual device conductance evolution over time of four arbitrarily picked devices from the chip programmed to four distinct GT values, along

with one PCM model realization for the same GT values. d Measured test accuracy over time from the weights of the PCM chip, along with the

corresponding PCM model match. A global drift compensation (GDC) procedure is performed for every layer before performing inference on the test set.

The filled areas from the PCM model correspond to one standard deviation over 25 inference runs. The baseline refers to the FP32 software accuracy of

93.87%.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16108-9 ARTICLE

NATURE COMMUNICATIONS | (2020) 11:2473 | https://doi.org/10.1038/s41467-020-16108-9 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications

However, if nothing is done to compensate for conductance drift,
the accuracy quickly decreases down to 10% (random guessing)
within approximately 1000 s. This is because the magnitude of the
PCM weights gradually reduces over time due to drift and this
prevents the activations from properly propagating throughout
the network. A simple global scaling calibration procedure can be
used to compensate for the effect of drift on the matrix-vector
multiplications performed with PCM crossbars. As proposed in
ref. 40, the summed current of a subset of the columns in the array
can be periodically read over time at a constant voltage. The
resulting total current is then divided by the summed current of
the same columns but read at time t0. This results in a single
scaling factor that can be applied to the output of the entire
crossbar in order to compensate for a global conductance shift
(see Methods and Supplementary Fig. 4). Since this factor can be
combined with the batch normalization parameters, it does not
incur any additional overhead when performing inference. This
simple global drift compensation (GDC) procedure was imple-
mented for every layer before carrying out inference on the test
set, and the results are shown in Fig. 4d. It can be seen that GDC
allows the retention of a test accuracy above 92.6% for 1 day on
the PCM chip, and effectively prevents the effect of global weight
decay over time as illustrated in Supplementary Fig. 4. A good
agreement of the accuracy evolution between model and
experiment is obtained, hence validating its use for extrapolating
results over a longer period of time and for assessing the accuracy
of larger networks that cannot fit on our current hardware.

Adaptive batch normalization statistics update. Although GDC
can compensate for a global conductance shift across the array, it
cannot mitigate the effect of 1/f noise and drift variability across
devices. From the model, we observe that 1/f noise is responsible
for the random accuracy fluctuations, whereas drift variability
and its dependence on the target conductance state cause the
monotonous accuracy decrease over time (see Supplementary
Fig. 5). In order to improve the accuracy retention further, we
propose to leverage the batch normalization parameters to correct
the activation distributions during inference such that their mean
and variance match those that were optimally learned during
training. During inference, batch normalization is performed by
normalizing the preactivations by their corresponding running
mean μ and variance σ2 computed during training. Then, scale
and shift factors (γ and β) that were learned through back-
propagation are applied to the normalized preactivations. Since γ
and β are learnable parameters, it is not desirable to change them
since it would require retraining the model on the PCM devices.
However, updating μ and σ2 is more intuitive, since the mean and
variance of the preactivations are affected by noise and drift.
Leveraging this idea, we introduce a new compensation technique
called adaptive batch normalization statistics update (AdaBS),
which improves the accuracy retention beyond GDC at the cost of
additional computations during the calibration phase.

As described in Fig. 5a, the calibration phase consists in
sending multiple mini-batches from a set of calibration images
that come from the same distribution than the images seen during
inference. In this study, we use the images from the training
dataset as calibration images. The running mean and variance of
preactivations are computed across the entire calibration dataset.
The new values of μ and σ2 computed during calibration are then
used for subsequent inference. The main advantage of this
technique is that it does not incur additional digital computations
nor weight programming during inference, because we are only
updating the batch normalization parameters μ and σ2 when the
calibration is performed. However, injecting the entire training
dataset to compute μ and σ2 in the calibration phase would bring

significant overhead. When reducing the amount of injected
images, the number of updates of the running statistics becomes
smaller, and if the momentum used for computing μ and σ2 is not
properly tuned to account for this, the network accuracy
decreases significantly. To tackle this issue, we developed a
procedure to obtain the optimal momentum as a function of the
number of mini-batches used for calibration (see Methods and
Supplementary Note 3). With this method, we were able to reduce
the number of calibration images down to 5.2% of the CIFAR-10
training dataset (2600 images) without affecting the accuracy.
With that number of images, the overhead in terms of digital
computations of the AdaBS calibration is about 52% of
performing batch normalization during inference on the whole
CIFAR-10 test set (see Supplementary Note 3). Furthermore,
AdaBS requires additional off-chip memory resources to store the
calibration images, leading to extra off-chip data transfers during
calibration (see Supplementary Note 3). It may appear cumber-
some to send so many images to the device to perform the
calibration, however since it is only performed periodically over
time when the device is idle and not every time an image is
inferred by the network, the calibration cost can be amortized.
The calibration overhead can be further reduced by using more
efficient variants of batch normalization such as the L1-norm
version (see Supplementary Note 3). Moreover, although we used
AdaBS (and GDC) to compensate solely for the drift of the PCM
devices, the same procedure can be applied to mitigate
conductance changes due to ambient temperature variations, a
critical issue for any analog in-memory computing hardware.

The resulting accuracy when performing AdaBS on ResNet-32
with hardware weights before carrying out inference on the test
set is shown in Fig. 5b. AdaBS allows to retain a test accuracy
above 93.5% over one day, an improvement of 0.9% compared
with GDC. This improvement becomes 1.8% for one year when
extrapolating the results using the PCM model. This improve-
ment results from optimally tuning scale and shift factors for each
individual column of the crossbar with AdaBS, instead of a single
scale factor for all columns in the case of GDC. Because of
this more extensive parameter optimization, AdaBS can effec-
tively compensate for drift variability and, more generally,
random conductance variations across devices (see Supplemen-
tary Figs. 5–6).

We also applied AdaBS on the ImageNet classification task
with ResNet-34, trained with ηtr ¼ 3:8%, using the PCM model
to simulate the weight evolution for one year. By applying the
same AdaBS method as for CIFAR-10 using only 0.1% of the
ImageNet training dataset for calibration (1300 images), the
accuracy after one year is increased by 7% compared with GDC
when all layers are implemented with PCM synapses (see Fig. 5c).
When the first and last layers are implemented in digital FP32,
the initial accuracy increases to 71.9% and the retention is
significantly improved. This technique, combined with AdaBS,
allows the retention of an accuracy above 71% for one year.
Drawbacks in efficiency when performing inference on hardware
in this way have to be mentioned, but they stay limited given the
small number of parameters and input size of the first and last
layers (the first and last layers contain less than 3% of the network
weights and are responsible for about 3.12% of the multiply-and-
accumulate operations during inference with ResNet-34).

Discussion
Combined together, the strategies developed in this study allow us
to achieve the highest accuracies reported so far with analog
resistive memory on the CIFAR-10 and ImageNet benchmarks
with residual networks close to their original implementation24.
Although there is still room for improvement especially on

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16108-9

8 NATURE COMMUNICATIONS | (2020) 11:2473 | https://doi.org/10.1038/s41467-020-16108-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

ImageNet, those accuracies are already comparable or higher than
those reported on ternary weight networks42, for example 71.6%
top-1 accuracy of ResNet-34 on ImageNet with first layer in
FP3245. Importantly, the accuracies we report are achieved with
just two nanoscale PCM devices encoding the value of a weight. A
common approach that could improve the accuracy further is to
use multiple devices to encode different bits of a weight3,41, at the
expense of area and energy penalty, and additional support
required by the peripheral circuitry. Aligned with previous
observations23,33, we notice that retraining ResNet with additive
noise results mainly in adapting the batch normalization para-
meters, whereas the weights stay close to the full-precision
weights trained without noise. Hence, retraining by injecting
noise from a pretrained baseline network rather than from
scratch is very effective since the network recovers high accuracy
very quickly, especially for ImageNet. Although our experiments
are not done on a fully-integrated chip that supports all functions
of deep learning inference, the most critical effects of array-level
variability, noise, and drift, are fully accounted for because each
weight of the network is programmed on individual PCM devices
of our array. Aspects of a fully-integrated chip that are not
entirely captured in our experiments such as IR drop and

additional circuit nonidealities such as offsets and noise have been
studied in previous works and could be mitigated by additional
retraining methods18,20. Experiments on fully-integrated mem-
ristor chips could be used to faithfully quantify their impact on
the inference accuracy7,9,46. With respect to device yield, addi-
tional simulations showed that additive noise training also helps
to mitigate the impact of devices stuck at low or high conductance
on the inference accuracy (see Supplementary Fig. 7). Additional
errors due to quantization coming from the crossbar data con-
verters are analyzed further below.

There exist many different methods of training a neural net-
work with noise that aim to improve the resilience of the model to
analog mixed-signal hardware. These include injecting additive
noise on the inputs of every layer20, on the preactivations22,23, or
just adding noise on the input data47. Moreover, injecting mul-
tiplicative Gaussian noise to the weights34 (σ lδWtr;ij

/ jW l
ijj) is also

defensible regarding the observed noise on the hardware. We
analyzed the four aforementioned methods, attempting to reach
the same accuracy demonstrated previously after weight transfer
to PCM devices, to identify their possible benefits and drawbacks
(see Supplementary Note 4). We found that it is possible to adjust
the training procedure of all four methods to achieve a similar

AdaBS calibration:
compute � and �2

At the end of calibration phase

update � and �2

n input mini-batches of activations
from n distinct randomly sampled
mini-batches from the training set

X1XnLayer input

Crossbar
array

of l th layer

Batch norm.

�, �2, �, �

ReLU

Crossbar
array

of l th layer

Inference phase Calibration phase

Batch norm.
�B, �B

2, �, �

ReLU

a

To next layer

To next layer

10
1

10
2

10
3

10
4

10
5

10
6

10
7

90.5

91.0

91.5

92.0

92.5

93.0

93.5

94.0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

60

62

64

66

68

70

72

74
Baseline

b

C
IF

A
R

-1
0
 t
e
s
t
a
c
c
u
ra

c
y
 (

%
)

Time (s)

Model (GDC)

Model (AdaBS)

Experiment (AdaBS)

Baseline

c

Im
a
g
e
N

e
t
to

p
-1

 a
c
c
u
ra

c
y
 (

%
)

Time (s)

Model (GDC); All-PCM

Model (AdaBS); All-PCM

Model (GDC); First and last layers in FP32

Model (AdaBS); First and last layers in FP32

Fig. 5 Adaptive batch normalization statistics update with PCM synapses. a The AdaBS calibration procedure consists in updating the running mean μ

and variance σ2 parameters of the batch normalization performed in the digital unit of the in-memory computing hardware. The calibration is performed

periodically when the device is idle, and after calibration the values of μ and σ2 of every layer are updated for subsequent inference. Note that during the

calibration phase, batch normalization is performed using the mini-batch mean μB and variance σ2B instead of μ and σ2 (see Methods and Supplementary

Note 3). b Test accuracy of ResNet-32 on CIFAR-10 with GDC and AdaBS using the PCM model, along with experimental test accuracy obtained by

applying AdaBS on ResNet-32 with the measured weights from the PCM chip. The filled areas from the PCM model correspond to one standard deviation

over 25 inference runs. c Top-1 accuracy of ResNet-34 on ImageNet with GDC and AdaBS computed using the PCM model. Implementations using PCM

synapses for all layers as well as first and last layers in digital FP32, and PCM synapses for all other layers, are shown. In the latter, no noise is applied on

the first and last layers during training. The filled areas correspond to one standard deviation over 10 inference runs. In b and c the baseline refers to the

FP32 software accuracy.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16108-9 ARTICLE

NATURE COMMUNICATIONS | (2020) 11:2473 | https://doi.org/10.1038/s41467-020-16108-9 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications

accuracy on CIFAR-10 after transferring the weights to PCM
synapses. Somewhat surprisingly, even adding noise on the input
data during training, which is just a simple form of data aug-
mentation, leads to a model which is more resilient to weight
perturbations during inference. This shows that it is not necessary
to train a model with very complicated noise models that imitate
the observed hardware noise precisely. As long as the data pro-
pagated through the network is corrupted by a Gaussian noise of
the right magnitude, the model is expected to be robust to
mapping on PCM devices. However, all four methods require one
or multiple noise scaling factor hyperparameters to tune in order
to reach satisfactory accuracy after transfer to PCM. In contrast,
our proposed methodology estimates the additive noise to inject
on the weights, ηtr, from a simple hardware characterization,
avoiding any hyperparameter search for noise scaling factors. The
value of ηtr does not have to be very precise either, because there
are a range of values that lead to similar accuracy after transfer to
PCM (see Supplementary Fig. 3). Moreover, we found that
injecting noise on weights achieves better accuracy retention over
time (see Supplementary Note 4), which suggests that weight
noise mimics the behavior of the PCM hardware better.

A critical issue for in-memory computing hardware is the need
for digital-to-analog (analog-to-digital) conversion every time
data goes in (out) of the crossbar arrays. These data conversions
lead to quantization of the activations and preactivations,
respectively, which introduce additional errors in the forward
propagation. Based on a recent ADC survey23, 8-bit data con-
version is a good tradeoff between precision and energy con-
sumption. Hence, we analyzed the effect of quantizing the input
and output of every layer of ResNet-32 and ResNet-34 to 8-bit on
the inference accuracy. We set the input/output quantization
ranges to the 99.995th percentile of the activation/preactivation
distributions that are obtained when forward propagating 10 k
randomly sampled images from the training dataset through the
baseline network. As shown in Supplementary Fig. 8, even though
the 8-bit quantization is not included in our training algorithm,
the quantization has a minimal effect on the mean accuracy of
ResNet-32 on CIFAR-10 (<0.05% drop) and ResNet-34 on Ima-
geNet (<0.15% drop) after weight transfer to PCM synapses. The
accuracy evolution over time, retaining the same quantization
ranges, does not degrade significantly further and stays well
within one standard deviation of that obtained without quanti-
zation. The small accuracy deviations could be potentially over-
come by including the quantization in the retraining process,
which will likely be necessary if less than 8-bit resolution is
desired for higher energy efficiency.

Although a computational memory accelerates the matrix-
vector multiplication operations in a DNN, communicating
activations between computational memory cores executing dif-
ferent layers can become a bottleneck. This bottleneck depends
upon two factors, (i) the way different layers are connected to
each other and (ii) the latency of the hardware implementation to
transfer activations from one core to another. Designing optimal
interconnectivity between the cores for state-of-the-art deep
CNNs is an open research problem. Indeed, having the network
weights stationary during execution in a computational memory
puts limits on what portion of the computation can be forwarded
to different cores. This ultimately results in long-established
hardware communication fabrics being ill-fit for the task. One
topology for communication fabrics that is well-suited for com-
putational memory is proposed by Dazzi et al.48. It is based on a 5
parallel prism (5PP) graph topology and facilitates inter-layer
pipelined execution of CNNs3. The proposed 5PP topology allows
the mapping of all the primary connectivities of state-of-the-art
neural networks, including ResNet, DenseNet and Inception-style
networks48. As discussed in ref. 48, the ResNet-32 implementation

with 5PP can result in potentially 2× improvement in pipeline
stage latency with similar bandwidth requirements compared
with a standard 2D-mesh. Assuming that each layer is mapped
onto a crossbar of size 512 × 512 having a computational cycle
time of 100 ns, 8-bit activations, communication links with data
rate of 5Gbps49, and a pipeline scheme identical to that proposed
in ref. 3, a single image inference latency of 52 μs and frame rate
of 38,600 frames per second (FPS) for ResNet-32 on CIFAR-10 is
estimated. The energy efficiency of a computational PCM core of
this size implementing a layer of ResNet-32 is estimated to be
11.9 TOPS W−1 (tera operations per seconds per watt), with an
area expenditure of approximately 0.57 mm2 (see Supplementary
Note 5). As an approximate comparison, YodaNN50, a digital
DNN inference accelerator for binary weight networks with ultra-
low power budget, achieves 434.8 FPS in high throughput mode
for a 9-layer CNN (BinaryConnect51) on CIFAR-10. Although
not a direct comparison, the proposed topology and pipelined
execution of ResNet-32 could result in 88× speedup, with a
deeper network than the digital solution.

In summary, we introduced strategies for training ResNet-type
CNNs for deployment on analog in-memory computing hard-
ware, as well as improving the accuracy retention on such
hardware. We proposed to inject noise to the synaptic weights
in proportion to the combined read and write conductance noise
of the hardware during the forward pass of training. This
approach combined with judicious weight initialization, clipping,
and learning rate scheduling, allowed us to achieve an accuracy of
93.7% on the CIFAR-10 dataset and a top-1 accuracy on the
ImageNet benchmark of 71.6% after mapping the trained weights
to analog PCM synapses. Our methods introduce only a single
additional hyperparameter during training, the weight clip scale
α, since the magnitude of the injected noise can be easily deduced
from a one-time hardware characterization. After programming
the trained weights of ResNet-32 on 723,444 PCM devices of a
prototype chip, the accuracy computed from the measured
hardware weights stayed above 92.6% over a period of 1 day,
which is to the best of our knowledge the highest accuracy
experimentally reported to-date on the CIFAR-10 dataset by any
analog resistive memory hardware. A global scaling procedure
was used to compensate for the conductance drift of the PCM
devices, which was found to be critical in improving the accuracy
retention. However, global scaling could not mitigate the effect of
1/f noise and drift variability across devices, which led to accuracy
fluctuations and monotonous accuracy decrease over time,
respectively. Periodically calibrating the batch normalization
parameters before inference allowed to partly alleviate those
issues at the cost of additional digital computations, increasing
the 1-day accuracy to 93.5% on hardware. These results
demonstrate the feasibility of realizing accurate inference on
complex DNNs through analog in-memory computing using
existing PCM devices.

Methods
Experiments on PCM hardware platform. The experimental platform is built
around a prototype PCM chip that comprises 3 million PCM devices. The PCM
array is organized as a matrix of word lines (WL) and bit lines (BL). In addition to
the PCM devices, the prototype chip integrates the circuitry for device addressing,
and for write and read operations. The PCM chip is interfaced to a hardware
platform comprising a field programmable gate array (FPGA) board and an
analog-front-end (AFE) board. The AFE board contains the digital-to-analog
converters, and provides the power supplies as well as the voltage and current
reference sources to the PCM chip. The FPGA board implements the data
acquisition and the digital logic to interface with the PCM device under test and
with all the electronics of the AFE board. The FPGA board is also used to
implement the overall system control and data management as well as the interface
with the host. The experimental platform is operated from a host computer, and a
Matlab environment is used to coordinate the experiments.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16108-9

10 NATURE COMMUNICATIONS | (2020) 11:2473 | https://doi.org/10.1038/s41467-020-16108-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

The PCM devices are integrated into the chip in 90-nm CMOS technology
using the key-hole process described in the ref. 52. The phase-change material is
doped Ge2Sb2Te5. The bottom electrode has a radius of ~20 nm and a height of
~50 nm. The phase-change material is ~100 nm thick and extends to the top
electrode, whose radius is ~100 nm. All experiments performed in this work are
done on an array containing 1 million devices accessed via transistors, which is
organized as a matrix of 512 WL and 2048 BL.

A PCM device is selected by serially addressing a WL and a BL. To read a PCM
device, the selected BL is biased to a constant voltage (300 mV) by a voltage
regulator via a voltage generated off chip. The sensed current is integrated by a
capacitor, and the resulting voltage is then digitized by the on-chip 8-bit cyclic
analog-to-digital converter (ADC). The total duration of applying the read pulse
and converting the data with the ADC is 1 μs. The readout characteristic is
calibrated via on-chip reference polysilicon resistors. To program a PCM device, a
voltage generated off chip is converted on chip into a programming current. This
current is then mirrored into the selected BL for the desired duration of the
programming pulse.

Iterative programming involving a sequence of program-and-verify steps is used
to program the PCM devices to the desired conductance values53. The devices are
initialized to a high-conductance state via a staircase-pulse sequence. The sequence
starts with a RESET pulse of amplitude 450 μA and width 50 ns, followed by six
pulses of amplitude decreasing regularly from 160 to 60 μA and with a constant
width of 1000 ns. After initialization, each device is set to a desired conductance
value through a program-and-verify scheme. The conductance of all devices in the
array is read five times consecutively at a voltage of 0.3 V, and the mean
conductance of these reads is used for verification. If the read conductance of a
specific device does not fall within 0.25 μS from its target conductance, it receives a
programming pulse where the pulse amplitude is incremented or decremented
proportionally to the difference between the read and target conductance. The
pulse amplitude ranges between 80 and 400 μA, and the pulse width is 1000 ns.
This program-and-verify scheme is repeated for a maximum of 55 iterations.

In the hardware/software inference experiments, the analog conductance values

of the PCM devices encoding the network weights, Gl;þ
ij and Gl;�

ij , are serially read

individually with the 8-bit on-chip ADC at predefined timestamps spaced over a
period of one day. The read conductance values at every timestamp are reported to
a TensorFlow-based software. This software performs the forward propagation of
the CIFAR-10 test set on the weights read from hardware and computes the
resulting classification accuracy. The drift compensation techniques, GDC and
AdaBS, are performed entirely in software at every timestamp based on the
conductance values read from hardware.

PCM-based deep learning inference simulator. We developed a simulation
framework to test the efficacy of DNN inference using PCM devices. We chose
Google’s TensorFlow54 deep learning framework for the simulator development.
The large library of algorithms in TensorFlow enables us to use native imple-
mentation of required activation functions and batch normalization. Moreover, any
regular TensorFlow code of a DNN can be easily ported to our simulator. As shown
in Supplementary Fig. 9, custom made TensorFlow operations are implemented
that generate PCM conductance values from the behavioral model of hardware
PCM devices that was developed (see Supplementary Note 2). All the nonidealities
including conductance range, programming noise, read noise, and conductance
drift are implemented in TensorFlow following the equations shown in Supple-
mentary Note 2. The simulator can also take the PCM conductance data measured
from hardware as input, in order to perform inference on the hardware data. Data
converters that simulate digital quantization of data at the input and output of
crossbars are also implemented with tunable quantization ranges and precision. In
this study, the data converters were turned off for all simulations except those
presented in Supplementary Fig. 8. The drift correction techniques are imple-
mented post quantization of the crossbar output.

Implementation of ResNet-32 training on CIFAR-10. ResNet-32 has 31 con-
volution layers with 3 × 3 kernels, 2 convolution layers with 1 × 1 kernels, and a
final fully-connected layer. The network contains 361,722 synaptic weights. It
consists of three different ResNet blocks with 10 3 × 3 kernels each. After the first
convolution layer, there is a unity residual feed forward connection after every two
convolution layers, except the 1 × 1 residual convolution connection to make
output channels compatible between two layers. Each convolution layer is followed
by batch normalization55. ReLU activation is used after every batch normalization
except in case of residual connections, where the ReLU activation is computed after
summation. Each residual connection with 1 × 1 convolution and first layer of
ResNet blocks 2, 3 downsample the input by using a stride of 2 pixels. The 8 ×
8 output of the last convolution layer is then downsampled to 1 × 1 resolu-
tion using global average pooling56, which is followed by a single fully-connected
layer. For the last fully-connected layer, no batch normalization is performed. The
architecture of ResNet-32 used in this study is a slightly modified version of the
original implementation24 with fewer input and output channels in ResNet blocks
2 and 3. This network is trained on the well-known CIFAR-10 classification
dataset57. It has 32 × 32 pixels RGB images that belong to one of the ten classes.

The network is trained on the 50,000 images of the training set, and evaluation
is performed on the 10,000 images of the test set. The training is performed using

stochastic gradient descent with a momentum of 0.9. The network objective is
categorical cross entropy function over ten classes of the input image. Learning rate
scheduling is performed to reduce learning rate by 90% at every 50th training
epoch. The initial learning rate for the baseline network is 0.1 and training
converges in 200 epochs with a mini-batch size of 128. Weights of all convolution
and fully connected layers of the baseline network are initialized using He
Normal35 initialization. The baseline network is retrained by injecting Gaussian
noise for up to 150 epochs with weight clip scale α = 2. We preprocess the training
images by randomly cropping a 32 × 32 patch after padding 2 pixels along the
height and width of the image. We also apply a random horizontal flip on the
images from the train set. Additionally, we apply cutout58 on the training set
images. For both training and test set, we apply channel wise normalization for
0 mean and unit standard deviation.

Implementation of ResNet-34 training on ImageNet. The architecture of the
ResNet-34 network for ImageNet classification is derived from ref. 24. It has 32
convolution layers with 3 × 3 kernels, 3 convolution layers with 1 × 1 kernels, a first
convolution layer with 7 × 7 kernels and a final fully-connected layer. The network
has 21,797,672 synaptic weights. The first convolution layer downsamples the input
by using a stride of 2 pixels, followed by a maxpooling layer with kernel size of
3 × 3 and stride of 2 to downsample the feature maps to the resolution of 56 × 56
pixels. Each residual connection with 1 × 1 convolution and first layer of ResNet
blocks 2, 3, 4 downsample the input by using a stride of 2 pixels. A global average
pooling layer before the final fully-connected layer downsamples the 7 × 7 input to
1 × 1 resolution. The final fully-connected layer computes the output prediction
corresponding to 1000 classes.

We trained ResNet-34 on the ImageNet59 dataset. The ImageNet dataset has
1.3 M images in the training set and 50 k images in the test set. Images in the
ImageNet dataset are preprocessed by following the same preprocessing steps as
that of the Pytorch baseline model. Training images are randomly cropped to a
224 × 224 patch and then random horizontal flip is applied on the images. Channel
wise normalization is performed on the images in both training and test set for 0
mean and unit standard deviation. Only for the test set, images are first resized to
256 × 256 using bilinear interpolation method and then a center crop is performed
to obtain the 224 × 224 image patch.

The network objective function is softmax cross entropy on network output and
corresponding 1000 labels. The network objective is minimized using the stochastic
gradient descent algorithm with a momentum of 0.9. We obtained our baseline
network architecture and its parameters from the Pytorch model zoo (https://
pytorch.org/docs/stable/torchvision/models.html). We use this network to perform
additive noise training by injecting Gaussian noise for a total of 10 training epochs.
In contrast to ResNet-32 on CIFAR-10, no learning rate scheduling was performed
since the network was trained only for 10 epochs with additive noise. We use mini-
batch size of 400 and learning rate of 0.001 for the additive noise training
simulations. We also use L2 weight decay of 0.0001 and weight clip scale of α = 2.5
for the additive noise training.

Global drift compensation (GDC) method. The GDC40 calibration phase consists
of computing the summed current of L columns in each array encoding a network
layer (see Supplementary Fig. 4). Those L columns contain devices initially pro-
grammed to known conductance values Gmn(t0). By reading those column currents,
Im, periodically with applied voltage Vcal on all N rows, we can compensate for a
global conductance shift in the array during inference. When input data is pro-
cessed by the crossbar during inference, the crossbar output can be scaled by 1=α̂,
where

α̂ ¼

PL
m¼1 Im

Vcal

PN
n¼1

PL
m¼1 Gmnðt0Þ

:

This procedure is especially simple because L can be chosen to be small, enough to
get sufficient statistics. Moreover, α̂ is computed from the device data itself, without
resorting to any assumption on how the conductance changes nor requiring extra

timing information60. The term Vcal

PN
n¼1

PL
m¼1 Gmnðt0Þ needs to be computed

only once, stored in the digital memory of the chip, and is reused for all calibra-
tions. Reading the subset of L columns of the crossbar can be done while the PCM
array is idle, i.e., when there are no incoming images to be processed by the device.
Performing the L current summations can be implemented either with on-chip
digital circuitry or in the control unit of the chip. At the end of the calibration
phase, 1=α̂ is computed and stored locally in digital unit of the crossbar. The output
scaling by 1=α̂ during inference can be combined with batch normalization because
it is a linear operation. In our experiments, the calibration procedure was per-
formed using all columns of each layer (e.g., L is equal to two times number of
output channels) every time before inference is performed on the whole test set.

Adaptive batch normalization statistics update (AdaBS) technique. Batch
normalization is performed differently in the training and inference phases of a
DNN. During the training of a DNN, the input to the batch normalization
operation xi is normalized to zero mean and unit variance by computing its mean

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16108-9 ARTICLE

NATURE COMMUNICATIONS | (2020) 11:2473 | https://doi.org/10.1038/s41467-020-16108-9 | www.nature.com/naturecommunications 11

https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html
www.nature.com/naturecommunications
www.nature.com/naturecommunications

(μB) and variance (σ2B) over a mini-batch of m images

μB ¼
1

m

X

m

i¼1

xi ð4Þ

σ2B ¼
1

m

X

m

i¼1

xi � μB
� �2

: ð5Þ

The normalized input is then scaled and shifted by γ and β. During the training
phase, γ and β are learned through backpropagation. In parallel, a global running
mean (μ) and variance (σ2) are computed by exponentially averaging μB and σ2B
respectively, over all the training batches

μ ¼ p � μþ ð1� pÞ � μB ð6Þ

σ2 ¼ p � σ2 þ ð1� pÞ � σ2B; ð7Þ

where p is the momentum. After training, the estimates of the global mean and
variance μ and σ2 are then used during the inference phase. When performing
forward propagation during inference, the batch normalization coefficients μ, σ2, γ,
and β are used for normalization, scale, and shift.

The calibration phase of AdaBS consists in recomputing and updating μ and σ2

for every layer where batch normalization is present. We recompute μ and σ2 by
feeding a randomly sampled set of mini-batches from the training dataset. In
recomputing μ and σ2, hyper-parameters such as mini-batch size (m) and
momentum (p) need to be carefully tuned to achieve the best network accuracy.

For AdaBS calibration, we observed that using an optimal value of the
momentum is necessary to achieve good inference accuracy evolution over time.
For this, we have developed an algorithm to estimate the optimal value of
momentum by an empirical analysis, which is explained in Supplementary Note 3.
Based on this analysis, the formula we used to compute the optimal momentum as
a function of the number of injected mini-batches n is

p ¼ 0:015ð1=nÞ: ð8Þ

Using Eq. (8) to compute the momentum, we found that with a fixed mini-batch
size of m = 200 images, it is sufficient to inject n = 13 mini-batches for the AdaBS
calibration of the ResNet-32 network, that is approximately 5% of the CIFAR-10
training set (2600 images). The sensitivity of the accuracy to the number of images
used for AdaBS calibration is shown in Supplementary Note 3. For ResNet-34 on
ImageNet, we used mini-batch size of m = 50 and n = 26 mini-batches, that is
0.1% of the ImageNet training set (1300 images). In the experiments presented in
Fig. 5, AdaBS calibration was performed for every layer before performing
inference on the test set, except the last layer because it does not have batch
normalization.

Data availability
The data that support the findings of this study are available from the corresponding

authors upon request.

Code availability
The code used to generate the results of this study is proprietary to IBM.

Received: 1 November 2019; Accepted: 3 April 2020;

References
1. Jouppi, N. P. et al. In-datacenter performance analysis of a tensor processing

unit. In 2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA) 1–12 (IEEE, 2017).

2. Jia, Z., Maggioni, M., Smith, J. & Scarpazza, D. P. NVidia turing T4 GPU via
microbenchmarking. Preprint at https://arxiv.org/abs/1903.07486 (2019).

3. Shafiee, A. et al. ISAAC: A convolutional neural network accelerator with in-
situ analog arithmetic in crossbars. In 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA) 14–26 (IEEE,
2016).

4. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory
devices and applications for in-memory computing. Nat. Nanotechnol. https://
doi.org/10.1038/s41565-020-0655-z (2020).

5. Wang, Z. et al. Resistive switching materials for information processing. Nat.
Rev. Mater. 5, 173–195 (2020).

6. Merrikh-Bayat, F. et al. High-performance mixed-signal neurocomputing with
nanoscale floating-gate memory cell arrays. IEEE Trans. Neural Netw. Learn.
Syst. 29, 4782–4790 (2018).

7. Chen, W.-H. et al. CMOS-integrated memristive non-volatile computing-in-
memory for AI edge processors. Nat. Electron. 2, 420–428 (2019).

8. Hu, M. et al. Memristor-based analog computation and neural network
classification with a dot product engine. Adv. Mater. 30, 1705914
(2018).

9. Yao, P. et al. Fully hardware-implemented memristor convolutional neural
network. Nature 577, 641–646 (2020).

10. Yin, S. et al. Monolithically integrated RRAM- and CMOS-based in-memory
computing optimizations for efficient deep learning. IEEE Micro 39, 54–63
(2019).

11. Le Gallo, M. et al. Mixed-precision in-memory computing. Nat. Electron. 1,
246–253 (2018).

12. Boybat, I. et al. Neuromorphic computing with multi-memristive synapses.
Nat. Commun. 9, 2514 (2018).

13. Ambrogio, S. et al. Equivalent-accuracy accelerated neural-network training
using analogue memory. Nature 558, 60–67 (2018).

14. Nandakumar, S. R. et al. Mixed-precision deep learning based on
computational memory. Front. Neurosci. 14, 406 (2020).

15. Nandakumar, S. R. et al. Mixed-precision architecture based on computational
memory for training deep neural networks. In International Symposium on
Circuits and Systems (ISCAS) 1–5 (IEEE, 2018).

16. Mohanty, A. et al. Random sparse adaptation for accurate inference with
inaccurate multi-level RRAM arrays. In 2017 IEEE International Electron
Devices Meeting (IEDM) 6–3 (IEEE, 2017).

17. Gonugondla, S. K., Kang, M. & Shanbhag, N. R. A variation-tolerant in-
memory machine learning classifier via on-chip training. IEEE J. Solid-State
Circuits 53, 3163–3173 (2018).

18. Liu, B. et al. Vortex: variation-aware training for memristor X-bar. In Proc. of
the 52nd Annual Design Automation Conference 1–6 (ACM, 2015).

19. Chen, L. et al. Accelerator-friendly neural-network training: Learning
variations and defects in RRAM crossbar. In Proc. of the Conference on Design,
Automation & Test in Europe 19–24 (European Design and Automation
Association, 2017).

20. Moon, S., Shin, K. & Jeon, D. Enhancing reliability of analog neural network
processors. IEEE Trans. Very Large Scale Integr. Syst. 27, 1455–1459 (2019).

21. Miyashita, D., Kousai, S., Suzuki, T. & Deguchi, J. A neuromorphic chip
optimized for deep learning and CMOS technology with time-domain analog
and digital mixed-signal processing. IEEE J. Solid State Circuits 52, 2679–2689
(2017).

22. Klachko, M., Mahmoodi, M. R. & Strukov, D. Improving noise tolerance of
mixed-signal neural networks. In International Joint Conference on Neural
Networks (IJCNN) 1–8 (IJCNN, 2019).

23. Rekhi, A. S. et al. Analog/mixed-signal hardware error modeling for deep
learning inference. In Proc. of the 56th Annual Design Automation
Conference 81:1–81:6 (ACM, 2019).

24. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image
recognition. In Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition 770–778 (IEEE, 2016).

25. Gokmen, T., Onen, M. & Haensch, W. Training deep convolutional neural
networks with resistive cross-point devices. Front. Neurosci. 11, 1–22 (2017).

26. Merolla, P., Appuswamy, R., Arthur, J., Esser, S. K. & Modha, D. Deep neural
networks are robust to weight binarization and other non-linear distortions.
Preprint at https://arxiv.org/abs/1606.01981 (2016).

27. Blundell, C., Cornebise, J., Kavukcuoglu, K. & Wierstra, D. Weight uncertainty
in neural networks. In Proc. of the 32nd International Conference on Machine
Learning, Vol. 37 of ICML’15 1613–1622 (JMLR.org, 2015).

28. Gulcehre, C., Moczulski, M., Denil, M. & Bengio, Y. Noisy activation
functions. Proc. 33rd Int. Conf. Mach. Learn. 48, 3059–3068 (2016).

29. Neelakantan, A. et al. Adding gradient noise improves learning for very deep
networks. Preprint at https://arxiv.org/abs/1511.06807 (2015).

30. An, G. The effects of adding noise during backpropagation training on a
generalization performance. Neural Comput. 8, 643–674 (1996).

31. Jim, K., Horne, B. G. & Giles, C. L. Effects of noise on convergence and
generalization in recurrent networks. In Proc. of the 7th International
Conference on Neural Information Processing Systems 649–656 (MIT Press,
1994).

32. Gupta, S., Agrawal, A., Gopalakrishnan, K. & Narayanan, P. Deep learning
with limited numerical precision. In Proc. of the 32nd International Conference
on Machine Learning (ICML-15) 1737–1746 (PMLR, 2015).

33. McKinstry, J. L. et al. Discovering low-precision networks close to full-
precision networks for efficient embedded inference. Preprint at https://arxiv.
org/abs/1809.04191 (2018).

34. Murray, A. F. & Edwards, P. J. Enhanced MLP performance and fault
tolerance resulting from synaptic weight noise during training. IEEE Trans.
Neural Netw. 5, 792–802 (1994).

35. He, K., Zhang, X., Ren, S. & Sun, J. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In IEEE International
Conference on Computer Vision (ICCV) 1026–1034 (IEEE, 2015).

36. Rastegari, M., Ordonez, V., Redmon, J. & Farhadi, A. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16108-9

12 NATURE COMMUNICATIONS | (2020) 11:2473 | https://doi.org/10.1038/s41467-020-16108-9 | www.nature.com/naturecommunications

https://arxiv.org/abs/1903.07486
https://doi.org/10.1038/s41565-020-0655-z
https://doi.org/10.1038/s41565-020-0655-z
https://arxiv.org/abs/1606.01981
https://arxiv.org/abs/1511.06807
https://arxiv.org/abs/1809.04191
https://arxiv.org/abs/1809.04191
www.nature.com/naturecommunications

Conference on Computer Vision (eds Leibe, B., Matas, J., Sebe, N. & Welling,
M.) 525–542 (Springer, 2016).

37. Close, G. et al. Device, circuit and system-level analysis of noise in multi-bit
phase-change memory. In 2010 IEEE International Electron Devices Meeting
(IEDM) 29–5 (IEEE, 2010).

38. Burr, G. W. et al. Recent progress in phase-change memory technology. IEEE
J. Emerg. Sel. Top. Circuits Syst. 6, 146–162 (2016).

39. Le Gallo, M. & Sebastian, A. An overview of phase-change memory device
physics. J. Phys. D Appl. Phys. 53, 213002 (2020).

40. Le Gallo, M., Sebastian, A., Cherubini, G., Giefers, H. & Eleftheriou, E.
Compressed sensing with approximate message passing using in-memory
computing. IEEE Trans. Electron Devices 65, 4304–4312 (2018).

41. Tsai, H. et al. Inference of long-short term memory networks at software-
equivalent accuracy using 2.5 m analog phase change memory devices. In 2019
Symposium on VLSI Technology, T82–T83 (IEEE, 2019).

42. Li, F., Zhang, B. & Liu, B. Ternary weight networks. Preprint at https://arxiv.
org/abs/1605.04711 (2016).

43. Le Gallo, M., Krebs, D., Zipoli, F., Salinga, M. & Sebastian, A. Collective
structural relaxation in phase-change memory devices. Adv. Electron. Mater.
4, 1700627 (2018).

44. Nandakumar, S. R. et al. Phase-change memory models for deep learning
training and inference. In 26th IEEE International Conference on Electronics,
Circuits and Systems (ICECS) 727–730 (IEEE, 2019).

45. Venkatesh, G., Nurvitadhi, E. & Marr, D. Accelerating deep convolutional
networks using low-precision and sparsity. In IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP) 2861–2865 (IEEE, 2017).

46. Cai, F. et al. A fully integrated reprogrammable memristor-CMOS system
for efficient multiply-accumulate operations. Nat. Electron. 2, 290–299
(2019).

47. Bishop, C. M. Training with noise is equivalent to Tikhonov regularization.
Neural Comput. 7, 108–116 (1995).

48. Dazzi, M. et al. 5 Parallel prism: a topology for pipelined implementations of
convolutional neural networks using computational memory. In Proc.
NeurIPS MLSys Workshop (NeurIPS, 2019).

49. Sacco, E. et al. A 5 Gb/s 7.1fJ/b/mm 8x multi-drop on-chip 10 mm data link in
14 nm FinFET CMOS SOI at 0.5 V. In 2017 Symposium on VLSI Circuits,
C54–C55 (IEEE, 2017).

50. Andri, R., Cavigelli, L., Rossi, D. & Benini, L. YodaNN: an architecture for
ultralow power binary-weight CNN acceleration. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 37, 48–60 (2017).

51. Courbariaux, M., Bengio, Y. & David, J.-P. Binaryconnect: training deep
neural networks with binary weights during propagations. In Advances in
Neural Information Processing Systems (eds Cortes, C., Lawrence, N. D., Lee,
D. D., Sugiyama, M. & Garnett, R.) 3123–3131 (Curran Associates, Inc., 2015).

52. Breitwisch, M. et al. Novel lithography-independent pore phase change
memory. In Proc. IEEE Symposium on VLSI Technology 100–101
(IEEE, 2007).

53. Papandreou, N. et al. Programming algorithms for multilevel phase-change
memory. In Proc. International Symposium on Circuits and Systems (ISCAS)
329–332 (IEEE, 2011).

54. Abadi, M. et al. TensorFlow: large-scale machine learning on heterogeneous
systems, https://www.tensorflow.org/ (2015).

55. Ioffe, S. & Szegedy, C. Batch normalization: accelerating deep network training
by reducing internal covariate shift. In Proc. of the 32nd International
Conference on Machine Learning, Vol. 37 of ICML’15 (ed. Bach, F. & Blei, D.)
448–456 (PMLR, 2015).

56. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A. & Torralba, A. Learning deep
features for discriminative localization. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2921–2929 (IEEE, 2016).

57. Krizhevsky, A., Nair, V. & Hinton, G. The CIFAR-10 dataset, https://www.cs.
toronto.edu/kriz/cifar.html (2009).

58. DeVries, T. & Taylor, G. W. Improved regularization of convolutional neural
networks with cutout. Preprint at https://arxiv.org/abs/1708.04552 (2017).

59. Russakovsky, O. et al. Imagenet large scale visual recognition challenge. Int. J.
Comput. Vis. 115, 211–252 (2015).

60. Ambrogio, S. et al. Reducing the impact of phase-change memory
conductance drift on the inference of large-scale hardware neural networks. In
IEEE International Electron Devices Meeting (IEDM), 6.1.1–6.1.4 (IEEE, 2019).

Acknowledgements
We thank our colleagues at IBM Research—Zurich, IBM Research—Almaden and IBM

TJ Watson Research Center, in particular, U. Egger, N. Papandreou, and A. Petropoulos

for experimental help, M. BrightSky for help with fabricating the PCM prototype chip

used in this work, and R. Khaddam-Aljameh, M. Stanisavljevic and M. Rasch for tech-

nical input. We also thank O. Hilliges for discussions. V.J. and B.R. were affiliated with

New Jersey Institute of Technology, USA, at the time of writing this paper, and gratefully

acknowledge the partial support from the university. This work was partially funded by

the European Research Council (ERC) under the European Union’s Horizon 2020

research and innovation programme (grant agreement number 682675).

Author contributions
V.J., M.L., S.H., C.P., and A.S. conceived the training methodology. V.J., M.L., S.H., I.B.,

and A.S. conceived the drift correction techniques. V.J. and S.H. performed the software

training and inference simulations under the guidance of M.L. I.B. performed the PCM

hardware experiments with the support of V.J. S.R.N. and V.J. developed the PCM

model. V.J. and C.P. developed the PCM deep learning inference TensorFlow-based

software. M.D. provided critical in-memory computing hardware insights and performed

the ResNet-32 performance estimation. M.L. wrote the manuscript with input from all

authors. M.L., A.S., B.R., and E.E. supervised the project.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-

020-16108-9.

Correspondence and requests for materials should be addressed to M.L.G. or A.S.

Peer review information Nature Communications thanks Huaqiang Wu and the other,

anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2020

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16108-9 ARTICLE

NATURE COMMUNICATIONS | (2020) 11:2473 | https://doi.org/10.1038/s41467-020-16108-9 | www.nature.com/naturecommunications 13

https://arxiv.org/abs/1605.04711
https://arxiv.org/abs/1605.04711
https://www.tensorflow.org/
https://www.cs.toronto.edu/kriz/cifar.html
https://www.cs.toronto.edu/kriz/cifar.html
https://arxiv.org/abs/1708.04552
https://doi.org/10.1038/s41467-020-16108-9
https://doi.org/10.1038/s41467-020-16108-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Accurate deep neural network inference using computational phase-change memory
	Results
	Problem statement
	Training procedure
	Weight transfer to PCM-based synapses
	Hardware/software inference experiment on CIFAR-10
	Adaptive batch normalization statistics update

	Discussion
	Methods
	Experiments on PCM hardware platform
	PCM-based deep learning inference simulator
	Implementation of ResNet-32 training on CIFAR-10
	Implementation of ResNet-34 training on ImageNet
	Global drift compensation (GDC) method
	Adaptive batch normalization statistics update (AdaBS) technique

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

