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Abstract. In this paper we propose a post-processing pipeline to recover
accurately the views (light-field) from the raw data of a plenoptic camera
such as Lytro and to estimate disparity maps in a novel way from such
a light-field. First, the microlens centers are estimated and then the raw
image is demultiplexed without demosaicking it beforehand. Then, we
present a new block-matching algorithm to estimate disparities for the
mosaicked plenoptic views. Our algorithm exploits at best the configu-
ration given by the plenoptic camera: (i) the views are horizontally and
vertically rectified and have the same baseline, and therefore (ii) at each
point, the vertical and horizontal disparities are the same. Our strat-
egy of demultiplexing without demosaicking avoids image artifacts due
to view cross-talk and helps estimating more accurate disparity maps.
Finally, we compare our results with state-of-the-art methods.

Keywords: Plenoptic camera - Raw-data conversion - Disparity esti-
mation

1 Introduction

Plenoptic cameras are gaining a lot of popularity in the field of computational
photography because of the additional information they capture compared to
traditional cameras. Indeed, they are able to measure the amount of light trav-
eling along each ray bundle that intersects the sensor, thanks to a microlens
array placed between the main lens and the sensor. As a result, such cam-
eras have novel post-capture processing capabilities (e.g., depth estimation and
refocusing). There are several optical designs for plenoptic cameras depending
on the distance between the microlens array and the sensor. If this distance is
equal to the microlenses focal length it is called a type 1.0 plenoptic camera
[17]; and type 2.0 (or focused) plenoptic camera [16] otherwise. In the first case
the number of pixels per rendered view' is equal to the number of microlenses
(only one pixel per microlens is rendered on each view). In the second case, the
rendered views have a higher spatial resolution, but that comes at the cost of
decreasing the angular resolution. Depending on the application, one camera or
another would be preferred. In this paper we focus on type 1.0 plenoptic cameras.

! The terms view and sub-aperture image are equally used in the literature.
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Fig. 1. Pipeline of our method. For visualization purposes only a part of the subimages
and the views are shown. The LF is obtained by demultiplexing mosaicked data using
the center subimage positions. Then the accurate disparity map for a reference view is
estimated from the LF.

The concept of integral photography, which is the underlying technology in
plenoptic cameras was introduced in [15] and then brought up to computer vision
in [3], but it has recently become practical with the hand-held cameras that
Lytro? and Raytrix® have put on the market for the mass market and professio-
nals respectively. Since then, the scientific community has taken an interest in
the LF (Light-Field) technology. Recent studies in the field address the bottle-
neck of the plenoptic cameras, namely the resolution problem ([10], [5], [18] and
[24]). Besides super-resolution, depth estimation has also been investigated as a
natural application of plenoptic images ([5], [24] and [22]). Indeed, the intrinsic
information of the LF has the advantage to allow disparity computation without
the image calibration and rectification steps required in classic binocular stereo
or multi-view algorithms, making it an enormous advantage for 3D applications.
However, the last cited works consider the sampled LF (the set of demultiplexed
views) as input for their disparity estimation methods, meaning that they do not
study the process that converts the raw data acquired by the plenoptic camera
into the set of demultiplexed views. In this paper we show that such processing,
called demultiplexing, is of paramount importance for depth estimation.

The contributions of this paper are twofold. First, we model the demulti-
plexing process of images acquired with a Lytro camera and then we present a
novel algorithm for disparity estimation specially designed for the singular qual-
ities of plenoptic data. In particular, we show that estimating disparities from
mosaicked views is preferred to using views obtained through conventional lin-
ear demosaicking on the raw data. Therefore, for the sake of accurate disparity
estimation, demosaicking is not performed in our method (see our pipeline in
Fig. 1). To the best of our knowledge this approach has never been proposed
before.

2 Related Work

The closest works to our demultiplexing method have been published recently.
In [7] a demultiplexing algorithm followed by a rectification step where lens

2 http://www.lytro.com
3 http://www.raytrix.de
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distortions are corrected using a 15-parameter camera model is proposed. In [6],
the authors also proposed a demultiplexing algorithm for the Lytro camera and
studied several interpolation methods to superresolve the reconstructed images.
On the contrary, [9] recovers the refocused Lytro images via splatting without
demultiplexing the views.

Considering disparity estimation for plenoptic images, several works have
proposed a variational method ([24], [4], [5] , [13] and [23]). In particular, [24]
uses the epipolar plane image (EPI), [4] and [5] propose an antialiasing filter-
ing to avoid cross-talk image artifacts and [13] combines the idea of Active
Wavefront Sampling (AWS) with the LF technique. In fact, variational methods
better deal with the noise in the images but they are computationally expensive.
Given the large number of views on the LF, such approaches are not suitable
for many of applications. In addition to variational approaches, other meth-
ods have been proposed for disparity estimation. [14] estimates disparity maps
from high spatio-angular LF with a fine-to-coarse algorithm where disparities
around object boundaries are first estimated using an EPI-based method and
then propagated. [22] proposes an interesting approach that combines defocus
and correspondence to estimate the scene depth. Finally, [25] presents a Line-
Assisted Graph-Cut method in which line segments with known disparities are
used as hard constraints in the graph-cut algorithm.

In each section we shall discuss the differences between our method and the
most related works on demultiplexing and disparity estimation methods on Lytro
data. While demosaicking is not the goal of this paper, note that [10] already
pointed out artifacts due to raw plenoptic data demosaicking and that a practical
solution was proposed by [26] for type 2.0 plenoptic data.

3 Demultiplexing RAW Data

Demultiplexing (also called ”decoding” [7] or ”calibration and decoding” [6]) is
data conversion from the 2D raw image to the 4D LF, usually represented by the
two-plane parametrization [12]. In particular, demultiplexing consists in reorga-
nizing the pixels of the raw image? in such a way that all pixels capturing the
light rays with a certain angle of incidence are stored in the same image creat-
ing the so-called views. Each view is a projection of the scene under a different
angle. The set of views create a block matrix where the central view stores the
pixels capturing the light rays perpendicular to the sensor. In fact, in plenoptic
type 1.0, the angular information of the light rays is given by the relative pixel
positions in the subimages® with respect to the subimage centers. After demulti-
plexing, the number of restored views (entries of the block matrix) corresponds
to the number of pixels covered by one microlens and each restored view has as
many pixels as the number of microlenses.

Estimating Subimage Centers: In a plenoptic camera such as Lytro the
microlens centers are not necessarily well aligned with the pixels of the sensor.

* We use the tool in [1] to access the raw data from Lytro.
5 The image that is formed under a microlens and on the sensor is called a subimage.
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Fig. 2. (a) Microlenses projected on the sensor plane in a hexagonal arrangement.
The green and blue axes represent the two CSs. There is a rotational offset 6 and a
translational offset O —o. (b) Mask used to locally estimate subimage center positions.
(c¢) Lytro raw image of a white scene. (d) Estimated center positions. They coincide
when estimated from one color channel only or from all the pixels in the raw image

(gray).

There is a rotation offset between the sensor and the microlens plane. Also,
the microlens diameter does not cover an integer number of pixels. Finally, the
microlenses are arranged on a hexagonal grid to efficiently sample the space.
Thus, in order to robustly estimate the microlens centers, we estimate the trans-
formation between two coordinate systems (CS), the Cartesian CS given by the
sensor pixels and K, the microlens center CS. K is defined as follows: the origin
is the center of the topmost and leftmost microlens and the basis vectors are
the two vectors from the origin to the adjacent microlens centers (see Fig.2-(a)).
Formally, if x and k are respectively the coordinates on the sensor and microlens
CSs, then, we estimate the system transformation matrix T and the offset vector
between the origins ¢ such that x = Tk + ¢, and

T — 1 1/2 dp 0 [cos(f) —sin(6) (1)

“\0v3/2)\ 0 d,) \sin(@) cos(d) )’
where the first matrix accounts for the orthogonal to hexagonal grid conversion
due to the microlens arrangement, the second matrix deals with the vertical and
horizontal shears and the third matrix is the rotation matrix. Thus, estimating

the microlens model parameters {c,dp,d,,0} gives the microlenses center posi-
tions.

In practice, the subimage centers are computed from a white image depicted
in Fig. 2-(c), that is an image taken through a white Lambertian diffuser. Actu-
ally, the subimage centers x; of the i-th microlens in the raw image are computed
as the local maximum positions of the convolution between the white image and
the mask shown in Fig. 2-(b). Then, given x; and the integer positions k; in the
K CS, the model parameters (and consequently T and c) are estimated as the
solution of a least square error problem from the equations x; = Tk;+c. Thus, in
this paper, the final center positions used in the demultiplexing step are the pixel
positions given by c¢; := round(Tk; + ¢). However, more advanced approaches
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Fig. 3. (a) Demultiplexing. Pixels with the same relative position w.r.t. the subimage
centers are stored in the same view. Only two views are illustrated for visualization.
Color corresponds to sensor color on original Bayer pattern, and is carried over to
assembled raw views. (b) Color patterns of three consecutive mosaicked views (even,
odd and even positions of a line of the matrix of views) for a Lytro camera (~10x 10
pix. per microlens). Color patterns from the views at even positions are very similar
while the color pattern at the odd position is significantly different although there are
horizontal color stripes too. White (empty) pixels are left to avoid aliasing.

can take into account the sub-pixel accuracy of the estimated centers and re-grid
the data on integer spatial coordinates of the Cartesian CS. Fig. 2-(d) shows the
subimage center estimation obtained with the method described above. Since
the raw white image has a Bayer pattern, we have verified that the center posi-
tions estimated by considering only red, green or blue channel, or alternatively
considering all color channels, are essentially the same. Indeed, demosaicking the
raw white tmage does not create image cross-talk since the three color channels
are the same for all pixels in the center of the subimages.

Reordering Pixels: In the following, we assume that the raw image has been
divided pixel-wise by the white image. This division considerably corrects the
vignetting % which is enough for our purposes. We refer to [7] for a precise
vignetting modeling in plenoptic images. Now, in order to recover the different
views, pixels are organized as illustrated in Fig. 3-(a). In order to preserve the
pixel arrangement in the raw image (hexagonal pixel grid), empty spaces are
left between pixels on the views as shown in Fig. 3-(b). Respecting the sampling
grid avoids creating aliasing on the views. Notice that, since the raw image
has not been demosaicked, the views inherit new color patterns. Because of the
shift and rotation of the microlenses w.r.t. the sensor, the microlens centers (as
well as other relative positions) do not always correspond to the same color. As a
consequence, each view has its own color pattern (mainly horizontal monochrome
lines in Lytro).

After demultiplexing, the views could be demosaicked without risking to fuse
pixel information from different angular light rays. However, classic demosaick-
ing algorithms are not well adapted to these new color patterns, specially on

6 Light rays hitting the sensor at an oblique angle produce a weaker signal than other
light rays.
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Fig.4. (a) Lytro image (for visualization purposes). (b) One mosaicked view.
(c) Zoomed red rectangle in view (b). (d) Same zoom with horizontal interpolation
of empty (black) pixels, when possible. This simple interpolation does not create arti-
facts since all the pixels in a view contain same angular information.

high frequencies. For the sake of disparity estimation, we simply fill the empty
pixels in a color chanel (white pixels in Fig. 3) when the neighboring pixels have
the color information for this chanel (see Fig. 4). For example, if an empty pixel
of the raw data has a green pixel on the right and on the left, then the empty
pixel is filled with a green value by interpolation (1D Piecewise Cubic Hermite
interpolation). Other empty pixels are left as such.

Differences with State-of-the-Art: The main difference with the demulti-
plexing method in [7] is the fact that in their method the raw data of a scene is
demosaicked before being demultiplexed. This approach mixes information from
different views and, as we will show in the next section, it has dramatic con-
sequences on the disparity estimation. Besides, the method in [7] estimates the
microlenses centers similarly to us but it does not force the center positions to
be integer as we do in our optimization step. Instead, the raw image is interpo-
lated to satisfy this constraint. Even if theoretically this solution should provide
a more accurate LF, interpolating the raw data implies again mixing informa-
tion from different views which creates image cross-talk artifacts. The method
for estimating the center positions in [6] differs considerably from ours since the
centers are found via local maxima estimation in the frequency domain. First,
the raw image is demosaicked and converted to gray and the final center posi-
tions are the result of fitting the local estimation on a Delaunay triangular grid.
Moreover, the second step to render the views is coupled with super-resolution
providing views of size 1080 x 1080 (instead of 328 x 328, which is the number
of microlenses).

The goal of this paper is to estimate accurately the disparity on plenoptic
images, but we have observed that the processing needed before doing that is of
foremost importance. So, even if the works in [7] and [6] are an important step
forward for LF processing, we propose an alternative processing of the views
which is better suited to subsequent disparity estimation.

4 Disparity Estimation

In this section, we present a new block-matching disparity estimation algorithm
adapted to plenoptic images. We assume that a matrix of views is available
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(obtained as explained in the previous section) such that the views are horizon-
tally and vertically rectified, i.e., satisfying the epipolar constraint. Therefore,
given a pixel in a reference view, its corresponding pixels from the same row
of the matrix are only shifted horizontally. Similar reasoning is valid for the
vertical pixel shifts among views from the same column of the matrix. Fur-
thermore, consecutive views have always the same baseline a (horizontally and
vertically). As a consequence, for each point, its horizontal and vertical dispari-
ties with respect to nearest views are equal provided the point is not occluded.
In other words, given a point in the reference view, the corresponding point in
its consecutive right view is displaced horizontally by the same distance than
the corresponding point in its consecutive bottom view is displaced vertically.
By construction, the plenoptic camera provides a matrix of views with small
baselines, which means that the possible occlusions are small. In fact, each point
of the scene is seen from different points of views (even if it is occluded for some
of them). Thus, the horizontal and vertical disparity equality is true for almost
all the points of the scene. To the best of our knowledge, this particular property
of plenoptic data has not been exploited before.

Since the available views have color patterns as in Fig. 3, we propose a block
matching method in which only pixels in the block having the same color infor-
mation are compared. We propose to use a similarity measure between blocks
based on the ZSSD (Zero-Mean Sum of Squared Differences). Formally, let I? be
a reference view of the matrix of views and I¢ be a view belonging to the same
matrix row as I”. Let a,, be the respective baseline (a multiple of a). Then,
the cost function between I” and I? at the center (xg,yo) of a block By in I? is
defined as a function of the disparity d:

1
D W) @i,

(z,y)€Bo

J— —\ 2
CFP(d) = W(x,w'vy)(fp(-’ﬂ»y) — I = I'(z',y) +Ig) ;

(2)

where 2’ 1=z 4+ ap 4 d, 1P and I{ are the average values of I? and I? over the
block centered at (zo,y0) and (xo + ap 4 d, Yo) respectively and W is the window
function

W(J?,.’El,y) = Go(l‘ay) ' S($,$/7y),

where Gy is a Gaussian function centered at (¢, yo) and supported in By and S
is the characteristic function controlling that only pixels in the block with same
color information are compared in the cost function: S(z,2’,y) = 1 if IP(x,y)
and I9(z’,y) have the same color information, and 0 otherwise. Note that the
cost function is similarly defined when I? and I are views from the same matrix
column. In practice, we consider blocks of size 13 x 13.

Now, our algorithm takes advantage of the multitude of views given by the
LF and estimates the disparity through all the rows and columns of the matrix.
Let @ be the set of index-view pairs such that the disparity can be computed
horizontally or vertically w.r.t. the reference view IP. In other words, © is the
set of index-view pairs of the form (I?,1?), where I? is from the same row
or the same column as IP. In fact, consecutive views are not considered in ©
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Fig. 5. On the left: LF (matrix of views). Views in the center get more radiance than
views of the border of the matrix (pixels coming from the border of the microlenses).
The 6x6 central views among the 10x 10 are used. On the right: 6 central views from the
same row of the matrix. Odd and even views have different color patterns between them
(but very similar patterns between odd views and even views). This is represented with
a red circle and a blue triangle. The index-view pairs in @ corresponding to this matrix
row are represented with the red and blue arrows.

since consecutive color patterns are essentially different because of the sampling
period of sensor’s Bayer pattern. Besides, views on the borders of the matrix are
strongly degraded by the vignetting effect of the main lens. So, it is reasonable to
only consider the 8 x 8 or 6 x 6 matrix of views placed in the center for the Lytro
camera. Fig. 5 depicts the pairs of considered images for disparity estimation
in a matrix row. Finally, given a reference view I?, the disparity at (zg,yo) is
given by

d(zo,90) = Med, g co{ arg m{}n C’Fg’oq(d)} , (3)

where Med stands for the 1D median filter. This median filter is used to remove
outliers that may appear on a disparity map computed for a single pair of views,
specially in low-textured areas. It should be noted that through this median fil-
tering, all the horizontally and vertically estimated disparities are considered to
select a robust estimation of disparity which is possible thanks to the horizontal
and vertical disparity equality mentioned beforehand.

Removing Outliers: Block-matching methods tend to provide noisy disparity
maps when there is a matching ambiguity, e.g., for repeated structures in the
images or on poorly textured areas. Inspired by the well-known cross-checking in
binocular stereovision [20] (i.e., comparing left-to-right and right-to-left dispa-
rity maps), our method can also remove unreliable estimations comparing all
possible estimations. Since a large amount of views are available from a LF,
it is straightforward to rule out inconsistent disparities. More precisely, points
(z0,y0) are considered unreliable if

Zo,Yo

Stqu)eg{ arg mc}n CFP1 (d)} > e, (4)

where Std stands for standard deviation and ¢ is the accuracy in pixels. In prac-

tice, we consider an accuracy of an eight of a pixel, € = %.
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Fig. 6. (a) Lytro Image of the scene. (b) Disparity estimation without raw image
demosaicking. (c¢) Disparity estimation with raw image demosaicking. The cost function
is the same but the characteristic function is equal to one for all the points since the
views are in full RGB. For the sake of accurate analysis no sub-pixel refinement has
been performed. Errors due to image cross-talk artifacts are tremendous on disparity
maps.

Sub-Pixel Disparity Estimation: By construction, the baseline between the
views is small, specially between views with close positions in the matrix. So the
disparity estimation for plenoptic images must achieve sub-pixel accuracy. Such
precision can be achieved in two different ways: either by upsampling the views
or by interpolating the cost function. Usually the first method achieves better
accuracy but at a higher computational burden, unless GPU implementations
are used [8]. For this reason, the second method (cost function interpolation) is
usually used. However, it has been proved [19] that block-matching algorithms
with a quadratic cost function as in Eq. (2) achieve the best trade-off between
complexity and accuracy only by first upsampling the images by a factor of 2
and then interpolating the cost function. We follow this rule in our disparity
estimation algorithm.

Differences with State-of-the-Art: The closest disparity estimation
method for plenoptic images compared to ours is the method presented in [5] but
there are several differences between both methods. First, our method properly
demultiplexes the views before estimating the disparity, whereas the method in
[5] considers full RGB views and proposes an antialiasing filter to cope with the
weak prefilter in plenoptic type 2.0. Then, the energy defined in [5] (compare
Eq. 3 of this paper with Eq. 3 in [5]) considers all the possible pairs of views
even if in practice, for complexity reasons, only a subset of view pairs can be
considered. In [5], no criteria is given to define such subset of view pairs while a
reasonable subset is given with respect to the color pattern in our views. Finally,
the proposed energy in [5] considers a regularization term in addition to the data
term and the energy is minimized iteratively using conjugate gradients. In ano-
ther state-of-the-art method, [22] combines spatial correspondence with defocus.
More precisely, the algorithm uses the 4D EPI and estimates correspondence cues
by computing angular variance, and defocus cues by computing spatial variance
after angular integration. Both cues are combined in an MRF global optimization
process. Nevertheless, their disparity estimation method does not take care of
the demultiplexing step accurately. Their algorithm not only demosaicks the raw
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image, but it stores it using JPEG compression. So, the resulting LF is affected
by image cross-talk artifacts and compression artifacts. In next section, we shall
compare our results with this method. Unfortunately, a qualitative comparison
with [5] is not possible since the authors work with different data: mosaicked
views from a focused or type 2.0 plenoptic camera.

5 Experimental Results

In this section we show the results obtained with our algorithm. First of all,
we have compared the disparity maps obtained with and without demosaicking
the raw image. Intuitively one can think that demosaicking the raw image will
get better results since more information is available on the views. However this
intuition is rejected in practice (see for instance Fig. 6). Therefore, we claim that
accurate disparity estimation should consider only the raw data on the views.
Unfortunately, experimental evaluation with available benchmarks with ground-
truth [24] as in [13] is not possible because all LF in the benchmark are already
demosaicked.

Fig. 7 compares our disparity maps from Lytro using [2] and the disparity
map from [22] using the code provided by the authors and the correspond-
ing microlenses center positions for each experiment. The algorithms have been
tested with images from [22] and images obtained with our Lytro camera. The
poor results from [22] with our data show a strong sensitivity to parameters of
their algorithm. Also, their algorithm demosaicks and compresses (JPEG) the
raw image before depth is estimated. On the other hand, Lytro disparity maps
are more robust but they are strongly quantized which may not be sufficiently
accurate for some applications. All in all, our method has been tested on a large
number of images from Lytro with different conditions and it provides robust
and accurate results compared to state-of-the-art disparity estimation method
for plenoptic images.

Obviously, other approaches could be considered for disparity estimation. For
instance, our cost function can be regarded as the data term in a global energy
minimization approach as in [25]. However, for the sake of computational speed
we have preferred a local method. Specially, because a multitude of disparity
estimations can be performed at each pixel. Moreover, other approaches using
EPI’s as in [24] could be used but we have observed that EPI’s from Lytro are
highly noisy and only disparities on object edges are reliable (EPI from Lytro is
only ~ 10 pixels width).

In this paper we propose to not perform demosaicking on the raw image
to avoid artifacts but full RGB images are needed for some applications (i.e.,
refocusing). In that case we suggest to recover the lacking colors by bringing
the color information from all the corresponding points in all views using the
estimated disparity information as in [21]. Indeed, one point in the reference view
seen with one color channel is seen in the other views with another color. Fig. 8
shows disparity-guided demosaicking results. We show that our approach avoids
color artifacts compared with the method in [22] that demosaicks raw images. So,
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(a) Data (b) Our results (c) Results from [22] (d) Lytro from [2]

Fig. 7. (a) Original data. The three last images are published in [22]. (b) Our disparity
map results. (¢) Results from [22]. The authors have found a good set of parameters
for their data but we have found poor results using their algorithm with our data. (d)
Depth map used by Lytro, obtained with a third party toolbox [2].
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Fig. 8. Comparison of RGB views. Left: Our result. Right: Result of demosaicking the
raw data as in [22]. Besides of a different dynamic range certainly due to a different
color balance, notice the reddish and greenish bands on the right flower (best seen on
PDF).

our demultiplexing mosaicked data strategy not only avoids artifacts on disparity
maps but also on full RGB view rendering.

It shall be pointed out that we assume the Lytro camera to be a plenoptic type
1.0. Although not much is officially available about its internal structure, our
observation of the captured data and the study in [11] support this assumption.
However, the assumption on the camera type only changes the pixel reordering
in the demultiplexing step, and the proposed method can be easily generalized
to the case of plenoptic type 2.0.

Finally, even if our method only considers central views of the matrix of views,
we have observed slightly bigger errors on the borders of the image. Pushing
further the correction of vignetting and of other chromatic aberrations could be
profitable to accurate disparity estimation. This is one of our perspectives for
future work.

6 Conclusion

Plenoptic cameras are promising tools to expand the capabilities of conventional
cameras, for they capture the 4D LF of a scene. However, specific image process-
ing algorithms should be developed to make the most of this new technology.
There has been tremendous effort on disparity estimation for binocular stereo-
vision [20], but very little has been done for the case of plenoptic data. In this
paper, we have addressed the disparity estimation problem in plenoptic data and
we have seen that it should be studied together with demultiplexing. In fact, the
proposed demultiplexing step on mosaicked data is a simple pre-processing that
has clear benefits for disparity estimation and full RGB view rendering since
they do not suffer from view cross-talk artifacts.
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