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Accurate detection of m6A RNA modifications
in native RNA sequences
Huanle Liu1,2,11, Oguzhan Begik 1,2,3,11, Morghan C. Lucas 1,4, Jose Miguel Ramirez1,

Christopher E. Mason 5,6,7, David Wiener8, Schraga Schwartz8, John S. Mattick2,3,10,

Martin A. Smith 3,9 & Eva Maria Novoa 1,2,3,4

The epitranscriptomics field has undergone an enormous expansion in the last few years;

however, a major limitation is the lack of generic methods to map RNA modifications

transcriptome-wide. Here, we show that using direct RNA sequencing, N6-methyladenosine

(m6A) RNA modifications can be detected with high accuracy, in the form of systematic

errors and decreased base-calling qualities. Specifically, we find that our algorithm, trained

with m6A-modified and unmodified synthetic sequences, can predict m6A RNA modifications

with ~90% accuracy. We then extend our findings to yeast data sets, finding that our method

can identify m6A RNA modifications in vivo with an accuracy of 87%. Moreover, we

further validate our method by showing that these ‘errors’ are typically not observed in yeast

ime4-knockout strains, which lack m6A modifications. Our results open avenues to investi-

gate the biological roles of RNA modifications in their native RNA context.
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I
n the last few years, our ability to map RNA modifications
transcriptome-wide has revolutionized our understanding of
how these chemical entities shape cellular processes, modulate

cancer risk, and govern cellular fate1–4. Systematic efforts to
characterize this regulatory layer have revealed that RNA mod-
ifications are far more widespread than previously thought, can
be subjected to dynamic regulation, and can profoundly impact
RNA processing stability and translation5–10. A fundamental
challenge in the field, however, is the lack of a generic approach
for mapping and quantifying RNA modifications, as well as, the
lack of single molecule resolution11.

Current technologies to map the epitranscriptome rely on
next-generation sequencing and, as such, they are typically blind
to nucleotide modifications. Consequently, indirect methods are
required to identify RNA modifications transcriptome-wide,
which has been mainly approached using two different strategies:
(i) antibody immunoprecipitation, which specifically recognizes
the modified ribonucleotide5,6,12–14; and (ii) chemical-based
detection, using chemical compounds that selectively react with
the modified ribonucleotide of interest, followed by reverse-
transcription of the RNA fragment, which leads to accumulation
of reads that have the same identical ends8,9,15. Although these
methods have provided highly valuable information, they are
limited by the available repertoire of commercial antibodies and
the lack of selective chemical reactivities towards a particular
RNA modification16, often lack single nucleotide resolution5–7 or
require complex protocols to achieve it17, cannot provide quan-
titative estimates of the stoichiometry of the modification at a
given site, and are often unable to identify the underlying RNA
molecule that is modified.

To overcome these limitations, third-generation sequencing
technologies, such as the platforms provided by Oxford Nano-
pore Technologies (ONT)18 and Pacific Biosciences (PacBio)3,
have been proposed as a new means to detect RNA modifica-
tions in native RNA sequences. RNA modifications can be
detected using PacBio in the form of kinetic changes of reverse
transcriptases, which occur when the enzyme encounters a
modified RNA nucleotide19. On the other hand, RNA mod-
ifications can be identified in its native RNA context using
ONT, by pulling the RNA molecules through the nanopores
that are embedded in a membrane. The ONT platform relies on
the measurement of disruptions in the current intensity as the
RNA or DNA molecule passes through the pore, which can be
used to identify the transiting nucleotides. Although ONT direct
RNA sequencing is already a reality20,21, extracting RNA
modification information from ONT reads is still an unsolved
challenge. RNA modifications are known to cause disruptions in
the pore current that can be detected upon comparison of raw
current intensities — also known as “squiggles”18,20. However,
current efforts have not yet yielded an efficient and accurate
RNA modification detection algorithm, largely due to the
challenges in the alignment and re-squiggling of RNA current
intensities22,23.

As an alternative strategy, we hypothesized that the current
intensity changes caused by the presence of RNA modifications
may lead to increased “errors” and decreased qualities from the
output of base-calling algorithms that do not model base mod-
ifications (Fig. 1a). Indeed, here we find that base-calling “errors”
can accurately identify N6-methyladenosine (m6A) RNA mod-
ifications in native RNA sequences, and propose a novel algo-
rithm, EpiNano (github.com/enovoa/EpiNano), which can be
used to identify m6A RNA modifications from RNA reads with
an overall accuracy of ~90%. Our results provide a proof of
concept for the use of base-called features to identify RNA
modifications using direct RNA sequencing, and open avenues to
explore additional RNA modifications in the future.

Results
RNA modifications alter base-called features in ONT reads.
Previous work has shown that ONT raw current intensity signals,
known as “squiggles”, can be subdivided into “events”, which
correspond to consecutive 5-mer sequences shifted one nucleo-
tide at a time (e.g., in the sequence AGACAAU, the corre-
sponding 5-mer “events” would be AGACA, GACAA, and
ACAAU)24–27. Therefore, to systematically identify the current
intensity changes caused by the presence of a given RNA mod-
ification, perturbations of the current intensity signals should be
measured and analyzed for each possible 5-mer (n= 1024).

To this end, we designed a set of synthetic sequences
that comprised all possible 5-mers (median occurrence of each
5-mer= 10), while minimizing the RNA secondary structure (see
the Methods section and Supplementary Note 1). We then
employed direct RNA sequencing to characterize the differences
of in vitro transcribed (IVT) constructs that incorporated either
“m6A” instead of adenine, or unmodified ribonucleotides (Fig. 1a,
Supplementary Table 1 for sequencing metrics). Comparison of
the two data sets revealed that base-called m6A-modified reads
were significantly enriched in mismatches compared with their
unmodified counterparts (Fig. 1b, c), and that these “errors” were
mainly, but not exclusively, located in adenine positions. We
observed that, in addition to mismatch frequency, other metrics
including per-base quality, insertion frequency, deletion fre-
quency, and current intensity were significantly altered (Fig. 1c
and Supplementary Fig. 1). Moreover, these “errors” were highly
reproducible in independent biological replicates with respect to
mismatch frequency, deletion frequency, per-base quality, and
current intensity (Fig. 1d–g). By contrast, insertion frequencies
were not reproducible across biological replicates (Supplementary
Fig. 1), suggesting that this feature is likely unrelated to the
presence of RNA modifications, and thus was not further
considered in downstream analyses.

Base-calling “errors” can accurately predict m6A modifications.
We then examined whether these observed differences would be
sufficient to accurately classify a given site into “modified” or
“unmodified”. For this aim, we first focused our analysis on 5-
mers that matched the known m6A motif RRACH, as these would
be the most relevant in which to detect m6A modifications. To
reveal whether the features from m6A-modified RRACH k-mers
were distinct from unmodified RRACH k-mers, we compiled
the base-called features (base quality, mismatch frequency, and
deletion frequency) for each position of the k-mer (−2, −1, 0, +1,
and +2) (Fig. 2a, Supplementary Fig. 2), and performed principal
component analysis of the features, finding that the two popu-
lations (m6A-modified and unmodified RRACH k-mers) were
largely nonoverlapping (Fig. 2b). As a control, we performed the
same analysis in k-mers with identical sequence context, but
centered in C, G, or U (instead of A), finding that no differences
could be observed between these populations (Fig. 2c), suggesting
that the observed differences are m6A-specific, and not data set-
specific.

To statistically determine whether these features could be used
to accurately classify a given site into “m6A-modified” or
“unmodified”, we trained multiple support vector machines
(SVM) using as input the base-called features from m6A-
containing RRACH k-mers and unmodified RRACH k-mers
(see the Methods section). We first tested whether each individual
feature at position 0 (the modified site) was able to classify a given
RRACH k-mer into m6A-modified or unmodified. Our results
show that base quality, deletion frequency and mismatch
frequency alone were able to accurately predict the modification
status with reasonable accuracy (70–86% accuracy, depending on
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the feature used) (Fig. 2d, see also Supplementary Table 2 and the
Methods section). By contrast, we find that the current mean
intensity values and current intensity standard deviation were
poor predictors of the modification status of the k-mer (43–65%
accuracy). As a control, we used the same set of features in
control k-mers (i.e., those with the same sequence context, but
centered in C, G, or U), finding that the features did not
distinguish between m6A-modified and m6A-unmodified data
sets (Supplementary Fig. 3).

To improve the performance of the algorithm, we then
examined whether a combination of the features might improve
the prediction accuracy, finding that the combination of the three
features (base quality, mismatch, and deletion frequency)
increased the accuracy of the model (88–91%) (Fig. 2e,
Supplementary Table 2). We then tested whether the inclusion
of features from the neighboring positions (−2, −1, +1, and +2)
might further improve the model. Indeed, we find that the
inclusion of neighboring features slightly improves the perfor-
mance of the algorithm (accuracy= 97–99%), however, this was
at the expense of increasing the number of false positives in the

control k-mer set — which do not contain the modification —

(Fig. 2f, Supplementary Fig. 3), suggesting that features from
neighboring positions should not be employed with this model.

We should note that our current algorithm has been trained
using either 100% methylated or 100% unmethylated reads;
however, in in vivo data, this will likely not be the scenario.
Previous studies probing the m6A modification status in
individual sites have estimated that m6A methylation in mRNAs
occurs only partially, with methylation ratios ranging from 6 to
80%28. Therefore, we wondered whether our algorithm would be
able to detect m6A modifications on mixtures of methylated and
unmethylated reads. To test this, we sampled reads from both
m6A-modified and unmodified data sets and mixed them in
different proportions, to achieve partial methylation ratios of 0
(unmodified), 5, 10, 25, 50, 75, 90, 95, and 100% (fully modified).
We find that the algorithm performance is dependent on the
proportion of methylated reads (Fig. 2g); however, we find that
even at 25% of methylation ratio, our algorithm predicts m6A
sites with reasonable accuracy, with an area under the curve
(AUC) of 0.72 (Fig. 2g).
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Trained SVM models can predict m6A modifications in vivo.
To assess whether our findings could be extended to in vivo data
sets, we sequenced native polyA(+)-selected RNA from S. cere-
visiae wild type (wt) and ime4∆ knockout strains (Fig. 3a and see
the Methods section). Ime4∆ yeast strains constitute an excellent
background model to identify false positives in m6A analyses29, as
the deletion of ime4 results in complete elimination of m6A.
Biological triplicates of polyA(+)-selected RNA from both wt and
ime4∆ strains were sequenced in independent flow cells (see the
Methods section), producing more than five million sequenced
reads (Supplementary Table 3).

An initial assessment of the quality of the direct RNA
sequencing runs showed that these were highly replicable both
in terms of per-gene counts (spearman’s rho= 0.945–0.948) and
average per-read quality scores (Fig. 3b, Supplementary Fig. 4).
We then used EpiNano to extract base-called features for all six
samples. We first analyzed the features corresponding to ~1300
known m6A-modified RRACH sites, previously identified using
antibody immunoprecipitation coupled to next-generation
sequencing (m6A-Seq)29. We found that base-called features at

m6A-modified RRACH sites were distinct across yeast strains
(wt and ime4∆), for all three metrics analyzed (base quality,
deletion frequency and mismatch frequency) (Fig. 3c). These
results were consistent across biological replicates, and are in
agreement with our observations using in vitro constructs
(Fig. 1c). By contrast, this was not observed when comparing
unmodified RRACH base-called features across yeast strains
(Supplementary Fig. 5), suggesting that the observed differences
were due to the presence of m6A. These results were further
confirmed by individual inspection of “known” m6A-modified
sites, where both increased mismatch and deletion frequencies
were consistently observed in wt m6A-modified positions, but not
in their corresponding ime4∆ sites (Fig. 3d).

To determine whether our trained SVM could be applied to
in vivo data sets, we first investigated whether the global in vivo
base-called features were consistent with those observed in vitro.
We found that unmodified in vitro sequences (CC 0%) displayed
similar mismatch frequencies to those observed in ime4∆ strains,
which also lack m6A modifications (Fig. 3e). By contrast, m6A-
modified yeast RNAs (wt) showed intermediate mismatch
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frequencies between fully modified (CC 100%) and unmodified
(CC 0%, yeast ime4∆) sequences. Using linear regression, we
estimated that the median stoichiometry of m6A modifications in
wt strains was 12–30% (Fig. 3f), which is in agreement with
previous works, where m6A was found to be present at levels
ranging from 7 to 69% (with a median of 23%) in yeast samples30.
Altogether, our results reveal that nonrandom base-called
“errors” present in in vivo data sets are replicable, are in
agreement with in vitro results, and are correlated with the
presence of m6A RNA modifications in a given site.

We then used the SVM model, previously trained with m6A-
modified and unmodified in vitro constructs, to predict the
transcriptome-wide m6A modification status of yeast RRACH
sites, both in wt and ime4Δ data sets. A site was kept for
downstream analyses if there was at least 1 read per site in each of
the six samples. This criterion was met by 61,163 RRACH sites,
from which 363 had been reported as “m6A-modified”, based on
Illumina sequencing29. Per-site SVM predictions for each

biological replicate were then merged into a single “m6A
modification score” (see the Methods section). We should note
that low read coverage leads to decreased accuracy (Supplemen-
tary Fig. 6); however, we retained low coverage sites to maximize
the number of sites included in the analyses. We first compared
the m6A modification scores of known m6A-modified RRACH
sites (n= 363) in wt and ime4Δ, finding that modification
scores in wt were significantly higher than those observed in
ime4∆ (p= 8e–14), for the same set of sites (Fig. 3g). By contrast,
modification scores of ime4∆ known m6A-modified RRACH sites
(n= 363) and unknown sites in the same strain, which do not
contain m6A modifications, were relatively similar (p= 0.01,
Kruskal–Wallis test) (Fig. 3g). Interestingly, our method also
identified significant differences in m6A modification scores when
comparing wt and ime4∆ unknown RRACH sites (p= 4e–43;
Fig. 3g), suggesting that there might be additional m6A-modified
sites present in the transcriptome, apart from those identified
using m6A-Seq29. Indeed, recent efforts using enzymatic-based
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m6A detection methods have reported that antibody-based
methods severely underestimate the number of m6A sites30.
Overall, we find that our model identifies m6A modifications in
yeast data sets with an overall accuracy of 87.8%, recovering 32%
(117 out of 363) of known m6A-modified sites (Supplementary
Table 4 and Fig. 3h), and with a specificity of 89%.

EpiNano performance compared with current intensity-based
methods. Previous efforts have attempted to identify RNA
modifications from direct RNA sequencing samples by per-
forming direct comparison of raw current intensities. This is the
case of Tombo22, a software originally developed for the detection
of DNA modifications in nanopore sequencing data, which has
recently been extended to detect RNA modifications. Identifica-
tion of modifications from raw signal typically requires a two-step
process: (i) re-squiggling of the raw signal to “align” all reads
mapping to the same genomic location and (ii) comparison of
raw current intensities across reads or samples. First, we find that
the re-squiggling step used by Tombo discards ~50% of the
reads (Supplementary Table 3). From the re-squiggled reads, we
find that Tombo is able to identify 220 out of the 363 known
m6A-modified sites in yeast wt, thus recovering 59.6% of known
sites (Supplementary Table 4). However, this increased recovery
of true positives (TP) was at the expense of increased number of
false positives (Tombo specificity= 69.8%; EpiNano specificity=
89%). Thus, we find that, for the same set of 61,163 sites, Tombo
correctly predicts known m6A sites with an accuracy of 69% and a
recovery of 59%, whereas EpiNano predicts them with an accu-
racy of 87% and recovery of 32% (Supplementary Table 4).

Altogether, our in vivo analyses validate our findings using
in vitro m6A-modified and unmodified sequences, and confirm
the use of base-calling “errors” as a proxy to identify m6A
modifications in direct RNA sequencing data sets. Furthermore,
our findings validate the use of in vitro constructs, transcribed
with and without RNA modifications, as a valid strategy for
training direct RNA sequencing base-calling algorithms, suggest-
ing that similar approaches could be envisioned with additional
data sets containing distinct RNA modifications in the future.

Discussion
The human epitranscriptome is still largely uncharted. Only a
handful of the 170 different RNA modifications that are known to
exist have been mapped. Importantly, several of these modifica-
tions are involved in central biological processes, such as sex
determination31–33 or cell fate transition34, and their dysregula-
tion has been linked to multiple human diseases16,35,36, including
neurological disorders37–39 and cancers40–42. Yet, our under-
standing of this regulatory layer is restricted to a few RNA
modifications, largely due to the lack of a generic methodology to
map them in a transcriptome-wide fashion.

The establishment of the ONT platform as a tool to map RNA
modifications has great potential to revolutionize our under-
standing of the epitranscriptome, as in principle, it should be
capable of identifying RNA modifications in individual RNA
sequences, and with single nucleotide resolution. Such ability
would allow us to study the functions of the epitranscriptome in
ways that, until now, have not been possible. Unfortunately,
currently there is no software available that can predict RNA
modifications from direct RNA sequencing reads with sufficient
accuracy, limiting the applicability of direct RNA sequencing as a
tool to identify RNA modifications. To tackle this limitation, here
we provide a novel strategy to identify RNA modifications from
base-called features, without the need of squiggling realignments
or manipulation of raw current intensity data sets.

Here we report that RNA modifications can be identified in the
form of systematic and reproducible base-calling “errors” in
direct RNA sequencing data sets. These “errors” can be detected
in the form of altered per-base qualities, mismatch frequencies
and deletion frequencies at the modified site. We find that the
method accurately detects modifications both in vitro (90%
accuracy) and in vivo (87% accuracy), with an overall recovery of
32% of known sites. Despite the promising results, it is important
to note, however, that the current method presents several lim-
itations as well as ample room for improvement. Firstly, our
current algorithm does not predict RNA modifications in indi-
vidual RNA molecules, but rather employs information from all
the reads mapping to a specific site to determine whether a given
position is modified or unmodified. Secondly, our algorithm does
not distinguish between different types of RNA modifications
(e.g., m1A vs m6A). Future work will be needed to decipher
whether different types of RNA modifications can be associated
to distinct “error signatures”, which could be potentially used to
identify the underlying RNA modification type. Thirdly, although
m6A-modified RRACH k-mers globally display altered base
qualities, mismatch frequencies and deletion frequencies, we
should note that the contribution of each feature varies across
different k-mers. For example, we find that the presence of m6A
in GGACA and GGACT k-mers mainly affects the mismatch and
deletion frequency, whereas in the case of GGACC, base quality
and deletion frequency are the most altered features by the pre-
sence of m6A modifications (Supplementary Fig. 7). Future
models that include k-mer specific training and testing could
potentially improve the accuracy of prediction of modified sites,
as well as reduce the number of false positives. In this regard, we
expect that by making our m6A-modified and unmodified data
sets publicly available — both base-called fastq and raw fast5 —

these can be employed by the community to train different
machine learning algorithms (e.g., signal-based machine learning,
base-caller training, etc.), and thus lead to improved m6A RNA
modification base-callers for the whole community.

Overall, our results show that base-calling “errors” can be used
as an accurate and computationally simple solution to identify
m6A modifications, which does not require the manipulation of
raw current intensities or squiggle alignments. Moreover, we
extend our findings to an in vivo system, showing that our
algorithm can capture m6A-dependent changes that are present
in wild-type SK1 yeast strains, while these are not observed in
their ime4Δ counterparts. Future work will be needed to achieve
single read RNA modification detection, as well as to expand our
findings to other RNA modifications.

Methods
Synthetic sequence design. Sequences were designed such that they would
include all possible 5-mers, while minimizing the secondary RNA structure. For
this aim, we employed the software curlcake (http://cb.csail.mit.edu/cb/curlcake/),
which internally uses RNAshapes version 2.1.6 (http://bibiserv.techfak.uni-
bielefeld.de/rnashapes) to predict RNA secondary structure. The final output
sequence given by the software was ~10 kb long. For synthesis purposes, a total of
four sequences were designed by splitting the 10 kb sequence into smaller
sequences of slightly different size (2329, 2543, 2678, and 2795 bp, which we named
“Curlcake 1”, “Curlcake 2”, “Curlcake 3”, and “Curlcake 4”, respectively). Each
sequence was designed with an internal strong T7 polymerase promoter, an
additional BamHI site at the end of the sequence, and with all EcoRV and BamHI
sites removed from the sequence (Supplementary Note 1). All four sequences were
synthesized and cloned in pUC57 vector using blunt EcoRV by General Biosys-
tems. Plasmids were double digested O/N with EcoRV-BamHI-HF, and DNA was
extracted with Phenol-Chloroform followed by EtOH precipitation. Plasmid
digestion was confirmed by agarose gel. Digestion product quality was assessed
with Nanodrop before proceeding to in vitro transcription.

In vitro transcription, capping and polyadenylation. In vitro transcribed (IVT)
sequences were produced using the Ampliscribe™ T7-Flash™ Transcription Kit
(Lucigen-ASF3507), using 1 µg of purified digestion product as starting material,
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following the manufacturer’s recommendations. ATP was replaced by N6-methy-
ladenosine-5′-triphosphate(m6ATP) (Trilink-N-1013;) for the IVT reaction of
m6A-modified RNA. IVT reaction was incubated for 4 h at 42 °C. IVT RNA was
then incubated with DNAse I (Lucigen), followed by purification using the RNeasy
Mini Kit (Qiagen-74104). Integrity and quality of the RNA was determined using
Agilent 4200 Tapestation, to ensure that a single product band of the correct size
had been produced for each IVT product (Supplementary Fig. 8). Each IVT pro-
duct was 5′ capped using vaccinia capping enzyme (NEB-M2080S) following the
manufacturer’s recommendations. The capping reaction was incubated for 30 min
at 37 °C. Capped IVT products were purified using RNAClean XP Beads (Beckman
Coulter-A66514). Poly(A)-tailing was performed using E. coli Poly(A) Polymerase
(NEB-M0276S), following the manufacturer’s recommendations. Poly(A)-tailed
RNAs were purified using RNAClean XP beads, and the addition of poly(A)-tail
was confirmed using Agilent 4200 Tapestation (Supplementary Fig. 8). Con-
centration was determined using Qubit Fluorometric Quantitation. Purity of the
IVT product was measured with NanoDrop 2000 Spectrophotometer (Supple-
mentary Table 5).

Yeast culturing. Sk1 strains used in this study were SAy841 comprising a deletion
of NDT80 (hereafter, referred to as “wild-type”), and SAy966, in which both
NDT80 and IME4 were deleted (hereafter, referred to as “ime4Δ”). These strains
are characterized in Agarwala et al.43. To induce synchronous meiotic entry, cells
were grown for 24 h in 1% yeast extract, 2% peptone, 4% dextrose at 30 °C, diluted
in BYTA (1% yeast extract, 2% tryptone, 1% potassium acetate, 50 mM potassium
phthalate) to OD600= 0.2 and grown for another 16 h at 30 °C, 200 rpm. Cells
were then washed twice with water and resuspended in SPO (0.3% potassium
acetate) at OD600= 2.0 and incubated at 30 °C at 190 rpm. Cells were isolated
from SPO following 5 h and collected by 2 min centrifugation at 3000 × g. Pellets
were snap frozen and stored at −80 °C for RNA extraction. Three independent
biological replicates for each strain were collected.

Yeast mRNA preparation. Yeast total RNA samples were prepared using a
modified protocol of nucleospin® 50RNA kit (Macherey-Nagel, cat 740955.50).
Specifically, cells lysis was done in a 1.5 ml tube by adding 450 µl of lysis buffer
containing 1M sorbitol (SIGMA-ALDRICH), 100 mM EDTA and 0.45 µl lyticase
(10 U/µl). The sample was incubated in 30 °C for 30 min to break the cell wall,
centrifuged for 10 min at 800 × g, and the supernatant was removed. From this
stage, extraction proceeded as in the protocol of the nucleospin® 50RNA kit, only
substituting β-mercaptoethanol with DTT. Enrichment of polyadenylated RNA
from total RNA was performed using the Oligo (dT) dynabeads mRNA-DIRECT
kit (Thermo Scientific, 61012) for small mRNA amounts.

Direct RNA library preparation and sequencing. RNA library for direct RNA
Sequencing (SQK-RNA001) was prepared following the ONT Direct RNA
Sequencing protocol version DRS_9026_v1_revP_15Dec2016. Briefly, 800 ng of
Poly(A)-tailed and capped IVT RNA — in the case of curlcakes — or 500 ng of
yeast polyA+ RNA were ligated to ONT RT Adapter using concentrated T4 DNA
Ligase (NEB-M0202T), and was reverse transcribed using SuperScript III Reverse
Transcriptase (Thermo Fisher Scientific-18080044). The products were purified
using 1.8X Agencourt RNAClean XP beads (Fisher Scientific-NC0068576), wash-
ing with 70% freshly prepared ethanol. RNA Adapter (RMX) was ligated onto the
RNA:DNA hybrid, and the mix was purified using 1X Agencourt RNAClean XP
beads, washing with Wash buffer twice. The sample was then eluted in elution
buffer and mixed with RNA running buffer (RRB) prior to loading onto a primed
R9.4.1 flow cell, and ran on a GridION (MinION for the second replicate)
sequencer with MinKNOW acquisition software version v1.14.1 (v.1.15.1 for the
second replicate in the curlcake experiment). The sequencing was performed in
independent days and machines, with two biological replicates for each “curlcake”
experiment condition (nonmodified and m6A-modified RNA, total of four flow
cells). Each biological replicate and condition was sequenced independently in a
different flow cell. For the in vivo analysis in S. cerevisiae, three biological replicates
for each yeast strain (wild type and ime4∆) were sequenced, and each biological
condition and replicate was sequenced in an independent flow cell (total of six
flow cells).

Base-calling, filtering, and mapping. Reads were locally base-called using Alba-
core 2.1.7 (ONT). Base-called reads were filtered using NanoFilt, a component
from Nanopack with settings “-q 0 -headcrop 5 -tailcrop 3”, and mapped to the
4 synthetic sequences using minimap2 with the settings -ax map-ont. Mapped
reads were then converted into mpileup format using Samtools version 1.4. Read
basecalling and mapping metrics can be found in Supplementary Table 1 and
Supplementary Table 3. For comparison, reads were also base-called with Albacore
2.3.4 and Guppy 2.3.1, finding that all base-callers showed increased mismatch
frequencies in m6A-modified data sets (with the largest increased in A positions)
and decreased qualities (Supplementary Fig. 6).

Feature extraction. To extract per-site features (mean per-base quality, mismatch
frequency, insertion frequency, and deletion frequency), BAM alignment files were
converted to tab delimited format using sam2tsv from jvarkit. For each individual

reference site, the mean quality of the aligned bases, the mismatch, insertion, and
deletion frequency was computed using in-house scripts (available on github). To
extract current intensity information from individual reads, the h5py (version
2.7.0) module in python was used to parse each individual fast5 file. Reference
sequences were slided with a window size of 5 bp, and mean and standard deviation
of current intensities was computed for each sliding window. All in-house python
scripts used to extract the features described above are publicly available as part of
EpiNano (github.com/enovoa/EpiNano).

Machine learning. The set of extracted features of both m6A-modified and
unmodified “curlcakes” was used as input to train a SVM. Initial training (75% of
the sites) and testing (25%) of the SVM was performed with m6A-modified and
unmodified curlcake reads from one replicate (rep1). Multiple kernels (“linear”,
“poly”, and “rbf”) were compared, and the best performing kernel was retained.
The model was validated on new sequencing runs of IVT m6A-modified and
unmodified sequences (rep2), which had not been used for initial training or
testing of the SVM. The reported accuracy values refer to the predictions on
replicate 2. The code to extract the set of features for machine learning from fastq
and fast5 reads, the code for building the SVM models, as well as the trained SVM
models, are publicly available in github (github.com/enovoa/EpiNano). We should
note that a limitation in utilizing IVT to generate all possible 5-mers is that 5-mers
that contain more than one “A” will contain more than one modification in the
k-mer, e.g., AGACC will in fact be m6AGm6ACC, which are unlikely to occur in a
biological context. Therefore, 5-mers that contained more than one A have been
excluded from the analyses, as well as from the training set. Accuracy of the model
has been computed as the sum of correct m6A modification predictions — cor-
rectly predicted m6A-modified k-mers (TP) and correctly predicted unmodified
k-mers (true negatives, TN) — divided by the total number of k-mers tested.

Prediction of m6A modified sites in yeast using EpiNano. EpiNano was used to
extract per-site features (mean per-base quality, mismatch frequency, insertion
frequency, and deletion frequency) from the mapped BAM files of the six samples
sequenced (WTrep1, WTrep2, WTrep3, ime4Δrep1, ime4Δrep2, and ime4Δrep3).
m6A-modified RRACH sites with minimum coverage of 5 reads/site were kept and
scored using the previously trained SVM model. 5-mers containing more than one
“A” in the motif were discarded from downstream analyses, as these k-mers had
not been included in the training sets (see above). A total of 61,163 sites were
analyzed for each sample and replicate, from which 363 corresponded to “known”
m6A-modified sites, which had been identified using Illumina sequencing44.

M6A modification scores for each site were computed by merging the SVM
predicted probabilities across replicates. Specifically, if the probability being
modified was >0.5 in all three biological replicates (s1, s2, and s3), the modification
score (M) was set to 1. Otherwise, the modification score was determined by
computing the mean of the probabilities (pseudocode 1). Modification scores were
obtained for each site, both for wild-type and ime4Δ strains.

Pseudocode 1:
if (s1 ≥ 0.5 and s2 ≥ 0.5 and s3 ≥ 0.5):
M= 1
else:
M= (s1+ s2+ s3)/3
To classify a site as “m6A-modified” or “unmodified”, we compared the

modification scores of each site, obtained for each of the two strains. Specifically,
modification ratio was calculated by dividing the modification score of the wild-
type strains (Mwt) and the modification score of the ime4Δ strains (Mko). A site was
considered to be modified if the modification ratio was >1.5 and the modification
score in wild-type strains (Mwt) was greater than 0.5 (pseudocode 2).

Pseudocode 2:
if (Mwt/Mko) > 1.5 and Mwt > 0.5:
status=modified
else:
status= unmodified
Accuracy of the predictions was computed as the sum of correct m6A

modification predictions — correctly predicted m6A-modified k-mers (TP) and
correctly predicted unmodified k-mers (TN) — divided by the total number of
k-mers tested (n= 61,163). Positive predictive value was computed by dividing the
number correctly predicted m6A-modified k-mers (TP) by the total number of
m6A-modified k-mers included in the analysis (n= 363). The performance of
EpiNano on yeast wt and ime4∆ samples can be found in Supplementary Table 4.

Prediction of m6A modified sites using Tombo. We first ran Tombo version
1.522 to align the raw signal and the base-called reads sequences (tombo resquiggle),
both for wild type and ime4Δ samples. We then used the Tombo “canonical sample
comparison” method (tombo model_sample_compare) to identify significant shifts
in raw signals in paired data sets (wt and ime4∆) using the parameter -num-most-
significant-stored 14,000,000 and -minimum-test-reads 1. M6A modification scores
for each site were computed by merging the Tombo predicted probabilities across
replicates. Specifically, if the probability being modified was >0.5 in all three bio-
logical replicates (s1, s2, and s3), the modification score (M) was set to 1, as
previously done for EpiNano. Otherwise, the modification score was determined by
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computing the mean of the probabilities (pseudocode 1). A site was considered as
modified if the modification score was >0.5. The performance of Tombo on yeast
wt and ime4∆ samples can be found in Supplementary Table 4.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All code used in this work is publicly available at github.com/enovoa/EpiNano. All

FASTQ files data generated in this work have been made publicly available at the GEO

database under the accession code GSE124309 (“curlcakes”) and GSE126213 (yeast wild

type and ime4Δ). Fast5 raw data have been made publicly available in SRA under the

accession SRP174366. All other data are available from the authors upon reasonable

request.

Code availability
The code to extract RNA modification information from direct RNA sequencing data

sets, as well as all in-house python scripts used to extract the base-called features are

publicly available as part of EpiNano (github.com/enovoa/EpiNano).
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